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Abstract

Purpose of Review Rapid advances in imaging of the prostate have facilitated the development of focal therapy and provided a
non-invasive method of estimating tumour volume. Focal therapy relies on an accurate estimate of tumour volume for patient
selection and treatment planning so that the optimal energy dose can be delivered to the target area(s) of the prostate while
minimising toxicity to surrounding structures. This review provides an overview of different imaging modalities which may be
used to optimise tumour volume assessment and critically evaluates the published evidence for each modality.

Recent Findings Multi-parametric MRI (mp-MRI) has become the standard tool for patient selection and guiding focal therapy
treatment. The current evidence suggests that mp-MRI may underestimate tumour volume, although there is a large variability in
results. There remain significant methodological challenges associated with pathological processing and accurate co-registration
of histopathological data with mp-MRI. Advances in different ultrasound modalities are showing promise but there has been
limited research into tumour volume estimation. The role of PSMA PET/CT is still evolving and further investigation is needed to
establish if this is a viable technique for prostate tumour volumetric assessment.

Summary mp-MRI provides the necessary tumour volume information required for selecting patients and guiding focal therapy
treatment. The potential for underestimation of tumour volume should be taken into account and an additional margin applied to
ensure adequate treatment coverage. At present, there are no other viable image-based alternatives although advances in new
technologies may refine volume estimations in the future.

Keywords Prostate cancer - Focal therapy - Magnetic resonance imaging - Multi-parametric MRI

Introduction

The aim of focal therapy is to retain equivalent oncological
outcomes to whole-gland therapies while reducing the side
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effects associated with these treatments. Preservation of nor-
mal tissue is fundamental to the approach and this relies on an
accurate assessment of tumour volume. An accurate knowl-
edge of tumour volume allows maximal therapy to be directed
to the target area while minimising damage to the surrounding
structures such as neurovascular bundles, bladder neck and
rectal wall.

In the early stages of focal therapy, volume assessment was
achieved by transperineal template mapping biopsy (TPM)
which was invasive and had related adverse events [1].
There was therefore a need for a simple, non-invasive and
accurate method to assess tumour volume. In other solid-
organ cancers, imaging is routinely used to assess volume
prior to any organ-sparing surgery such as partial nephrecto-
my or partial mastectomy. The aim of this article is to review
the role of tumour volume assessment for focal therapy plan-
ning and to critically evaluate the most recent published evi-
dence for different imaging modalities to estimate tumour
volume.
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Rationale for Tumour Volume Assessment
Focal Therapy Treatment Planning

Focal therapy encompasses a wide range of approaches that
allow selective ablation of target areas. This may be delivered
by a variety of energy modalities including high-intensity fo-
cused ultrasound (HIFU), cryotherapy, photodynamic thera-
py, focal laser ablation, focal brachytherapy, irreversible elec-
troporation and radiofrequency ablation as well as interstitial
drug injections. The principles of focal therapy planning are
similar across all these techniques and rely on a balance
between:

1. Ensuring maximal safe energy delivery to area(s) of can-
cer with an appropriate margin

2. Minimising damage to normal prostatic tissue and adja-
cent anatomical structures.

This requires precise mapping and contouring of the treat-
ment area dependent on the volume of the lesion. An under-
estimation of tumour volume may result in inadequate cover-
age of the target area leaving residual significant disease and
poor long-term efficacy. An overestimation of tumour volume
increases the risk of damage to normal prostate tissue and
structures such as neurovascular bundles, bladder neck, exter-
nal sphincter and rectum. The coverage area of focal treat-
ments maybe be lesion-based, quadrant, hemi-ablation or
sub-total. The degree to which the precision of tumour volume
is important will depend on the treatment strategy chosen as
well as the energy source with newer devices offering greater
precision of tissue destruction.

Risk Stratification: Clinically Insignificant Disease

The evidence for which men will benefit from active treatment
of prostate cancer is evolving. It has been argued that low-
grade and low-volume lesions do not have the typical hall-
marks of cancer, certainly do not behave aggressively and
may be regarded as clinically insignificant [2]. The ProtecT
trial, which randomised men to active monitoring, surgery or
radiotherapy in men diagnosed via PSA screening found no
difference in prostate cancer-specific mortality at a median
follow-up of 10 years [3]. The PIVOT and SPCG-4 RCTs
show that the benefit of treatment resided in the high-risk
group and possibly in intermediate-risk men too [4, 5].
There is a clear need for improved methods of risk stratifying
men so that treatment can be directed towards those who are
more likely to derive a cancer-specific mortality benefit.

The most widely used definition of clinically insignificant
disease is based on the histopathological parameters set out by
Stamey and Epstein [6]. Insignificant prostate cancer is de-
fined on whole-mount prostatectomy as a tumour volume
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ranging from 0.2 to 0.5 cm®, no Gleason patterns 4 or 5 and
organ confined. The original paper by Stamey et al. [6] de-
scribed a single parameter of tumour volume > 0.5 cm’® from a
cystoprostatectomy series based on an 8% lifetime risk of
being diagnosed with clinically significant cancer. Epstein
et al. reported a volume threshold < 0.2 cm® as being insignif-
icant if the criteria of no capsular penetration were applied.
This tumour volume criterion has been generally consid-
ered too stringent and the definition of <0.5 cm® has been
applied as the threshold for insignificant disease. In recent
years, there has been a growing consensus that the 0.5 cm’
volume threshold remains too conservative. In a contempo-
rary cystoprostectomy cohort applying the Stamey criteria,
Winkler et al. [7] identified a higher threshold of 1.09 cm’.
An analysis of the radical prostatectomy specimens from the
European Randomized Study of Screening for Prostate
Cancer found that grade and stage were the strongest determi-
nants of lifetime risk estimates for prostate cancer [8]. When
tumour volume was considered with organ confined Gleason
6 disease, a higher threshold of at least 1.3 ml for the index
lesion and 2.5 ml for the total cancer volume was observed.

Patient Selection

Tumour volume has a fundamental role in patient selection for
focal therapy and the success of treatment depends on identi-
fying men with the appropriate burden of disease. The ideal
case for focal therapy is a small-volume intermediate grade
prostate cancer which is localised on multi-parametric MRI
(mp-MRI) [9]. A recent expert consensus panel explored the
range of tumour volumes which would be acceptable for focal
therapy. The consensus was reached that an index lesion with
an mp-MRI-derived volume up to 1.5 ml was suitable for
treatment. There was further agreement that this volume
threshold could be increased to 3 ml provided the lesion was
localised to one hemi-gland and the energy source was capa-
ble of ablating this volume with an acceptable margin.

There has been a shift in the consensus opinion towards
focal therapy as a strategy for treatment of intermediate rather
than low-risk disease. The expert panel confirmed that
Gleason 3+4 disease represents the optimum grade for focal
therapy although there was a lack a consensus for treatment of
higher risk disease. This shift towards treatment of
intermediate-risk disease is in line with widespread consensus
that men who are low risk should undergo active surveillance
and even focal therapy would be overtreatment in this group.
Furthermore, the promising medium term outcomes of focal
therapy which are emerging from prospective cohort registry
studies also support this trend. The 5-year outcomes of HIFU
have been reported from a UK registry analysis of 625 patients
showing failure-free survival was 88% with a median follow-
up of 56 months [10]. The functional outcomes have been
summarised in recent meta-analysis comparing patient
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reported outcomes measures of different whole gland thera-
pies with HIFU and active surveillance [11]. The follow-up
was inevitably shorter in the HIFU trials but there was no
significant deterioration of sexual function or incontinence at
1 year. This is consistent with the findings of Yap et al. which
found that although potency deteriorated at 1 and 3 months
post-HIFU, it returned to baseline by 6 months [12].

The Need for an Alternative Volume Estimate

Prior to the emergence of focal therapy, there was a lack of an
accurate and robust method of measuring pre-operative tu-
mour volume. Previous attempts to determine tumour volume
based on PSA level or digital rectal examination found that
neither reliably correlated with volume on radical prostatecto-
my [13, 14]. The clinical Epstein criteria include indirect mea-
surements of volume by number of positive cores and percent-
age of cancer on TRUS biopsy. Due to the sampling error
inherent with this biopsy approach, these parameters have
not been consistently shown to correlate with tumour volume
on radical prostatectomy and have been calibrated to ensure
significant disease is not missed rather than calibrated to pre-
vent overtreatment [15-18].

Transperineal template mapping biopsy (TPM) has been
shown to provide an accurate pre-operative risk assessment
based on tumour volume definitions of clinically significant
disease [19]. A cancer core length of > 6 mm has been shown
to predict lesions > 0.5 ml in volume through a process of
simulation against a radical prostatectomy cohort [19].
During the early stages of focal therapy, TPM was seen as
an essential tool in selecting and risk stratifying men prior to
treatment [20]. However, the high sampling density and re-
quirement for a general anaesthetic placed a significant burden
on both the patient and healthcare system [1].

The current biopsy pathway is being re-defined with a shift
towards MRI-targeted biopsy. 3D histopathological models
reconstructed from TPM biopsies were used to show that a
single biopsy needle targeted to the maximum lesion diameter
on mp-MRI leads to the correct Gleason grade in nearly all
cases [21]. There is evidence from recent randomised con-
trolled trials which confirm that a pre-biopsy MRI with or
without targeted biopsy is superior to standard TRUS biopsy
[22]. Although MRI-US-targeted biopsy may enhanced detec-
tion of clinically significant disease, the effect on estimation of
tumour volume remains under investigation.

The studies attempting to re-calibrate maximum core
length on targeted biopsy and tumour volume on radical pros-
tatectomy have reported variable results [23, 24]. Baco et al.
[23] found a weak correlation between maximum core length
on elastic MR-TRUS image fusion and tumour volume on
radical prostatectomy (7= 0.466). In this study, mp-MRI was
a more accurate predictor of tumour volume (r=0.663) than
maximum cancer core length on targeted biopsy. Both

cognitive and software-based targeted biopsy have a known
targeting error which may be due to registration error [25],
patient movement, prostate deformation or needle placement
errors [26]. In comparison with TPM, this variability places an
increasing importance on imaging to accurately detect and
estimate tumour volume prior to focal therapy.

Multi-parametric MRI

The development of focal therapy has been facilitated by ad-
vances in imaging technologies. mp-MRI has become the
standard imaging modality to detect and localise the index
lesion. It provides an evaluation of the whole prostate in con-
trast to biopsy which samples only a very small proportion of
the gland. There is extensive evidence that mp-MRI can reli-
ably identify clinically significant disease > 0.5 cm® in volume
with a high sensitivity and negative predictive value [27].
However, a volume measurement requires a higher level of
spatial recognition than localisation or detection. There are an
increasing number of studies evaluating volumetric assess-
ment of lesions against radical prostatectomy specimens as
the reference standard. Table 1 provides a summary of the
studies including the differences in MRI techniques,
contouring procedures and registration methods. There is sig-
nificant heterogeneity across the literature with both underes-
timation and overestimation for tumour volume reported.
There is also a high standard deviation within studies where
tumour volume errors can range from — 136 to + 178%.

Evidence for Overestimation

There has been a rapid progression in technology and experi-
ence with mp-MRI over the last decade. The earlier studies
were more likely to conclude that mp-MRI overestimated tu-
mour volume but did not include software-based registration
and relied on lower magnetic field strengths, including 0.5 T
[42], non-multi-parametric sequences [30, 42].
Overestimation may also be attributable to methodological
differences in sectioning the prostate gland and applying a
correction factor for tissue shrinkage which varied from 1.14
to 1.5 [43, 44].

The decision regarding the degree of correction factor has a
significant impact on the balance between overestimation and
underestimation. Turkbey et al. [31] reported an identical
analysis with and without a shrinkage factor correction.
Without a shrinkage factor correction, mp-MRI overestimated
tumour volume by 7% but after shrinkage factor correction,
there was an underestimation of 7%. There is evidence that
tissue shrinkage is not uniform between specimens and varies
depending on fixation and mounting methods [45]. Recent
studies have developed novel elastic 3D co-registration
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software to limit this bias and allow an individualised correc-
tion factor for each specimen [38].

Evidence for Underestimation

The studies conducted in the modern mp-MRI era generally
describe that mp-MRI underestimates tumour volume, al-
though there remains wide variability in the degree which
ranges from 4 to 97% [40]. This underestimation occurs irre-
spective of MRI suspicion score or tumour characteristics[41]
but may be biased by further challenges associated with prep-
aration of the radical prostatectomy specimen.

Preparation of the histopathological slides leads to differ-
ences in angles, shape and depth compared with the MRI
images. The sectioning plane of prostatectomy specimens
may not reflect the MRI plane and the prostate shape can be
altered by histopathological tissue processing. To improve the
accuracy of registration, studies have used 3D patient-specific
molds which improve the alignment of the specimens to the
MRI images [41, 46]. However, these to not resolve all the
registration challenges as while MRI slice thickness has im-
proved to 1.5 mm, the majority of radical prostatectomy spec-
imens underwent 3- to 5-mm step-sectioning (Table 1). The
lack of a 1:1 slice correlation creates a systematic bias in the
apex to base axis although the direction of effect depends on
the exact method for calculating volume which is not reported
in most studies. A study which stratified the level of underes-
timation by their axis reported that mp-MRI volumes were
least accurate in the apex-base plane and most accurate in
the axial plane with a MRI to histology slice ratio of
1.5:4 mm [41].

Histologically, it is speculated that underestimation may be
attributable to the characteristic histological features at the
boundary of the index lesion. Langer et al. have previously
described histologically sparse areas of prostate cancer con-
taining normal tissue intermixed with malignant epithelium
which may not be visible on both T2WI and ADC maps
[47]. These sparse regions may occur at the periphery of the
index lesion meaning that mp-MRI will inherently underesti-
mate the boundaries of visible lesions.

There is contradictory data on the effect of the MRI
suspicion score, Gleason pattern and tumour volume on
the degree of underestimation. The largest current study
by Bratan et al. prospectively evaluated 202 radical
prostatectomies and analysed the MRI and tumour char-
acteristics which enhanced accuracy of mp-MRI-derived
volume. The multi-variate analysis showed that Likert
scores 45, Gleason score >7 and volume >2 ml had
a more accurate mp-MRI volume estimation. Given that
these large high-grade cancers are also easier to detect
on mp-MRI [48], it might be expected that this would
translate into a more accurate volume estimation.

However, using validated 3D co-registration software, Le
Nobin et al. have reported the unexpected finding that larger
tumours (> 1 ml) with a higher MRI or Gleason score had a
more pronounced volume underestimation [38]. The authors
suggest that this may be related to the more solid histological
components of high-grade cancers meaning they manifest as
clear dark areas on the ADC map. Given that PI-RADS v2
(Prostate Imaging-Reporting and Data System) recommends
peripheral zone lesions are measured on ADC, it is possible
that the radiologist’s attention is directed towards the darker
areas which inherently excludes the less conspicuous sur-
rounding non-solid lower-grade regions for the volume
estimation.

Optimising MRI Volume Measurements
Optimal Method of Measurement

The PI-RADS v2.1 (Prostate Imaging-Reporting and Data
System) guidelines provide the minimal requirements for
measurement of volume which are to report a single measure-
ment of a suspicious lesion on an axial image unless it is not
clearly delineated, in which case the measurement should be
on the image which best depicts the finding [49]. If the largest
dimension of the lesion is on sagittal or coronal images, this
measurement should also be reported.

The maximal diameter is a simple measurement which is
feasible to obtain in clinical practice. It has been used as an
inexpensive surrogate for tumour volume in radical prostatec-
tomy specimens following studies comparing different
methods for tumour size estimation [5S0]. The role of maxi-
mum diameter for mp-MRI-derived volume estimation is less
well-established. Nakashima et al. [28] found that the maxi-
mal tumour diameters on MRI and radical prostatectomy
specimens should be limited to tumours larger than 1.0 cm
in diameter.

Alternative methods include three-dimensional quantifica-
tion based on an ellipsoid formula or plainmetry. Planimetric
volume measurement is presumed to be the most accurate
technique and the majority of studies evaluating mp-MRI-
derived tumour volumes adopt this approach. Plainmetry re-
quires contouring of the lesion on each axial slice and places a
significant additional time burden on the reporting radiologist.

At present, there remains no agreed method of measuring
tumour volume on mp-MRI. Plainmetry is not routinely used
in clinical practice although there is potential for this to change
with further research into semi-automated or fully automated
volumetric measurement software [51]. This issue was
discussed in a recent expert consensus meeting and the panel
concluded that there was not sufficient evidence to recom-
mend any optimal method for measuring tumour volume on
mp-MRI [52].

@ Springer
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Optimal mp-MRI Sequence

The early methods of estimating tumour volume were based
on unenhanced T2W imaging alone. The addition of function-
al MRI sequences, such as diffusion-weighted imaging (DWI)
and dynamic contrast-enhanced (DCE), improved the sensi-
tivity and specificity for detection of clinically significant dis-
ease [48]. The effect on tumour volume assessment has been
investigated in a limited number of studies [29, 32, 35] which
find that T2W alone has a poor correlation with pathological
volume (»=0.21) [35]. DWI and ADC maps are consistently
reported as the most accurate sequences with a high correla-
tion coefficient (»=0.75) [32]. Figure 1 shows an mp-MRI
with an accurate tumour volume estimated on ADC map.
DCE was the lowest performing sequence which is likely
secondary to the lower spatial resolution of this sequence
[29, 35].

An alternative approach is a measurement based on a com-
bination of sequences acknowledging that all sequences un-
derestimate tumour volume. Two studies have concluded that
more accurate volume can be determined by the largest vol-
ume from any individual sequence [35, 45]. However, this
approach leads to an overestimation of tumour volume by
16% [35]. Overall, the current evidence supports the use of
DWI and ADC maps as the most accurate sequence for
assessing tumour volume in the peripheral zone. These find-
ings are reflected in PIRADS v2.1 which recommends that
ADC should be used for assessing tumour volume in the pe-
ripheral zone [49]. T2W is recommended for the transition
zone reflecting a lack of evidence for an optimal sequence
for lesions in this region.

A potential benefit of ADC maps is that they allow a more
objective assessment of volume as the values are proportional
to the diffusion and perfusion characteristics of the tissue.
There has been significant interest in establishing an objective
ADC threshold to provide an automated method of assessing
tumour volume. A voxelwise analysis by Mazaheri et al. [29]
found that ADC cutoff values of 0.0014 and 0.0016 mm?*/s
improved the accuracy of volume measurements. The

Fig. 1 mp-MRI lesion volume
compared with pathology volume
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challenge for these models is that there is a large spread of
ADC values inside the MRI lesion which can mean parts may
not be automatically detected or there could be overdiagnosis
depending on the threshold [53].

Other Factors

The zonal anatomical location of the index lesion could have
an impact on accuracy of volume estimation. There are a few
studies which categorise peripheral and transition zone lesions
[36, 38, 41]. These suggest that transition zone lesions may be
associated with more variability in tumour volume estimation
[36] although peripheral zone lesions account for the majority
in the analysis. The heterogeneous appearance of the transi-
tion zone makes it more challenging to define accurate bound-
aries in comparison with the peripheral zone lesions.

There are a wide range of other MRI technical characteris-
tics which have been investigated in the existing literature
which seem to have a limited effect on volume assessment.
The influence of field strength was tested in a multi-variate
analysis by Bratan et al. [37]. Despite the higher spatial reso-
lution of 3 T, there was no significant difference in accuracy
between 1.5 and 3 T. The impact of an endorectal coil has also
been debated as it deforms the peripheral zone and may mod-
ify tumour contours in this region. Studies have been complet-
ed at 3 T and 1.5 T both with and without an endorectal coil.
There is minimal evidence that the presence of an endorectal
coil has a significant impact on tumour volume accuracy.

Optimising Focal Therapy Treatment Margins

To compensate for the underestimation of mp-MRI tumour
volumes, there have been attempts to estimate an appropriate
treatment margin to ensure full coverage of the index lesion.
The 2015 Focal Therapy Consensus meeting recommended a
circumferential margin of 5 mm around a lesion accounting
for a 2-3 mm known registration error [25] and the underes-
timation by mp-MRI [54].

Vol: 0.867cm?3
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The principle of an adequate surgical margin surrounding a
tumour is standard for all organ-conserving surgery. There has
been extensive research into the appropriate margins for op-
erations such as partial nephrectomy, partial penectomy and
partial ureterectomy. For focal therapy, there are challenges to
overcome due to the absence of a post-operative specimen to
evaluate margin status. This has presented challenges for re-
search into margin status and studies rely on extrapolation
from radical prostatectomy specimens which have an inherent
selection bias as well as the problems of accurate co-
registration between histology and MRI.

Cornud et al. [35] recommended a ‘target volume’ calcu-
lated on the largest tumour area on each axial slice from any
sequence, but this resulted in an overestimation of pathologi-
cal tumour volume by 44%. Recent work has attempted to
quantify this into an exact margin using a simulated cylindri-
cal treatment volume or the widest margin to achieve com-
plete histological tumour distribution in all patients. These
different methodologies have produced variable results with
margins ranging from 5 mm [33] up to 13.5 mm [41, 55].

This variation highlights the need for individualised treat-
ment margins which are determined based on the appropriate
therapeutic risk-benefit ratio for each patient. The optimal
margin is influenced by multiple patient-specific and opera-
tive factors. Tumour volume is an important component for
the surgeon to consider along with other interrelated variables
such as index lesion location, histological characteristics and
energy modality.

Other Imaging Modalities
Transrectal Ultrasound

Transrectal ultrasound (TRUS) was the first major develop-
ment in prostate cancer imaging. It revolutionised prostate
cancer diagnostics by allowing the boundaries of the prostate
to be visualised and providing the foundation for systematic
biopsy [56]. Compared with other imaging modalities, TRUS
is a fast, cost-effective and portable procedure which provides
good soft-tissue contrast without the need for ionising radia-
tion or administration of contrast agents. However, b-mode
TRUS has demonstrated limited sensitivity and specificity
for detecting and localising prostate cancer [57]. Given the
lack of diagnostic accuracy, it is predictable that studies using
b-mode TRUS have shown it is a poor predictor of tumour
volume[13, 14].

Ultrasound is undergoing rapid technological advance-
ments. Developments in high-resolution ultrasound operating
up to 29 Hz allow superior spatial resolution over traditional
b-mode imaging [58]. This may allow improved diagnostic
accuracy and tumour volume assessment in the peripheral
zone although the reduced penetration depth may limit

assessment of the anterior gland. This has been combined with
3D scanning techniques to monitor the longitudinal growth of
tumour volume in an orthotopic mouse model [59]. The 3D
rendering showed good correlation for prostate tumour vol-
ume measurements performed in vivo with autopsy (= 0.95).

Similar to the development of mp-MRI, there has been
interest in combining US modalities into a ‘multi-parametric
ultrasound’. If a combination of anatomical and functional
parameters can be shown to accurately detect and localise
the index lesion, this will be a significant step forward for
focal therapy treatment planning due to the real-time monitor-
ing available through ultrasound. The early results for multi-
parametric ultrasound are encouraging [60] and there are on-
going randomised controlled trials which will provide a robust
comparison with mp-MRI [61]. At present, there is limited
data on the performance of these modalities for determining
tumour volume while we await further evidence on diagnostic
accuracy.

T

Although computed tomography (CT) is a widely used mo-
dality for the detection and localisation in many malignancies,
it has a limited role in prostate cancer localisation or focal
therapy planning and due to the inherent lack of soft tissue,
contrast resolution so cannot reliably visualise prostate zonal
anatomy or estimate volume of tumours. The prostate will
generally appear on an unenhanced CT as a homogenous soft
tissue structure, and prostate cancer will not be visualised
unless gross extension is present [62].

PET/CT

Although the role of choline PET/CT as a staging investiga-
tion is well established, the spatial resolution is limited to
around 5 mm so its ability to accurately localise prostate can-
cer and estimate tumour volume has been debated. The role of
choline PET/CT for focal therapy planning has not been in-
vestigated but it has been evaluated for delineation of the
dominant intra-prostatic lesion for intensity modulated radia-
tion therapy (IMRT) focal dose escalation. This requires a
similar process of contouring the lesion as focal therapy plan-
ning and at present, mp-MRI is the standard technique.

The results for choline-based markers suggest they have a
limited role for evaluation of tumour volume. Multiple studies
have shown a poor correlation with tumour volume (r=0.3)
[63] and Bundschuh et al. found that the choline uptake pat-
tern was inconsistent and no suitable threshold could be iden-
tified to fit histological volume [64]. Instead PSMA ligands
such as 68Ga-labeled HBED-CC-PSMA or 18F-labeled
DCFPyl are emerging as a promising alternative and appear
to be more sensitive for detection of local and metastatic dis-
ease. The majority of studies focus on the detection of
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recurrent or metastatic disease. Preliminary studies evaluating
PSMA/PET for IMRT focal dose have found that PET-
derived volumes are significantly larger in some patients com-
pared with MRI or prostatectomy volumes [65, 66] and that
further correlation studies with co-registration of histopatho-
logical data are required.

Conclusion

An accurate estimation of tumour volume is essential for focal
therapy treatment planning. If the tumour volume is
overestimated, the risk of complications increases, while an
underestimation reduces the chance of effective cancer con-
trol. The advances in mp-MRI have provided a non-invasive
method of assessing tumour volume although this may be
underestimated by all sequences. At present, there are no other
viable image-based alternatives for assessing tumour volume.

There is considerable variability across the literature in the
results for all studies which likely reflects the variability in
imaging techniques and methods of co-registration between
studies. For further research to progress in this area, there
needs to be a robust method for co-registration of histopatho-
logical data with imaging.
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