Skip to main content
Log in

Role of Intrarenal Pressure in Modern Day Endourology (Mini-PCNL and Flexible URS): a Systematic Review of Literature

  • Endourology (P Mucksavage, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the latest evidence about intrarenal pressures (IRPs) generated during flexible ureteroscopy (fURS) and mini percutaneous nephrolithotomy (mPCNL) and present tools and techniques to maintain decreased values.

Recent Finding

fURS and PCNL constitute the primary means of stone treatment. New flexible ureterorenoscopes with small diameter and miniaturized PCNL instruments achieve optimal stone-free rates (SFRs) while decreasing invasiveness and morbidity. Nevertheless, endourologists must remain cognizant regarding the dangers of increased IRPs to avoid complications. Current research presents essential information for urologists regarding this topic.

Summary

During fURS, using a ureteral access sheath (UAS), we avoid extremely high IRPs with all irrigation types. During mPCNL, pressure remains low, mainly using the purging effect or a vacuum-assisted sheath. Devices of intraoperative IRP measurement and intelligent pressure control have proven their feasibility, accuracy and efficacy. These will have an increasing role to play in the future management of stone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zeng G, Zhu W, Liu Y, Fan J, Lam W, Lan Y, et al. Prospective comparative study of the efficacy and safety of new-generation versus first-generation system for super-mini-percutaneous nephrolithotomy: a revolutionary approach to improve endoscopic vision and stone removal. J Endourol. 2017;31(11):1157–63. https://doi.org/10.1089/end.2017.0558.

    Article  PubMed  Google Scholar 

  2. Zeng G, Zhu W, Liu Y, Fan J, Zhao Z, Cai C. The new generation super-mini percutaneous nephrolithotomy (SMP) system: a step-by-step guide. BJU Int. 2017;120(5):735–8. https://doi.org/10.1111/bju.13955.

    Article  CAS  PubMed  Google Scholar 

  3. Nagele U, Horstmann M, Sievert KD, Kuczyk MA, Walcher U, Hennenlotter J, et al. A newly designed amplatz sheath decreases intrapelvic irrigation pressure during mini-percutaneous nephrolitholapaxy: an in-vitro pressure-measurement and microscopic study. J Endourol. 2007;21(9):1113–6. https://doi.org/10.1089/end.2006.0230.

    Article  PubMed  Google Scholar 

  4. Schilling D, Gakis G, Walcher U, Germann M, Stenzl A, Nagele U. Minimally invasive percutaneous treatment of lower pole stones with a diameter of 8 to 15 millimeters. Aktuelle Urol. 2009;40(6):351–4. https://doi.org/10.1055/s-0029-1224680.

    Article  CAS  PubMed  Google Scholar 

  5. Desai J, Solanki R. Ultra-mini percutaneous nephrolithotomy (UMP): one more armamentarium. BJU Int. 2013;112(7):1046–9. https://doi.org/10.1111/bju.12193.

    Article  PubMed  Google Scholar 

  6. Desai MR, Sharma R, Mishra S, Sabnis RB, Stief C, Bader M. Single-step percutaneous nephrolithotomy (microperc): the initial clinical report. J Urol. 2011;186(1):140–5. https://doi.org/10.1016/j.juro.2011.03.029.

    Article  PubMed  Google Scholar 

  7. Li X, He Z, Wu K, Li SK, Zeng G, Yuan J, et al. Chinese minimally invasive percutaneous nephrolithotomy: the Guangzhou experience. J Endourol. 2009;23(10):1693–7. https://doi.org/10.1089/end.2009.1537.

    Article  PubMed  Google Scholar 

  8. Song L, Chen Z, Liu T, Zhong J, Qin W, Guo S, et al. The application of a patented system to minimally invasive percutaneous nephrolithotomy. J Endourol. 2011;25(8):1281–6. https://doi.org/10.1089/end.2011.0032.

    Article  PubMed  Google Scholar 

  9. Landman J, Venkatesh R, Ragab M, Rehman J, Lee DI, Morrissey KG, et al. Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling ureteral catheter, ureteral occlusion balloon, and ureteral access sheath. Urology. 2002;60(4):584–7.

    Article  Google Scholar 

  10. Shao Y, Shen ZJ, Zhu YY, Sun XW, Lu J, Xia SJ. Fluid-electrolyte and renal pelvic pressure changes during ureteroscopic lithotripsy. Minimally invasive therapy & allied technologies: MITAT: official journal of the Society for Minimally Invasive Therapy. 2012;21(4):302–6. https://doi.org/10.3109/13645706.2011.595419.

    Article  Google Scholar 

  11. •• Tokas T, Herrmann TRW, Skolarikos A, Nagele U. Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J Urol. 2019;37(1):125–31. https://doi.org/10.1007/s00345-018-2378-4. Review showing the clinical significance of increased intrarenal pressures.

    Article  PubMed  Google Scholar 

  12. •• Tokas T, Skolarikos A, Herrmann TRW, Nagele U. Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World J Urol. 2019;37(1):133–42. https://doi.org/10.1007/s00345-018-2379-3. Review showing intrarenal pressure values during kidney endourology.

    Article  PubMed  Google Scholar 

  13. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2008;22(2):338–42. https://doi.org/10.1096/fj.07-9492LSF.

    Article  CAS  Google Scholar 

  14. Ng YH, Somani BK, Dennison A, Kata SG, Nabi G, Brown S. Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure. J Endourol. 2010;24(12):1915–20. https://doi.org/10.1089/end.2010.0188.

    Article  PubMed  Google Scholar 

  15. Wright A, Williams K, Somani B, Rukin N. Intrarenal pressure and irrigation flow with commonly used ureteric access sheaths and instruments. Cent European J Urol. 2015;68(4):434–8. https://doi.org/10.5173/ceju.2015.604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Emre Sener T, Cloutier J, Villa L, Marson F, Buttice S, Doizi S, et al. Can we provide low intrarenal pressures with good irrigation flow by decreasing the size of ureteral access sheaths? J Endourol. 2016;30(1):49–55. https://doi.org/10.1089/end.2015.0387.

    Article  Google Scholar 

  17. Proietti S, Dragos L, Somani B, Butticè S, Talso M, Emiliani E, et al. In vitro comparison of maximum pressure developed by irrigation systems in a kidney model. J Endourol. 2017;31(5):522–7. https://doi.org/10.1089/end.2017.0005.

    Article  PubMed  Google Scholar 

  18. Yoshida T, Inoue T, Abe T, Matsuda T. Evaluation of intrapelvic pressure when using small-sized ureteral access sheaths of ≤10/12f in an ex vivo porcine kidney model. J Endourol. 2018;32(12):1142–7. https://doi.org/10.1089/end.2018.0501.

    Article  PubMed  Google Scholar 

  19. Noureldin YA, Kallidonis P, Ntasiotis P, Adamou C, Zazas E, Liatsikos EN. The effect of irrigation power and ureteral access sheath diameter on the maximal intra-pelvic pressure during ureteroscopy: in vivo experimental study in a live anesthetized pig. J Endourol. 2019;33(9):725–9. https://doi.org/10.1089/end.2019.0317.

    Article  PubMed  Google Scholar 

  20. • Doizi S, Letendre J, Cloutier J, Ploumidis A, Traxer O. Continuous monitoring of intrapelvic pressure during flexible ureteroscopy using a sensor wire: a pilot study. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03216-w. Recent study demonstrating a continuous intrarenal pressure monitoring method during  ureteroscopy in humans.

    Article  PubMed  Google Scholar 

  21. • Doizi S, Uzan A, Keller EX, De Coninck V, Kamkoum H, Barghouthy Y, et al. Comparison of intrapelvic pressures during flexible ureteroscopy, mini-percutaneous nephrolithotomy, standard percutaneous nephrolithotomy, and endoscopic combined intrarenal surgery in a kidney model. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03450-2. First study comparing all endoscopic renal stone treatment options in terms of intrarenal pressures.

    Article  PubMed  Google Scholar 

  22. MacCraith E, Yap LC, Elamin M, Patterson K, Brady CM, Hennessey DB. Evaluation of the impact of ureteroscope, access sheath and irrigation system selection on intrarenal pressures in a porcine kidney model. J Endourol. 2020. https://doi.org/10.1089/end.2020.0838.

    Article  PubMed  Google Scholar 

  23. Patel RM, Jefferson FA, Owyong M, Hofmann M, Ayad ML, Osann K, et al. Characterization of intracalyceal pressure during ureteroscopy. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03259-z.

    Article  PubMed  Google Scholar 

  24. Fang L, Xie G, Zheng Z, Liu W, Zhu J, Huang T, et al. The effect of ratio of endoscope-sheath diameter on intrapelvic pressure during flexible ureteroscopic lasertripsy. J Endourol. 2019;33(2):132–9. https://doi.org/10.1089/end.2018.0774.

    Article  PubMed  Google Scholar 

  25. Tepeler A, Akman T, Silay MS, Akcay M, Ersoz C, Kalkan S, et al. Comparison of intrarenal pelvic pressure during micro-percutaneous nephrolithotomy and conventional percutaneous nephrolithotomy. Urolithiasis. 2014;42(3):275–9. https://doi.org/10.1007/s00240-014-0646-3.

    Article  PubMed  Google Scholar 

  26. Mager R, Balzereit C, Reiter M, Gust K, Borgmann H, Hüsch T, et al. Introducing a novel in vitro model to characterize hydrodynamic effects of percutaneous nephrolithotomy systems. J Endourol. 2015;29(8):929–32. https://doi.org/10.1089/end.2014.0854.

    Article  PubMed  Google Scholar 

  27. Nagele U, Walcher U, Bader M, Herrmann T, Kruck S, Schilling D. Flow matters 2: how to improve irrigation flow in small-calibre percutaneous procedures-the purging effect. World J Urol. 2015;33(10):1607–11. https://doi.org/10.1007/s00345-015-1486-7.

    Article  PubMed  Google Scholar 

  28. Alsmadi J, Fan J, Zhu W, Wen Z, Zeng G. The influence of super-mini percutaneous nephrolithotomy on renal pelvic pressure in vivo. J Endourol. 2018;32(9):819–23. https://doi.org/10.1089/end.2018.0239.

    Article  PubMed  Google Scholar 

  29. Loftus CJ, Hinck B, Makovey I, Sivalingam S, Monga M. Mini versus standard percutaneous nephrolithotomy: the impact of sheath size on intrarenal pelvic pressure and infectious complications in a porcine model. J Endourol. 2018;32(4):350–3. https://doi.org/10.1089/end.2017.0602.

    Article  PubMed  Google Scholar 

  30. Huusmann S, Wolters M, Schilling D, Kruck S, Bader M, Tokas T, et al. [Pressure study of two miniaturised amplatz sheaths of 9.5 F and 12 F outer diameter for minimal invasive percutaneous nephrolithotomy (MIP): an ex vivo organ model measurement]. Aktuelle Urol. 2019;50(1):71–5. https://doi.org/10.1055/a-0759-0140.

  31. Wilhelm K, Muller PF, Schulze-Ardey J, Spath J, Suarez-Ibarrola R, Miernik A, et al. Characterization of flow-caused intrarenal pressure conditions during percutaneous nephrolithotomy in vitro. J Endourol. 2019;33(3):235–41. https://doi.org/10.1089/end.2018.0769.

    Article  PubMed  Google Scholar 

  32. Lai D, Chen M, Sheng M, Liu Y, Xu G, He Y, et al. Use of a novel vacuum-assisted access sheath in minimally invasive percutaneous nephrolithotomy: a feasibility study. J Endourol. 2020;34(3):339–44. https://doi.org/10.1089/end.2019.0652.

    Article  PubMed  Google Scholar 

  33. Zanetti SP, Lievore E, Fontana M, Turetti M, Gallioli A, Longo F, et al. Vacuum-assisted mini-percutaneous nephrolithotomy: a new perspective in fragments clearance and intrarenal pressure control. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03318-5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhong W, Wen J, Peng L, Zeng G. Enhanced super-mini-PCNL (eSMP): low renal pelvic pressure and high stone removal efficiency in a prospective randomized controlled trial. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03263-3.

    Article  PubMed  Google Scholar 

  35. Abourbih S, Alsyouf M, Yeo A, Martin J, Vassantachart JM, Lee M, et al. Renal pelvic pressure in percutaneous nephrolithotomy: the effect of multiple tracts. J Endourol. 2017;31(10):1079–83. https://doi.org/10.1089/end.2017.0298.

    Article  PubMed  Google Scholar 

  36. • Deng X, Song L, Xie D, Fan D, Zhu L, Yao L, et al. A novel flexible ureteroscopy with intelligent control of renal pelvic pressure: an initial experience of 93 cases. J Endourol. 2016;30(10):1067–72. https://doi.org/10.1089/end.2015.0770. Study demonstrating intrarenal pressure control during ureteroscopy in humans.

    Article  PubMed  Google Scholar 

  37. Zhu X, Song L, Xie D, Peng Z, Guo S, Deng X, et al. Animal experimental study to test application of intelligent pressure control device in monitoring and control of renal pelvic pressure during flexible ureteroscopy. Urology. 2016;91(242):e11–5. https://doi.org/10.1016/j.urology.2016.02.022.

    Article  Google Scholar 

  38. Huang J, Xie D, Xiong R, Deng X, Huang C, Fan D, et al. The application of suctioning flexible ureteroscopy with intelligent pressure control in treating upper urinary tract calculi on patients with a solitary kidney. Urology. 2018;111:44–7. https://doi.org/10.1016/j.urology.2017.07.042.

    Article  PubMed  Google Scholar 

  39. Chen H, Qiu X, Du C, Xie D, Liu T, Wang G, et al. The comparison study of flexible ureteroscopic suctioning lithotripsy with intelligent pressure control versus minimally invasive percutaneous suctioning nephrolithotomy in treating renal calculi of 2 to 3 cm in size. Surg Innov. 2019;26(5):528–35. https://doi.org/10.1177/1553350619849782.

    Article  PubMed  Google Scholar 

  40. Yang Z, Song L, Xie D, Deng X, Zhu L, Fan D, et al. The new generation mini-PCNL system - monitoring and controlling of renal pelvic pressure by suctioning device for efficient and safe PCNL in managing renal staghorn calculi. Urol Int. 2016;97(1):61–6. https://doi.org/10.1159/000442002.

    Article  PubMed  Google Scholar 

  41. Du C, Song L, Wu X, Fan D, Zhu L, Liu S, et al. Suctioning minimally invasive percutaneous nephrolithotomy with a patented system is effective to treat renal staghorn calculi: a prospective multicenter study. Urol Int. 2018;101(2):143–9. https://doi.org/10.1159/000488399.

    Article  PubMed  Google Scholar 

  42. Deng X, Xie D, Du C, Song L, Huang J, Tan W. A novel technique to intelligently monitor and control renal pelvic pressure during minimally invasive percutaneous nephrolithotomy. Urol Int. 2019;103(3):331–6. https://doi.org/10.1159/000501047.

    Article  PubMed  Google Scholar 

  43. Rawandale-Patil AV, Ganpule AP, Patni LG. Development of an innovative intrarenal pressure regulation system for mini-PCNL: a preliminary study. Indian J Urol. 2019;35(3):197–201. https://doi.org/10.4103/iju.IJU_261_18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jakobsen JS, Holst U, Jakobsen P, Steen W, Mortensen J. Local and systemic effects of endoluminal pelvic perfusion of isoproterenol: a dose response investigation in pigs. J Urol. 2007;177(5):1934–8. https://doi.org/10.1016/j.juro.2007.01.020.

    Article  CAS  PubMed  Google Scholar 

  45. Jung H, Norby B, Frimodt-Moller PC, Osther PJ. Endoluminal isoproterenol irrigation decreases renal pelvic pressure during flexible ureterorenoscopy: a clinical randomized, controlled study. Eur Urol. 2008;54(6):1404–13. https://doi.org/10.1016/j.eururo.2008.03.092.

    Article  PubMed  Google Scholar 

  46. Jakobsen JS, Jung HU, Gramsbergen JB, Osther PJ, Walter S. Endoluminal isoproterenol reduces renal pelvic pressure during semirigid ureterorenoscopy: a porcine model. BJU Int. 2010;105(1):121–4. https://doi.org/10.1111/j.1464-410X.2009.08678.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T Tokas: Data management, data analysis, manuscript writing. E. Tzanaki: Data management, interpreting data. U Nagele: Interpreting data. B K Somani: Protocol/project development and interpreting data.

Corresponding author

Correspondence to Theodoros Tokas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This review does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Endourology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokas, T., Tzanaki, E., Nagele, U. et al. Role of Intrarenal Pressure in Modern Day Endourology (Mini-PCNL and Flexible URS): a Systematic Review of Literature. Curr Urol Rep 22, 52 (2021). https://doi.org/10.1007/s11934-021-01067-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11934-021-01067-5

Keywords

Navigation