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Abstract
Purpose of Review  Artificial intelligence (AI) can significantly improve physicians’ workflow when examining patients 
with UTI. However, most contemporary reviews are focused on examining the usage of AI with a restricted quantity of data, 
analyzing only a subset of AI algorithms, or performing narrative work without analyzing all dedicated studies. Given the 
preceding, the goal of this work was to conduct a mini-review to determine the current state of AI-based systems as a sup-
port in UTI diagnosis.
Recent Findings  There are sufficient publications to comprehend the potential applications of artificial intelligence 
in the diagnosis of UTIs. Existing research in this field, in general, publishes performance metrics that are exemplary. 
However, upon closer inspection, many of the available publications are burdened with flaws associated with the 
improper use of artificial intelligence, such as the use of a small number of samples, their lack of heterogeneity, and 
the absence of external validation. AI-based models cannot be classified as full-fledged physician assistants in diag-
nosing UTIs due to the fact that these limitations and flaws represent only a portion of all potential obstacles. Instead, 
such studies should be evaluated as exploratory, with a focus on the importance of future work that complies with all 
rules governing the use of AI.
Summary  AI algorithms have demonstrated their potential for UTI diagnosis. However, further studies utilizing large, 
heterogeneous, prospectively collected datasets, as well as external validations, are required to define the actual clinical 
workflow value of artificial intelligence.
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Introduction

Urinary tract infections (UTIs) are the most prevalent out-
patient illnesses and affect about 50% of the population 
at some point in their lives [1]. The incidence of UTIs is 
increasing with age, and close to 10% of postmenopausal 
women indicate that they had a UTI in the previous year 
[2]. Moreover, it is a frequent emergency department (ED) 
diagnosis with reportedly high diagnostic inaccuracy [3]. 
According to clinical criteria alone, the diagnosis of UTI 
has a diagnostic error rate of approximately 33% [4]. Differ-
ent classification systems for UTI exist. Despite this diver-
sity, defining UTI is reduced to the presence of bacteria 
in the urinary tract accompanied by related symptoms and 
dividing UTI into noncomplicated and complicated groups, 
with the latter leading to severe consequences, such as uro-
sepsis, if untreated [5••]. The algorithm for diagnosing 
patients with suspected UTIs consists of several stages; 
each of the subsequent ones allows for more reasoned fur-
ther diagnostics to make the correct diagnosis. Figure 1 
shows the artificial intelligence (AI)–based treatment and 
diagnosis of UTIs.

Liquid-based laboratories, such as urine analyses with 
microscopy and culturing, represent the standard for the initial 
diagnosis of UTI to suspect pathologies of the urinary system 
and to specify indications for an instrumental approach [6•, 7]. 
Currently, it is well known that UTI-associated urine changes 
could be present in non-infection urinary tract pathologies, 
leading to decreased urine microscopy accuracy [8]. Moreover, 
urine culture suffers from several shortcomings, such as being 
time-consuming and highly susceptible to contamination, lead-
ing to incorrect antibiotic prescription, overutilization, antibiotic 
resistance, and postponed treatment [9]. The use of AI in the 
medical industry has grown and expanded over time. Among 
them, the development of intelligent decision-making for clini-
cal medicine is the fastest [10]. Currently, it has already been 
stated that AI-based models can significantly improve physi-
cians’ workflow when examining patients with UTI [11••]. 
However, most contemporary reviews focus on examining AI 
usage with a restricted quantity of data, analyzing only a subset 
of AI algorithms, or performing narrative work without analyz-
ing all dedicated studies. Given the preceding, the goal of this 
work was to conduct a mini-review to determine the current state 
of AI-based systems as a support in UTI diagnosis.

Fig. 1   Artificial intelligence (AI)–based treatment and diagnosis of UTIs
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Material and Methods

Search Strategy

In July 2023, the systematic publication search was done in 
several databases, including ACM Digital Library, CINAHL, 
IEEE Xplore, PubMed, and Google Scholar via Boolean 
operators with the use of the following terms: “AI,””artificial 
intelligence,” “UTI,” “urinary tract infection,” “cystitis,” 
“pyelonephritis,” “prostatitis,” “orchitis,” “epididymitis,” 
“urine,” “urinalysis,” and “urine culture.”

Inclusion criteria: description of the development and 
validation of AI-based approaches for UTI diagnosis based 
on clinical and/or laboratory and/or instrumental data, 
description of the AI model used, presence of performance 
metrics; publication date within 5 years from the search 
time; English-written papers; accessibility of full papers.

Exclusion criteria: papers not in the English language; 
papers published more than 5  years ago. Also, papers 
describing solely the technological aspects of the proposed 
method without its clinical implementation were excluded.

Studies Process

Two reviewers (A. T. and N. N.) independently identified all 
papers. All studies fitting the inclusion criteria were selected 
for full review. If there was disagreement or discrepancy, the 
senior author (B. K. S.) made the final decision.

Data Extraction and Analysis

We reviewed studies and extracted information related to 
the objective, dataset volume, data used for the training, AI 
approach with precise classification or networks used, per-
formance metrics, outcomes, and validation type. In papers 
comparing several AI-based models, the most accurate was 
included in the table. After investigation of the included 
papers, we divided the described AI models into basic clinical 
scenarios where they are supposed to be used. This study was 
reported according to the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis (PRISMA) guidelines.

Results

Out of the 782 papers that were considered, only 14 stud-
ies on AI models in the area of UTIs met the criteria for 
inclusion (Fig. 1). These can be grouped according to the 
scenarios the AI models were developed for, namely, (1) 
diagnosis of uncomplicated UTI and symptoms checkers, 
(2) diagnosis of complicated UTI, and (3) diagnosis of UTIs 
in specific population groups. Among models, 12 and two 

papers described machine and deep learning approaches, 
respectively. The most popular machine learning model 
was the artificial neural network (ANN) described in six 
studies, followed by extreme gradient boosting (XGBoost) 
(n = 3), support vector machine (SVM) (n = 1), CatBoost 
(n = 1), and ensemble learning model (ELM) (n = 1). Among 
predictive inputs, demographic parameters were used in 
10/14 (71.4%) studies and mostly in the view of age (n = 9), 
gender (9), race, and weight (n = 1). Notably, the latter are 
included in papers with pediatric patients. Anamnesis was 
considered in 7/14 (50%) papers, namely, history of previous 
UTIs (n = 4), history of previous antibiotic treatment failure 
(n = 1), history of previous urine culture results (n = 1), and 
invasive urethral procedures (n = 1). Comorbidities were 
used in 3/14 (21.4%) studies: diabetes (n = 2), pneumonia 
(n = 2), classification of stroke (n = 1), and the presence of 
mixed cerebrovascular disease (n = 1). Logically, the last 
two were used in developing AI decision support for stroke 
patients. UTI-associated symptoms were included in 7/14 
(50%) papers: dysuria (n = 4), fever (n = 3), suprapubic pain 
(n = 3), frequency and urgency (n = 1), pollakiuria (n = 1), 
and urine incontinence (n = 1). Urinalysis was used, and 
prognostic input was provided in 7/14 (50%) papers; two 
of them included dipstick tests only. When urine micros-
copy was used, red blood cells (RBC), white blood cells 
(WBC), bacteria’s presence, nitrites, epithelial cells, and 
glucose were analyzed in 2, 3, 2, 1, 1, and 1 studies, respec-
tively. The study used urine cloudiness as one of its features. 
Imaging data were used in 3/14 (21.4%): one study analyzed 
the cystoscopic appearance of the lower urinary tract, and 
two papers described ultrasound imaging usage (for esti-
mation of hydronephrosis and vesicoureteral reflux grades, 
respectively). Also, there were other inputs not related to the 
abovementioned groups: length of stay (LOS) (n = 3), length 
of urethral catheterization (n = 2), immunological urine 
markers (n = 1), ward (n = 1), serum creatinine and albu-
min (n = 1 and n = 1), glucocorticosteroid use (n = 1), and 
duration of immobility (n = 1). Performance metrics, valida-
tion type as well, and the abovementioned data arranged to 
include studies are discussed and presented in the review.

Uncomplicated UTI AI‑Based Diagnosis 
and Symptom Checkers

Research on AI-based models for uncomplicated UTI diag-
nosis and symptom checking is listed in Table 1. The study 
by Ozkan et al. [12••] sought to determine the accuracy of 
several artificial intelligence models in predicting the likeli-
hood of cystitis and non-specific urethritis disorders, given 
similar symptoms from the urinary system. Anamnesis, 
urinalysis, and ultrasound results from 59 individuals were 
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gathered as a training and validation dataset for the study. 
Four distinct artificial intelligence techniques were applied: 
decision trees (DT), random forests (RF), support vector 
machines (SVM), and artificial neural networks (ANN). 
When these models were compared, it became evident that 
ANN had the greatest accuracy for UTI detection, with a 
result of 98.3%. This ANN model only requires the variables 
pollakiuria, erythrocyturia, and suprapubic pain to acquire 
a diagnosis with comparable accuracy to a clinical-based 
diagnosis (Fig. 2).

It was demonstrated that the ANN-based model structure 
could categorize UTIs without the requirement for expensive 
laboratory testing, ultrasounds, or invasive methods. Hence, 
it results in a cheaper diagnostic cost and a quicker decision-
making process.

The motivation behind Gadalla et al.’s [13] paper is that 
women with uncomplicated UTI symptoms are frequently 
treated with empirical antibiotics, leading to antibiotic mis-
use and the development of antimicrobial resistance. The 
authors looked into 17 clinical and 42 immunological poten-
tial predictors for bacterial culture using a random forest or 
support vector machine (SVM) paired with recursive fea-
ture removal (RFE). The most effective clinical predictor 
to rule in and rule out UTI was urine cloudiness. Interest-
ingly, adding the selected immunological biomarkers to the 
model with clinical features (including cloudiness or tur-
bidity) did not improve the predictive properties. Dhanda 
et al. [14] described the NoMicro model, which does not 
take into account urine microscopy. Instead, the results of 
the urine dipstick test are used. Moreover, the authors gen-
erated NoMicro models based on several machine learning 
classificators, namely XGBoost, RF, and ANN, and com-
pared their efficiency. The primary outcome was a patho-
genic urine culture growing ≥ 100,000 colony-forming units. 
Predictor variables included age; gender; dipstick urinaly-
sis nitrites, leukocytes, clarity, glucose, protein, and blood; 
dysuria; abdominal pain; and history of UTI. According to 
the results, the AUC of the NoMicro approach reached 0.85 
in external validation and did not statistically differ from the 
version considering urine microscopy results. Arches et al. 
[15] described an application providing an analysis of the 
urine test strip using smartphones. According to the results, 
among the 65 participants, the confirmed UTI AI model 
achieved an overall accuracy rate of 96.03% and an overall 
reliability rate of ≥ 0.9, which is interpreted as excellent.

Complicated UTI AI‑Based Diagnosis

Research describing AI-based models for complicated UTI 
diagnosis is listed in Table 2. Møller et al. [16] aimed to 
develop two predictive models, using data from the index 
admission as well as historic data on a patient, to predict 
the development of UTI at the time of entry to the hospital Ta
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and after 48 h of admission (HA-UTI). The ultimate goal 
was to assess the individual patient’s risk. The methodology 
included developing five machine learning models using fea-
tures such as demographic information, laboratory results, 
past medical history, and clinical data. The unstructured fea-
tures, such as the narrative text in electronic medical records, 
were preprocessed and converted to structured form by natu-
ral language processing. The area under the curve ranged 
from 0.82 to 0.84 for the entry model (t = 0 h) and 0.71 to 
0.77 for the model predicting HA-UTI.

Taylor et al. [17] performed a single-center, multi-site, 
retrospective cohort analysis of adults who visited the emer-
gency department based on urine culture results, clinical 
symptoms, and blood tests. Using both laboratory and clini-
cal data, models for UTI prediction were created using six 
machine learning algorithms: RF, XGBoost, SVM, adaptive 
boosting, elastic net, and ANN. A full set of 211 variables 
and a reduced set of 10 variables (age, gender, history of 
UTI, dysuria, the presence of nitrites in urine, white blood 
cells (WBC), red blood cells (RBC), bacteria, and epithelial 

Fig. 2   PRISMA flowchart: 
AI-based approaches for UTI 
diagnosis
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cells) were both used to develop the models. Comparisons 
between the UTI predictions and previously recorded UTI 
diagnoses were made. XGBoost, which has an area under the 
curve of 0.904, was found to be the best-performing method. 
It was also shown to have greater sensitivity when compared 
to the documentation of the UTI diagnosis. According to the 
results obtained, in practical application, approximately 1 
in 4 patients will be re-classified from false positive to true 
negative, and 1 in 11 patients will be re-categorized from 
false negative to true positive on account of implementing 
the algorithm. Mancini et al. [18] created a machine learning 
model that can forecast a patient’s likelihood of developing 
a multidrug-resistant (MDR) UTI after being admitted to 
the hospital. The paper added a user-friendly cloud platform 
called DSaaS (Data Science as a Service), which is ideal 
for hospital organizations where healthcare operators might 
not have specialized programming language skills but need 
to analyze data, via machine learning techniques including 
CatBoost, SVM, and ANN. The paper employed DSaaS 
on a real antibiotic stewardship dataset. The development 
of an MDR UTI was predicted using data related to 1486 
hospitalized patients, namely, sex, age, age class, ward, and 
time period. According to the results obtained, CatBoost 
exhibited the best predictive results, with the highest value 
in every metric used. Cai et al. [19] described two models 
based on ANN for predicting fluoroquinolone-based ther-
apy failure (model 1) and fosfomycin-based therapy failure 
(model 2) among patients with recurrent UTI. Input data 
mostly consisted of previous urine culture profiles as well 
as types of antibiotic therapy failures. After the completion 
of the ANN learning and prediction processes, our neural 
network showed a sensitivity of 87.8% and a specificity 
of 97.3% in predicting the clinical efficacy of empirical 
therapy. Interestingly, the previous use of a specific class 
of antibiotic was not a risk factor for developing bacterial 
resistance to the same class (except for the fluoroquinolo-
nes), but instead, the most important risk factor for predict-
ing resistance is the use of other classes of antibiotics.

Chen et al. [20•] compared models based on LR and ANN 
in defining UTI risk after cystoscopy to reduce antibiotic over-
use. As input data, previous UTI history as well as cystoscopic 
findings such as benign prostatic hyperplasia (BPH), diverticu-
lum, trabeculation, blood clot, cystocele, stone, and tumor was 
selected. The neural network model had a high accuracy of 
85%, sensitivity of 80%, and specificity of 88%. Hong et al. [21] 
constructed a prediction model for urosepsis risk for patients 
with upper urinary tract calculi with the use of a machine learn-
ing ANN model. Several clinical and laboratory features, as 
well as a hydronephrosis degree based in the USA, were taken 
as predictive inputs. The area under the receiver operating curve 
in the validation set was 0.95. According to the results, the pro-
posed model could provide risk assessments for urosepsis in 
patients with upper urinary tract calculi.

UTI AI‑Based Diagnosis in Susceptible Subgroups

Papers describing AI-based models for uncomplicated UTI 
diagnosis in susceptible subgroups are listed in Table 3. 
Pregnant women and children represent a separate sub-
group of patients more susceptible to UTIs and requiring 
specific diagnostic flow and treatment. Pregnancy immu-
nologic and urinary tract alterations predispose women to 
UTIs. Progesterone-induced smooth muscle relaxation and 
gravid uterine compression cause ureter and renal calyces 
dilatation. Also, vesicoureteral reflux may occur. These 
modifications exacerbate urinary tract infections [22]. In 
turn, UTIs are among the most prevalent bacterial pediat-
ric infections. They are equally prevalent in males and girls 
during the first year of life but become more prevalent in 
girls following the first year [23]. This high susceptibility 
makes the development of decision support models based 
on AI even more relevant. Bertsimas et al. [24] developed a 
machine learning model to better stratify pediatric patients 
with vesicoureteral reflux complicated by UTI according to 
the effect of continuous antibiotic prophylaxis. The authors 
used the following data as input: vesicoureteral reflux grade, 
serum creatinine, race/gender, fever, dysuria, and weight, 
and achieved an AUC of 0.82. The described model allows 
better identification of patients for whom continuous anti-
biotic prophylaxis will be more effective, thereby provid-
ing a personalized approach, while minimizing use in those 
with the least need. A study by Burton et al. [25] aimed at 
introducing a way to increase the efficiency of urine culture 
results among pregnant women and children by reducing 
the number of query samples to be cultured and enabling 
diagnostic services to concentrate on those in which there 
are true microbial infections.

This research discussed two methods of classification 
to test: one is a heuristic approach using a combination of 
features such as urine WBC and bacterial counts, and the 
second is testing typical machine learning models such as 
random forest, neural network, and XGBoost using inde-
pendent features such as demographics, previous urine cul-
ture results, and clinical details as well. The most optimal 
solution found was three separate XGBoost algorithms 
trained separately for pregnant patients, children, and the 
rest of the categories. Combining the three models yielded 
a workload reduction of 41% and a sensitivity of 95% for 
each patient group. The work shows the possibility of using 
supervised machine learning models to improve service effi-
ciency in situations where demand exceeds the number of 
resources available to public healthcare providers.

Immobile stroke patients also represent a highly suscepti-
ble patient subgroup. The prevalence of urinary tract infec-
tions is approximately 19%. In addition, the occurrence of 
an infection can exacerbate the physical harm caused by a 
stroke, forming a vicious circle with the stroke [26]. Zhu 
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et al. [27] aimed to develop a prognostic model to define the 
risk of UTI among immobile stroke patients. Six machine 
learning models and an ensemble learning model were 
derived and evaluated. The latter achieved the best perfor-
mance metrics both in internal and external validation sets, 
with an AUC of up to 0.82. Xu et al. [28] created an effec-
tive prediction model for identifying UTI risk in immobile 
stroke patients and compared its prediction performance 
to establish machine learning algorithms. They addressed 
this issue by developing a Siamese network that employed 
commonly used clinical criteria to identify patients at risk 
of UTIs. The model was developed and validated using a 
countrywide dataset of 3982 Chinese patients. A Siamese 
network is a deep neural network architecture with two or 
more identical subnetworks that are commonly employed 
in object detection. With an AUC of 0.83, the Siamese deep 
learning network did better than all the other machine learn-
ing–based models at predicting UTIs in stroke patients who 
were unable to move.

Limitations and Future Directions

AI algorithms can identify unique correlations between 
symptoms, urinalysis results, and inflammatory processes 
in the urinary tract, as well as concise variable sets that are 
accurate in predicting urinary tract infections. Unquestion-
ably, artificial intelligence is a highly precise and reliable 
instrument for predicting various events in healthcare [29]. 
In contrast to conventional statistics, artificial intelligence 
forecasts events by identifying distinct patterns. Sadly, along 
with new opportunities, associated difficulties with their 
application have emerged, necessitating a reduction in gen-
eral optimism in order to comprehend the actual state of this 
technology, especially in the UTI field.

A sufficient amount of data is required for training neural 
networks to attain optimal performance metrics. In addition, 
limited dataset sizes may lead to estimation instability and 
overfitting [13]. According to our review, 10 of the 14 stud-
ies included more than 1000 cases, which, at first sight, may 
be an argument in favor of the utility of AI in the context 
of UTIs. In addition to quantity, however, the dataset must 
also be of sufficient quality. To be generalizable, the data 
should ideally be multicenter and prospectively collected, 
as well as span multiple geographic regions [14]. Further-
more, validation is an essential aspect of the reliability of 
the results. To obtain as objective and unbiased performance 
metrics as feasible, validation should be performed exter-
nally with samples that AI has never seen before [30]. Only 
two works provided external validation results in our review. 
On the other hand, the disparity in laboratory thresholds 
between medical centers and guidelines further complicates 

the collection of multicenter datasets and the routine appli-
cation of the resulting AI-based models. For instance, there 
is currently no accepted level for a positive urine culture, 
with published values ranging from 10^2 to 10^5 cfu/mL. 
Conceivably different thresholds would result in different 
test performances [17].

The limitations outlined above represent only a small 
portion of the issues associated with the application of 
artificial intelligence and the interpretation of the results 
obtained. Despite this, the results of the studies included 
in this review demonstrate the potential utility of AI-based 
models for diagnosing UTIs. Clarifying the issues associated 
with the use of such technologies is an integral part of com-
prehending how the urological community should advance 
their sophistication. To facilitate the training of models, it 
is essential that as many medical centers around the world 
as possible converge on a common terminology for UTI, 
threshold values for various indicators, and research quality. 
To ensure generalizability, future studies should be prospec-
tive and multicenter to transition AI-based models from a 
stage of experimental development to a stage where they can 
be utilized in the clinical practice of urologists. Lastly, the 
advancement of AI in the field of UTIs is directly related 
to the general enhancement of diagnostic techniques. As 
new markers, new modalities, and improved interpretation 
become available, studies should be conducted to ascertain 
their utility in predicting UTIs using AI, thereby enhancing 
our knowledge of the future development of this technology.

There is great potential in using AI algorithms for the 
detection of urinary tract infections (UTIs), but there are 
also an array of challenges that need to be addressed. The 
investigations discussed demonstrate that machine and deep 
learning models have the potential to significantly improve 
UTI diagnosis, leading to faster, more precise diagnoses. 
The limitations and unknowns of their clinical influence, 
however, must be noticed. Although AI models have shown 
remarkable precision in specific settings, a wider variety of 
data is necessary to guarantee their consistency and gener-
alizability. Larger datasets that comprise patients from many 
different backgrounds, ages, and locations fall under this 
category. To minimize errors and verify the efficacy of AI 
algorithms in actual clinical situations, prospective data col-
lecting is essential. In addition, it is essential to acknowledge 
the value of external validation in making AI models robust 
and useful in various healthcare settings. Moving forward, 
healthcare facilities should work together to develop stand-
ardized diagnostic criteria and terminology for UTIs. This 
will help alleviate problems caused by disparities in labo-
ratory methods and terminology. This will allow AI algo-
rithms to be more seamlessly integrated into the diagnostic 
workflow, minimizing the need for intrusive and expensive 
laboratory testing and imaging.
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Conclusion

AI-driven UTI detection is a promising new area of health-
care research; however, it is still in the exploratory rather 
than implementation phase. To fully realize AI’s potential 
for enhancing UTI diagnosis, more study is needed, ideally 
guided by larger, more diversified datasets and rigorous vali-
dation techniques. By resolving these issues, we can bring 
AI to bear on this important aspect of healthcare, which 
will improve patient care, cut costs, and slow the spread of 
antibiotic resistance. Further studies utilizing large, hetero-
geneous, prospectively collected datasets, as well as external 
validations, are required to define the actual clinical work-
flow value of artificial intelligence.
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