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Abstract
Purpose of Review  Small renal stones in the lower pole are often difficult to treat. The angle of the lower pole to the renal 
pelvis (lower pole angle) is a limiting factor to rendering the patient stone free. This review explores the definitions of the 
lower pole angle, the various treatment options available, and how outcomes are influenced by the angle.
Recent Findings  It is clear the lower pole angle definition varies widely depending on described technique and imaging 
modality. However, it is clear that outcomes are worse with a steeper angle, especially for shock wave lithotripsy and retro-
grade intrarenal surgery (RIRS). Percutaneous nephrolithotomy has similar reported outcomes to RIRS, and there is limited 
evidence it may be superior for steeper angles over RIRS.
Summary  Lower pole stones can be technically challenging and adequate assessment prior to choosing operative approach 
is key.
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Introduction

Urolithiasis is a very common disease, with an estimated 
lifetime prevalence of around 10%, which is set to be 
increasing [1]. Kidney stone formation commonly takes 
place in the lower pole (35%), yet the endourological man-
agement of small lower pole stones remains a controversial 
topic [2••]. Treatment modalities for small lower pole stones 
include shockwave lithotripsy (SWL), retrograde intra-renal 
surgery (RIRS), and percutaneous nephrolithotomy (PNL). 
Each has its own benefits and drawbacks. There has been 
on-going effort to identify various factors which may impact 
the treatment outcomes of different modalities. The anat-
omy of the renal pelvis has been an area of particular focus, 
with the infundibulopelvic or lower pole angle thought to 
have significant influence on interventional outcome. This 
article will provide summarise the background of the lower 
pole angle, the issues surrounding its definition, how recent 

technological advances have impacted its relevance, and 
whether it still matters in the current day endourological 
practice.

Defining the Lower Pole Angle

Several methods of lower pole angle measurements have 
been described in the literature (Fig. 1). The first mention of 
lower pole angle in the context of urolithiasis was probably 
by Bagley and Rittenburg in 1987, where they described 
what was termed the ureteroinfundibular angle (by measur-
ing the major axis of the ureter to the axis of the lower infun-
dibulum), to represent the deflection angle required in the 
context of designing flexible ureteroscopies (Fig. 1A) [3].

Sampaio and Arago first raised the possible role of lower 
pole angle in renal stone treatment efficacy in 1992; at the 
time, they simply described this as the angle between the 
lower pole infundibulum and the renal pelvis [4] (Fig. 1B). 
Sampaio et al. further refined the measurement method in 
1997 by defining the infundibulum-pelvic angle (IPA) using 
two lines; the first line is formed between the central axis 
of the superior ureter (at level of lower pole) and the central 
axis of the ureteropelvic junction, with the second line being 
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the central axis of either the major or minor infundibulum 
where the stone is located (Fig. 1C) [5].

In 1998, Elbahnasy et al. published an alternative meas-
urement method of IPA, defined as inner angle form at the 
intersection of the ureteropelvic axis and the central axis of 
the lower pole infundibulum [6]. The ureteropelvic axis is 
delineated by a line was drawn connecting the central point 
of the pelvis opposite the margins of the superior and infe-
rior renal sinus to the central point of the ureter at the level 
the lower kidney pole (Fig. 1D).

Gupta et al. [7] used 2 separate measurements of lower 
pole angle when looking at infundibulopelvic anatomy and 
SWL success rate [7]. They described using either the ure-
teral axis and ureteropelvic axis to form the angle measure-
ment with the lower infundibular axis (Fig. 1E); both angles 
were associated with SWL success rate, and there was only 
a mean difference of 7° between them.

To date, there is no general consensus on which IPA 
measurement should be used [8]. No prospective com-
parative studies exists on examining which measurement 
method offers better predictive value on stone free rate. 
Manikandan et al. examined the IPA of a single lower pole 
stone-bearing kidney and the contra-lateral side, using the 
Sampaio, Bagley, and Elbahnasy method; only the Elbah-
nasy method showed statistical significance, implying this 
method could show predisposition to LP stone formation 

with respect to lower pole anatomy [8]. However, the dif-
ference between the mean IPA of the stone and the con-
tralateral stone-free side was small (60.4° and 65.9°, respec-
tively), and it is questionable whether this finding could be 
translated into determining which measurement method is 
best suited to guide management options. In the author’s 
experience, most reported literatures in recent years chose 
the Elbahnasy’s method in determining IPA.

The reproducibility of IPA measurements has also been 
called into question. Rachid Filho et al. examined the intra-
observer and inter-observer variations of IPA measurements, 
with the Elbahnasy, Sampaio, and Gupta measurement 
method [9]. They found significant inter-observer variations, 
with the Sampaio method producing the widest variations 
between observers. This suggests that routine use of IPA in 
daily clinical practice may be problematic.

Historically, almost all studies looking at IPA in relation 
to lower pole stones utilised intravenous urogram (IVU) as 
its modality of imaging. The 2-dimensional representation 
of the renal pelvis anatomy could be significantly affected 
by several factors, such as rotation of the kidney in indi-
vidual anatomical variations and positioning of the X-ray 
beam. Often the interpretation of IVUs may be difficult to 
due poor patient preparation [10]. Computed tomography 
(CT) has largely replaced IVU as the imaging of choice for 
urolithiasis in most current practices [1]; this also enables 

Fig. 1   Diagram demonstrating 
different described methods of 
measuring IPA. A Bagley; B 
Sampaio (1992); C Sampaio 
(1997); D Elbahnasy; E Gupta
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3D-reconstruction of the urinary tract, giving a more accu-
rate representation of the renal anatomy [9]. When using 
30 degrees as a cut-off, one study found significant differ-
ences in IPA measurements between IVU and CT as imag-
ing modality [11]. The lack of standardisation in imaging, 
where it is crucial to obtain accurate measurements, further 
hampers efforts to clearly define IPA and its role.

SWL

It has been generally accepted that the efficacy of SWL is 
reduced for stones in the lower pole calyx when compared 
with other intra-renal locations, with the reported stone free 
rate (SFR) of SWL for lower pole stones varying widely 
between 25 and 95% [1]. Endourological procedures are con-
sidered to be a more effective treatment for small lower pole 
stones than SWL, particular for stones between 10–20 mm; 
nevertheless, SWL still has a role of being a non-invasive 
outpatient procedure; therefore, treatment options should be 
based on individual patient’s circumstances and preferences 
[12–14].

This is reflected in the EAU Urolithiasis guideline, where 
both SWL and endourological options are recommended for 
small lower pole stones [1]. The guideline does advocate 
for preference of endourological options over SWL in cases 
where there is unfavourable factors for SWL, one of which 
is a steep IPA. The exact threshold for when IPA would be 
considered “steep” is not specified; however; this is likely 
due to conflicting evidence in the literature, as well as the 
difficulty of defining where different methods of measure-
ments exists.

The relationship between renal anatomy and success 
of SWL has long been under scrutiny. Sampaio originally 
proposed an IPA of < 90° as unfavourable for lower pole 
stone SWL, as he reported a SFR rate of 75% within the 
favourable group, compared with only 23% in those with 
IPA of < 90° [5]. Elbahnasy, using his alternate IPA meas-
urement method, proposed an angle of < 70° instead; when 
combined with other unfavourable anatomy (infundibular 
width < 5 mm, infundibular length > 3 cm), the SFR was less 
than 50% [6].

Numerous studies have since showed a somewhat contra-
dictory picture on the significance of IPA, with some sug-
gesting it as a statistically significant factor, whilst others 
refute this, and often times suggested that other lower pole 
anatomical factors such as infundibular length and width 
were more important in determining SFR [15–19]. A more 
recent study by Chan and colleagues examining the efficacy 
of SWL in treating 10–20 mm lower pole stones suggested 
a statistically significant difference of the IPA between the 
success and failure group [20]. With the reported mean 
IPA of the 2 groups were 57.1° and 54.0°, respectively, it is 

difficult to see the clinical significance when there is such 
a small difference.

Few studies have directly compared different IPA meas-
urement methods in SWL efficacy. Arpali and colleagues 
retrospectively analysed the radiological renal anatomy of 
patients who underwent SWL, with respect to their success 
rate; they applied both the Sampaio (1997) and Elbahnasy 
measurement for calculating the IPA in the same set of 
patients [21]. The mean IPA for all patients using the Sam-
paio and Elbahnasy measurement were 91.92° and 47.1°, 
respectively, suggesting that using different methods to cal-
culate IPA can yield very different readings.

Overall, given the heterogeneity of measurement meth-
odologies, high inter-observer variations, and conflicting 
evidence, attempts to determine a more precise relationship 
between IPA and SWL effectiveness remain elusive and 
may explain some of the conflicting study results. Indeed, 
it could well be argued that looking at IPA alone is perhaps 
not the correct approach; all other important factors such as 
infundibular length and width need to be taken into account, 
when determining whether the renal anatomy is favourable 
for SWL of the lower pole stone.

RIRS

RIRS has largely overtaken SWL as the mainstay of neph-
rolithiasis management, largely owing to technological 
advancements in endoscope miniaturisation, improved 
optics, and deflection mechanisms [22, 23].

Despite this, treating small lower pole stones could be 
challenging with ureteroscopy (URS) due to hostile renal 
anatomy. A recent systematic review looking into the role of 
pelvicalyceal anatomy and SFR of lower pole stone treated 
with RIRS suggested that a steep IPA (Elbahnasy method) 
of less than 30° is the most significant predictor of being 
non-stone free following URS [24]. Infundibular width and 
length did not seem to significantly affect SFR.

The choice of flexible ureteroscope (fURS) should also 
be taken into consideration when tackling a lower pole stone 
in a steep IPA, as it would require the fURS to be able to 
achieve significant active and passive deflection in order to 
reach the stone. Whilst the diameter of the modern day digi-
tal and fibreoptic fURS are almost on-par, fibreoptic scopes 
tend to offer a slightly wider deflection angle which may 
give a slight advantage in demanding lower pole cases [25]. 
The tip of digital fURS is slightly larger and rigid in order 
to accommodate the digital camera chip, which often results 
in the loss of deflection at the distal tip for a few centimetres 
(termed end-tip deflection) [26]. An in vitro study using a 
RIRS training model tested 9 different fURSs their ability 
to access difficult angled calyx and the end-tip deflection 
in order to simulate difficult lower pole conditions showed 
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that fibreoptic fURSs are generally better at accessing sharp 
angled calyx, as well as better end-tip deflection [27]. This 
study also highlighted that individual make of fURS all per-
form slightly differently, and it is important for endourolo-
gists to familiarise themselves with the equipments and 
choose the appropriate one for different settings.

A steep IPA is also associated with a higher risk of dam-
age to ureteroscopes, which would incur significant cost to 
repair or replace [28]. With the recent widespread availabil-
ity of single-use diposable digital fURS, they offer a break-
age risk-free alternative when a high risk of scope damage 
is anticipated. Introduction of single-use fURS alongside 
reusable fURS has been shown to increase the life cycle of 
reusable scopes by 40% [29]. A recent meta-analysis sug-
gested that their clinical outcomes are essentially compara-
ble, and their cost is now considered to be similar to reus-
able fURS [30, 31]. The optical and technical characteristics 
of single-use fURS are generally thought to be somewhat 
inferior to reusable scopes, but this likely differs with indi-
vidual makes, and it is debatable whether the difference is 
significant. Crucially in the context of lower pole stones, the 
deflection of single-use fURS was not found to be signifi-
cantly different compared to reusable fURS [32].

The recent introduction of the thulium fibre laser (TFL) 
has permitted the use of smaller 150 µm laser fibres, instead 
of 200 µm fibres of the holmium:YAG laser. In the con-
text of tackling small lower pole stones with a steep IPA, 
this offers several advantages. The smaller 150 µm causes 
less scope deflection loss, when compared with 200 µm 
and 272 µm fibres, where both had an additional 9 and 
34 degrees of deflection loss, respectively [33•]. Scope 
deflection has been shown to reduce flow within the work-
ing channel, ranging from 2.9 to 9.4% depending on the 
make [32]. Having a device with smaller diameter within 
the working channel will reduce the impact on flow reduc-
tion, which may aid in reducing the possibility of thermal 
damage generated by laser use [34•]. Lastly, TFL has been 
shown to generate much finer stone dust when compared 
with holmium:YAG lasers, which may reduce residual stone 
fragments. A recent study using 3D printed kidney model 
showed that using TFL resulted in 35% less residual lower 
pole stone fragments when compared with holmium:YAG 
laser [33•].

PNL

Historically, PNL for small lower pole stones had consist-
ently produced the highest SFR out of all the treatment 
modality, at the expense of higher complication risks, greater 
pain and longer hospital stay. In recent times however, RIRS 
has produced almost comparable SFR due to maturation of 
technology, and there is still much debate in the endourology 

community on the best modality in tackling small lower pole 
renal stones [35]. The miniaturisation of PNL has off-set 
some of the drawbacks of this approach, whilst maintaining 
a very similar SFR [36].

There is conflicting evidence as to whether SFR and com-
plication rates for small lower pole stones are higher with 
miniaturised PNL or RIRS [37•, 38]. On the other hand, it 
has been demonstrated that steep IPAs are associated with 
greater complication rates post-RIRS [28]. Factors such as 
prolonged operative time and increased intra-renal pressure 
intraoperatively may contribute to this. A recent study by 
Ozimek et al. reassuringly demonstrated that IPA was not 
associated with either SFR or post-operative complications 
following mini-PNL [39].

Huang et al. recently proposed a scoring system to aid 
in choosing between RIRS or mini-PNL (18-22Fr tract) for 
treatment of 1–2 cm lower pole stones [40]. The scoring 
system consists of 5 items, with one of them being the IPA 
(Table 1). A score of 0–2 or 3–5 would be advocated to pro-
ceed with RIRS or mini-PNL, respectively. This could prove 
to be a useful clinical decision-aid tool, but will require 
external validation.

Conclusion

The role of IPA in treatment of lower pole stones has long 
been examined and debated. Yet to this day, there is still a 
lack of consensus on its definition/measurement method. 

Table 1   Scoring system proposed by Huang et al. to aid decision on 
endourological treatment modality for 10–20  mm lower pole renal 
stone

Total score of 0–2: recommend RIRS
Total score of 3–5: recommend PNL
IPA infundibulopelvic angle, IL infundibular length, IW infundibular 
width

Factor Points

Number of stones
Single
Multiple

0
1

Stone diameter
≤ 15 mm
≥ 15 mm

0
1

IPA
> 90°
< 90°

0
1

IL
≤ 30 mm
≥ 30 mm

0
1

IW
≥ 5 mm
≤ 5 mm

0
1
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Measurements of IPA are frequently found to not be readily 
reproducible accurately, and much of the original studies on 
the subject used outdated imaging modality. All these factors 
have made any meaningful, precise assessment on the role 
of IPA in lower pole stone treatment difficult and should be 
remedied in the first instance.

Despite this, there is little doubt that IPA still has a role in 
determining the most appropriate treatment option for small 
lower pole stones. It not only impacts the SFR, but also risk 
of complications, as well as choosing the most appropriate 
tool for the job. Whilst the current guidelines clearly favour 
RIRS/PNL over SWL in the presence of a steep IPA, the 
benefit between RIRS and PNL is not so clear-cut. With 
access to novel technologies only widely available in the last 
few years, such as TFL, suction, and PNL miniaturisation, it 
remains to be seen whether they will dramatically improve 
outcomes of their respective treatment modality in the pres-
ence of a steep IPA.
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