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Abstract
Purpose of Review Individuals with post-acute sequelae of SARS-CoV-2 (PASC) complain of persistent musculoskeletal 
pain. Determining how COVID-19 infection produces persistent pain would be valuable for the development of therapeutics 
aimed at alleviating these symptoms.
Recent Findings To generate hypotheses regarding neuroimmune interactions in PASC, we used a ligand-receptor interactome 
to make predictions about how ligands from PBMCs in individuals with COVID-19 communicate with dorsal root ganglia 
(DRG) neurons to induce persistent pain. In a structured literature review of -omics COVID-19 studies, we identified ligands 
capable of binding to receptors on DRG neurons, which stimulate signaling pathways including immune cell activation and 
chemotaxis, the complement system, and type I interferon signaling. The most consistent finding across immune cell types 
was an upregulation of genes encoding the alarmins S100A8/9 and MHC-I.
Summary This ligand-receptor interactome, from our hypothesis-generating literature review, can be used to guide future 
research surrounding mechanisms of PASC-induced pain.
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Introduction

Approximately 30% of individuals infected with COVID-
19 will develop post-acute sequelae of SARS-CoV-2 infec-
tion (PASC) [1–3], which impacts a variety of systems and 
processes including cardiovascular [4], musculoskeletal [5], 
gastrointestinal [6], and metabolic [7]. To better understand 
PASC symptomology, large electronic health record data-
bases and survey studies have identified clusters of individu-
als based on common PASC symptoms. One cluster that has 
been identified repeatedly consists of those who have a phe-
notype involving prolonged musculoskeletal pain, and this 
group comprises 10–30% of individuals with PASC [2, 3, 8, 
9]. This musculoskeletal pain is typically accompanied by 
fatigue and post-exertional malaise that hinders function and 

engagement in work and social activities. Individuals with 
PASC report moderate levels of pain severity and individu-
als with both fibromyalgia and PASC have a higher level of 
pain severity than individuals with fibromyalgia alone, sug-
gesting PASC can exacerbate pre-existing musculoskeletal 
pain [8]. However, it is unknown how an acute infection of 
COVID-19 could produce the musculoskeletal pain associ-
ated with PASC. A better understanding of this underlying 
mechanism could lead to the development of pharmaceuti-
cals or other treatments aimed at relieving PASC-induced 
musculoskeletal pain.

The peripheral immune system has been heavily impli-
cated in the production of chronic pain. For example, pre-
clinical models of muscle pain demonstrate macrophages are 
necessary for the generation of muscle hyperalgesia [10–13], 
while both monocytes and T cells are involved in the pro-
duction of neuropathic pain [14]. Alterations in circulating 
immune cells and increases in pro-inflammatory cytokines 
have been found in conditions associated with chronic mus-
culoskeletal pain including rheumatoid arthritis [15, 16], 
osteoarthritis [17, 18], low back pain [19], and fibromyal-
gia [20–23]. These peripheral immune cells can produce 
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prolonged hyperalgesia through neuroimmune interactions 
by increasing pro-inflammatory cytokines and other ligands 
that can act directly on nociceptors to drive changes in excit-
ability [24]. Given how crucial immune signaling can be in 
the development of pain states, it is plausible that alterations 
in the peripheral immune system induced by COVID-19 
infection are driving changes in the peripheral somatosen-
sory system to lead to PASC-induced musculoskeletal pain. 
To identify potential neuroimmune mechanisms linking 
COVID-19 to the generation of PASC-induced musculo-
skeletal pain, we ran publicly available single-cell RNA 
sequencing data sets from peripheral blood mononuclear 
cells (PBMCs) from individuals with COVID-19 through 
a ligand-receptor interactome network that we developed 
previously and optimized for this study [25]. This compre-
hensive interaction network was built to identify potential 
connections between different cell types and human DRG 
(hDRG) sensory neurons to aid the discovery of drug tar-
gets for alleviating pain [25]. In this study, we aimed to use 
our interactome platform to generate predictions on mecha-
nisms through which specific immune cells could produce 
PASC-induced musculoskeletal pain following COVID-19 
infection.

Methods

To comprehensively explore existing data sets using sin-
gle-cell RNA sequencing on PBMCs from individuals 
with COVID-19, the following search strategy was used 
on January 31, 2023, through PubMed: (Single cell [tiab]) 
AND ((Sequencing [tiab]) OR (seq [tiab])) AND ((COVID 
[tiab]) OR (SARS-CoV-2 [tiab])) AND (Peripheral blood 
mononuclear cell). This search strategy returned 161 arti-
cles which were subsequently screened for inclusion. We 

identified 5 publicly available data sets [26–30] from single-
cell RNA sequencing data of PBMCs that included differ-
ential gene expression (DEG) analysis between individuals 
with COVID-19 and healthy controls (Table 1). The DEGs 
from each article were compiled and genes that had contrast-
ing differential expression between articles, within a given 
immune cell subset, were removed. Upregulated DEGs from 
individuals with COVID-19 were then run through our 
ligand-receptor interactome platform which allows for the 
identification of interactions between specific cell types and 
receptors on nociceptors of hDRG [25]. The interactome 
database contains over 3000 ligand-receptor interactions, 
including lipid and small molecule ligands like prostaglan-
dins and endocannabinoids [25]. Use of this interactome 
platform allows for the discovery of novel pain mechanisms, 
which can lead to testable hypotheses for the development of 
new therapeutic targets for treating chronic pain. For exam-
ple, using this interactive platform, we previously identified 
a novel pro-nociceptive action of heparin-binding epidermal 
growth factor (HBEGF) [25].

Interactions were identified by intersecting the ligand 
gene list from each immune cell subtype with correspond-
ing hDRG neuron receptors identified previously [31]. 
Following identification of all interactions between spe-
cific immune cells and different hDRG sensory neuron 
populations, we filtered the list to exclude those interac-
tions in which the receptor was expressed only in non-
nociceptive populations or in nociceptors that do not pro-
duce symptoms of musculoskeletal pain consistent with 
PASC, such as TRPM8 positive nociceptors which are 
believed to be responsible for detecting cold [32]. Thus, 
our final list of interactions focused on ligands produced 
from PBMCs that could activate receptors on 4 subsets 
of nociceptors (putative low threshold mechanosensitive 
C fibers, silent nociceptors, pro-enkephalin expressing, 

Table 1  Details of study participants from data sets included in ligand-receptor interactome analysis. Samples sizes, sex, age, and immune cells 
analyzed for each data set included in the ligand-receptor interactome

* Denotes average age was calculated with available information, but not for all samples. HC healthy control, M male, F female, NR not reported, 
NK natural killer cells

Article Participants Sex Age (Avg ± SD) Cell types

Arunachalam26 COVID-19: 7 M: 2; F: 7 59.57 ± 11.63 Monocytes (classic, non-classic), CD4, CD8, B cells, NK
HC: 5 M: 2; F: 3 70.0 ± 20.15

Kramer27 COVID-19: 17 NR NR NK
HC: 13 NR NR

Qi28 COVID-19: 21 M: 16; F: 5 51.13 ± 12.72* Monocytes (classic, non-classic, intermediate), CD4, 
CD8 (effector, memory), B cells (naïve, memory), NKHC: 11 M: 6; F: 5 46.82 ± 10.82

Silvin29 COVID-19: 3 M: 1; F: 2 38.66 ± 26.38 Monocytes
HC: 3 M: 0; F: 3 46.33 ± 16.86

Xu30 COVID-19: 13 M: 9; F: 4 53.31 ± 13.98 Monocytes, CD8 (effector)
HC: 3 M: 1; F: 2 43.33 ± 18.93
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and transient receptor potential cation channel subfam-
ily A member 1 (TRPA1) positive). Data is presented 
by grouping all the interactions for a given immune cell 
population (i.e., All Monocytes) and the interactions of 
specific immune cell subsets when data was available 
(i.e., classic, non-classic, and intermediate monocytes). 
For each immune cell group, each interaction was ranked 
by an aggregate score accounting for the adjusted p-value 
for the ligand’s differential expression in COVID-19, the 
percentage of cells in the group that expressed the ligand 
in individuals with COVID-19, and the expression lev-
els (in normalized counts) of the respective receptor in 
hDRG nociceptors. We then performed Gene Ontology 
(GO) term analysis for the ligand and receptor genes 
using Enrichr [33, 34] and classified the genes by the 
PANTHER classification of their protein products [35]. 
GO term analysis examines all the biological process or 
molecular function ontology annotations associated with 
each of the input genes and determines which terms are 
most enriched for a given set of DEGs, shedding insight 
into which signaling pathways and biological systems 
could be activated by the genes of interest. GO terms for 
biological processes and molecular function were identi-
fied and ranked based on adjusted p-value.

Results

Monocytes

Monocytes have been implicated in the etiology of mus-
culoskeletal pain conditions including rheumatoid arthritis 
[36–39], osteoarthritis [40–42], fibromyalgia [20, 43], and 
low back pain [44]. Monocytes could play a role in the pro-
duction of musculoskeletal pain associated with PASC as 
increased numbers of circulating classic monocytes is one of 
the hallmark differences found in PBMCs from individuals 
with COVID-19 [29, 45–47]. In moderate cases of COVID-
19, there is also a decrease in non-classic monocytes [29, 
45]; however, some report increases in non-classic mono-
cytes in severe and fatal cases [48].

Our interactome analysis revealed similarities and dif-
ferences between the upregulated genes and pathways in 
monocyte subsets. Ligands from classic, non-classic, and 
intermediate monocytes demonstrate increased activation 
of biological processes with GO terms associated with the 
immune response, leukocyte chemotaxis, and activation 
of neutrophils (Fig. 1). Increased circulating neutrophils 
are also routinely found in individuals with COVID-19 
[49]; however, their role in the generation of pain has been 
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Fig. 1  Ligand and receptor GO terms from the interactome analysis 
of immune cells in individuals with COVID-19. Top 5 enriched bio-
logical processes and molecular function GO terms based on adjusted 
p-value for the differentially expressed ligand encoding genes for 

each PBMC immune cell type. The results are grouped by the ligand 
and receptor GO terms and then further divided into biological and 
molecular function and ranked from left to right
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debated as some show pro-nociceptive [50, 51] and other 
anti-nociceptive effects [52]. Classic and intermediate 
monocytes also show a specific upregulation of the genes 
S100A8/9 that encode for a class of alarmins that bind 
to toll-like receptor 4 (TLR4) and drive activation of the 
innate immune response by increasing cytokine production 
and release [53] (Fig. 2). S100 proteins are intracellular 
calcium sensors which are released passively following 
cellular apoptosis or are actively secreted and signal to 
initiate pro-inflammatory cascades [54]. S100A8/9 are 
implicated in the production of pain in animal models of 
osteoarthritis, rheumatoid arthritis, and intervertebral disc 
degeneration [55–57]. S100A8 administered to cultured 
mouse DRGs increases production of MCP-1 that pro-
motes a local influx of monocytes in the DRG which could 
induce sensitization of the DRG neurons and subsequent 
hypersensitivity [58]. However, recent preclinical work 
demonstrates that S100A8/9 can reduce pain duration in 
an animal model of inflammation induced pain, suggesting 
a potential role in pain resolution [52]. Ligands from clas-
sic monocytes also demonstrate activation of antigen pro-
cessing and presentation through major histocompatibility 
class I (MHC-I) and an upregulation of the gene PKM both 
of which suggest increases in phagocytic activity and cell 
death [59, 60] (Fig. 2). Increases in cell death can cause a 
release of intracellular contents, notably ATP, which binds 
to purinergic receptors on nociceptors in the DRGs, which 
in turn can lead to sensitization and hypersensitivity [61].

Non-classic monocytes exhibit upregulation of the 
gene NAMPT which is involved in producing an inflam-
matory response through interferon gamma (IFNγ) sign-
aling [62, 63] (Fig. 2). IFNγ is implicated in the produc-
tion of pain as increased IFNγ-stimulated genes are found 
in the DRGs of individuals with neuropathic pain [64]. 
Increased plasma levels of NAMPT are also found in indi-
viduals with rheumatoid arthritis [62, 65]. Non-classic 
monocytes also show an increase in the ligand gene GRN 
which encodes for the protein progranulin (Fig. 1). This 
demonstrates the attempted healing action of non-classic 
monocytes as this gene is involved in wound repair and 
anti-inflammation [66, 67]. GRN knockout mice dem-
onstrate an increased pain response to nerve injury and 
progranulin administration shows therapeutic effects 
in animal models of inflammatory arthritis [68, 69]. In 
sum, ligands from monocytes show activation of several 
pathways responsible for leukocyte chemotaxis and pro-
inflammatory pathways which could be responsible for 
the production of musculoskeletal pain. Interestingly, 
individuals with PASC-induced post-exertional fatigue 
have increased numbers of monocytes in skeletal muscle, 
which further supports the notion that alterations in the 
presence of this cell type, and its signals, could lead to 
PASC-induced musculoskeletal pain [70].

CD4 T Cells

Following COVID-19 infection, there is an overall decrease 
in the proportion of CD4 T cells in the blood and further 
decreases are reported with increased severity of symptoms 
suggesting dysregulation in immune response in severe 
cases [47–49]. While the total number of CD4 T cells may 
decrease, there is a reported shift in the phenotype of CD4 
T cells with increases in Th1 acutely following infection in 
those with mild cases [30, 71]. An increase in the proportion 
of Th2 T cells is reported in severe cases and is a predictor 
of subsequent hospitalization and death due to COVID-19 
[72–74]. Animal models of neuropathic pain have exten-
sively studied the role of CD4 T cells in the production 
of prolonged hypersensitivity and suggest these subsets 
of CD4 T cells play opposing roles in pain development. 
Pro-inflammatory Th1 cells seem to promote pain, while 
anti-inflammatory Th2 cells appear to protect against it. 
Following nerve injury, there is a subsequent infiltration of 
CD4 T cells into the DRG [75–77] and mice lacking CD4 T 
cells are protected against the development of hypersensitiv-
ity [78]. When rats lacking T cells were reconstituted with 
Th1 T cells, the pain behaviors were restored but not when 
reconstitution was performed with Th2 T cells suggesting 
pro-inflammatory Th1 T cells play a role in the production 
of pain [79]. Similarly, studies of chronic pain conditions 
have implicated a causative role for pro-inflammatory CD4 
T cells that infiltrate into the painful joints of individuals 
with rheumatoid arthritis [80–82] and osteoarthritis [83–85]. 
Thus, an overall increase in the proportion of Th1 T cells in 
individuals with COVID-19 could be a factor in the produc-
tion of PASC-induced musculoskeletal pain.

The genes and GO terms from our interactome analy-
sis demonstrate that ligands from CD4 T cells activate 
cytokine-mediated signaling, the complement system, and 
antigen processing and presentation through MHC-I, all 
of which are implicated in the production of pain (Fig. 1). 
Pro-inflammatory cytokines such as IL-6, IL-1β, and TNFα 
can bind to their receptors on nociceptors to cause excita-
tion and sensitization [86, 87]. The complement system is 
part of the innate immune system, its activation can lead 
to immune cell recruitment and inflammation, and it is 
linked to the production of persistent pain through its abil-
ity to sensitize nociceptors [88, 89]. Antigen processing 
and presentation involves immune system communication 
through either MHC class I or class II signaling [90]. MHC-I 
is responsible for alerting the immune system that a cell 
is virally infected so that it can be tagged for destruction 
[91]. B2M and HLA-C, both of which are genes encoding 
components of the MHC-I protein, were the ligands for two 
of the top predicted interactions between CD4 T cells and 
DRGs (Fig. 2). Genetic variants in B2M are associated with 
neuropathic pain [92], while variants in HLA-C are linked 
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Fig. 2  Differential expression 
and interactome analysis of 
ligands from immune cells in 
individuals with COVID-19. 
Differential expression of ligand 
encoding genes from PBMC 
immune cells with COVID-
19 compared with healthy 
individuals grouped by immune 
cell type. The top 5 predicted 
ligand-receptor interactions are 
listed for each PBMC immune 
cell type. Left panel illustrates 
the percentage of each PBMC 
immune cell expressing the 
transcript of the given gene 
from individuals with COVID-
19 (red) and healthy controls 
(blue). The middle panel illus-
trates the given differentially 
expressed ligand gene with its 
category and the correspond-
ing top receptors for that ligand 
on human DRGs with its 
subsequent category. The right 
panel illustrates the normal-
ized counts of each receptor 
on different classes of nocicep-
tors (PENK = pro-enkephalin 
expressing, TRPA1 = transient 
receptor potential cation chan-
nel subfamily A member 1 
expressing, silent nociceptors, 
C_LTMR = putative low thresh-
old mechanoreceptor C fibers) 
from human DRGs [31]
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with painful conditions including rheumatoid arthritis [93], 
psoriatic arthritis [94], and endometriosis [95]. Although not 
extensively studied in the context of pain, increased signal-
ing of MHC-I is implicated in an animal model of cancer-
induced bone pain through increased neuronal apoptosis, 
and siRNA knockdown of B2M attenuates this hyperalgesia 
[96]. Again, cellular apoptosis can lead to DRG sensitization 
due to release of intracellular components, such as ATP and 
S100 proteins, and could be responsible for the production 
of prolonged PASC-induced musculoskeletal pain.

CD8 T Cells

As seen with CD4 T cells, there is a decrease in the num-
ber of circulating CD8 T cells following COVID-19 infec-
tion, with further decreases reported as severity of symp-
toms increase [47–49]. CD8 T cells are part of the adaptive 
immune system and can be classified into a cytotoxic or 
regulatory phenotype [97]. CD8 T cells recognize antigens 
displayed by MHC-I and cytotoxic CD8 T cells are pro-
grammed to destroy virally infected cells [90]. In the context 
of chronic pain, changes in circulating levels of CD8 T cells 
are not routinely found; however, a higher CD4/CD8 ratio 
has been demonstrated in those with chronic headache [98], 
another common pain complaint in PASC patients [9]. In 
animal models of pain, CD8 T cells have exhibited both 
pain-promoting and pain-resolving effects. In a model of 
chemotherapy-induced peripheral neuropathy, intrathecal 
administration of CD8 T cells increases pain hypersensi-
tivity in mice [99]. However, in mice lacking T cells, the 
resolution of hypersensitivity produced by chemotherapy-
induced neuropathies is delayed, and reconstitution of these 
animals with CD8 T cells restores the alleviation of pain, 
suggesting CD8 T cells have pain-resolving effects [100]. 
In fact, CD8 T cells were shown to promote the resolution 
of cisplatin-induced neuropathies by stimulating the release 
of IL-10 from macrophages [101]. Similarly in an animal 
model of arthritic pain, CD8 T cell depletion enhances pain 
hypersensitivity [102], and CD8 T cells play a pivotal role 
in both endogenous and exogenous opioid induced-analgesia 
[102, 103]. This data suggests the loss of circulating CD8 T 
cells could play a role in the development of musculoskeletal 
pain in individuals with PASC due to a loss of pain-resolving 
and analgesic mechanisms.

Our interactome analysis revealed that ligands from CD8 
T cells could bind to receptors on DRGs to activate pathways 
causing inflammation and the recruitment of immune cells, 
including neutrophils (Fig. 1). Activation of inflammatory 
pathways will cause an increase in the number of immune 
cells, cytokines, and chemokines that if left unresolved can 
cause sensitization of nociceptors and DRGs leading to 
hypersensitivity and prolonged pain [86, 104]. Our inter-
actome also displayed similar biological processes and 

molecular functions for pathways activated by CD8 effector 
and memory T cells, and CD8 T cells showed upregula-
tion of ligand genes HLA-C and S100A8/9 similar to other 
immune cells in our analysis (Fig. 2). Of note, one of the top 
hits for CD8 effector T cells was the ligand gene HMGB1 
(Fig. 2). The protein HMGB1 is an alarmin that can be 
released by immune cells; plays a role in mediating immune 
cell migration, proliferation, and differentiation; and is 
implicated in the production of chronic pain through neuro-
inflammation [54]. In rodents, intrathecal, sciatic nerve, and 
intraplanar administration of HMGB1 produces mechani-
cal hypersensitivity [105–107]. Furthermore, increases in 
HMGB1 are found in nociceptors, DRG, and spinal cord 
following induction of neuropathic pain [108–110], and 
pharmacological blockade of HMGB1 alleviates neuropathic 
pain [110–113]. In individuals with rheumatoid arthritis, 
increases in HMGB1 are found in the synovial fluid of 
joints, suggesting a role in the pathophysiology of this pain-
ful disease [114–116]. A top hit for CD8 memory T cells 
was the ligand gene FLT3LG that encodes for the cytokine 
FMS-like tyrosine kinase 3 ligand (FLT3) which has recently 
been implicated in the production of pain (Fig. 2). In mice, 
intrathecal injection of FLT3 alone produces paw hypersen-
sitivity, genetic knockdown and pharmacological inhibition 
of FLT3 protects against and alleviates neuropathic and post-
incisional pain, and FLT3 produces sensitization of cultured 
DRG neurons [117, 118]. Thus, CD8 T cells could also pro-
duce PASC-induced musculoskeletal pain through induc-
tion of prolonged neuroinflammation through mechanisms 
involving HMGB1 and FLT3LG.

B Cells

B cells are part of the adaptive immune system and produce 
antibodies to protect the host against specific pathogens 
[119]. Upon activation, naïve B cells can differentiate into 
memory B cells or antibody producing plasma cells which 
are increased in individuals with COVID-19 [49, 119]. 
Although not studied as in depth as monocytes and T cells, 
there is emerging evidence illustrating the potential role of 
B cells in the production of pain. Pharmacological depletion 
of B cells in individuals with rheumatoid arthritis results in 
improvement of rheumatological symptoms, which include 
pain [120]. In an animal model of complex regional pain 
syndrome, B cell-deficient mice and depletion of B cells 
results in prevention or alleviation of mechanical hypersen-
sitivity [121]. However, reducing B cells in mice does not 
protect against neuropathic or postoperative incisional pain 
suggesting B cells may play a role in the etiology of only 
specific pain producing conditions [121, 122].

The interactome analysis demonstrates that as a whole, 
B cells activate pathways associated with MHC-I and type I 
interferon (IFN) signaling and show increases in the ligand 
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genes S100A8/9 (Figs. 1 and 2), which were common across 
cell types. IFNs are a class of cytokines that play a role 
in interfering with virus replication and are classified as 
either type I, type II, or type III [123]. The major classes of 
type I IFNs are IFNα and IFNβ, which have recently been 
shown to act directly on nociceptors. In animals, virally 
induced pain is driven by a pathway mediated by type I 
IFN-stimulated increases in indoleamine-2,3-dioxygenase 
[124, 125], and intraplantar administration of type I IFNs 
alone produces mechanical hypersensitivity [126]. Type I 
IFNs bind and sensitize DRG neurons through the phos-
phorylation of eIF4E [126]. Our interactome analysis also 
revealed that ligands from different B cells activate unique 
biological pathways. Ligands from naïve B cells activate 
pathways involving neutrophil activation while memory B 
cells initiate pathways mediating cellular apoptosis (Fig. 1). 
One of the top interactions for all B cells involved the ligand 
gene RPS19 which encodes a ribosomal protein that binds 
to the complement receptor C5AR1 and is responsible for 
immune cell activation and monocyte recruitment [127, 128] 
(Fig. 2). Activation of C5AR1 mediates the production of 
pain in several animal models including neuropathic, com-
plex regional pain syndrome, and postsurgical pain models 
through its ability to sensitize DRG nociceptors [129–132]. 
Thus, B cells could produce prolonged PASC-induced mus-
culoskeletal pain through activation of MHC-I, type I IFNs, 
and complement system signaling.

Natural Killer Cells

Natural killer (NK) cells are a member of the innate immune 
system that release cytokines and possess cytotoxic capabili-
ties tasked with killing virally infected and tumor cells [133]. 
It has been reported that circulating NK cells are decreased 
in individuals with COVID-19 [49]. Little attention has 
been given to NK cells in terms of their role in producing 
persistent pain. Levels of circulating NK cells have been 
measured in individuals with fibromyalgia, neuropathic pain, 
complex regional pain syndrome, and low back pain without 
a clear consensus on alterations in NK cell levels, as some 
articles show slight decreases in the NK cell population 
and activity while others show no change [134–139]. How-
ever, a recent assessment in individuals with neuropathic 
pain demonstrated that decreases in the frequency of NK 
cells in the cerebrospinal fluid is correlated with increased 
mechanical pain sensitivity assessed via quantitative sensory 
testing, suggesting a protective role of NK cells in neuro-
pathic pain [139]. Thus, decreased circulating levels of NK 
cells in individuals with COVID-19 could be involved with 
the generation of PASC-induced musculoskeletal pain. Our 
interactome analysis revealed that ligands from NK cells 
activate pathways involved in T cell and neutrophil chemo-
taxis and several of the top ligand genes from NK cells are 

involved in MHC-I signaling including HLA-A,B,C (Figs. 1 
and 2). Thus, NK cells could be producing PASC-induced 
musculoskeletal pain through T cell activation and MHC-I-
induced cellular apoptosis.

Overview, Limitations, and Future Directions

Overall, results from our interactome analysis revealed the 
enrichment of pathways including immune cell activation 
and chemotaxis, response to cytokines, complement system 
activation, and type I IFN signaling that could be driving 
the production of musculoskeletal pain in individuals with 
PASC. The most consistent finding across all immune cell 
subtypes that were analyzed was increases in the genes 
encoding the alarmins S100A8/9 and ligands involved in the 
activation of MHC-I; thus, they serve as great targets for 
future research in the mechanisms producing PASC-induced 
musculoskeletal pain. The interactome also revealed simi-
larities across adaptive immune cells (T and B cells) in their 
ligand gene molecular function GO terms. First, adaptive 
immune cells showed activation of pathways involving ara-
chidonic acid binding which is driven by the upregulation 
of the alarmins S100A8/9 [140] (Fig. 1). Arachidonic acid 
is a fatty acid that is a precursor to the synthesis of many 
eicosanoids including prostaglandin, which is implicated in 
the production of pain [141]. Increases in prostaglandins 
are found in the DRGs of rodents following induction of 
neuropathic, low back, and post-incisional pain [142–144], 
and cultured DRGs produce prostaglandin upon stimula-
tion with pro-inflammatory cytokines [145]. Prostaglandin 
signaling increases nociceptor excitability and expression of 
several ion channels and receptors including sodium chan-
nels, calcium channels, purinergic receptors, and TRPV1 
receptors, to drive peripheral sensitization leading to the 
production of persistent pain [141]. Secondly, the adaptive 
immune cells showed activation of receptor for advanced 
glycation end products (RAGE), which is also driven by the 
upregulation of S100A8/9 [54] (Fig. 1). RAGE can bind with 
several ligands including S100 proteins and HMGB1 [146]. 
Activation of RAGE by S100A8/9 and HMGB1 produces 
pro-inflammatory signaling and immune cell migration [147, 
148] which could lead to a sensitization of DRG neurons 
to produce long-term musculoskeletal pain associated with 
PASC.

There are several limitations to this work. First, we uti-
lized single-cell RNA sequencing data sets from individu-
als who were recently diagnosed with COVID-19. While 
our analysis can be useful about making predictions about 
PASC-induced musculoskeletal pain mechanisms, future 
research should focus on collecting tissues from individu-
als with PASC to further determine molecular mecha-
nisms underlying symptomology. Secondly, as only 30% 
of individuals with COVID-19 go on to develop PASC, 
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the majority of individuals included in the data sets used 
in this analysis likely did not develop PASC. If possible, 
future work should follow up with the individuals whose 
PBMCs were collected acutely after COVID-19 diagnosis 
so that further comparisons can be made between indi-
viduals that did and did not develop PASC. Lastly, due to 
the heterogeneity of the patient characteristics used in each 
study, we were unable to draw any conclusions regarding 
potential impact of sex or disease severity on the ligand-
receptor interactome. Future work aimed at underpinning 
the molecular mechanisms of PASC associated pain should 
power their studies to be able to explore for sex differences 
as the immune system’s mechanistic role in producing pain 
has been demonstrated to be sex dimorphic [149–154].

Studies on individuals with PASC have consistently 
shown pain as a major feature of the disorder [8, 9]. Our 
work suggests interactions between circulating immune 
cells and nociceptors could drive the production of PASC-
induced pain. We recommend targeted prospective studies 
on individuals with PASC with specific pain symptoms, 
such as musculoskeletal pain, to examine changes in tran-
scriptomes of the immune cell types highlighted here to 
better understand how these cells are altered in this patient 
population. Integrating that data with the interactome 
platform described here can help to hone in targets that 
might have the greatest value for alleviation of pain in 
PASC patients. These types of prospective experiments 
could also potentially confirm targets described here in 
patients that are in a later stage of the disease. Such targets 
would likely have the greatest value for moving ahead into 
clinical trials for patients suffering from persistent pain 
post-COVID-19.

Conclusion

Our interactome analysis revealed that PBMC populations 
express several ligands that are upregulated in COVID-19 
and could bind to receptors on DRG neurons to activate sev-
eral pro-nociceptive pathways, including immune cell acti-
vation and migration. The ligands most consistently upregu-
lated across monocyte and lymphocyte cell types involved 
the alarmins S100A8/9 and MHC-I signaling. We hope that 
this interactome analysis will provide data for the generation 
of future hypotheses and research regarding the mechanisms 
underlying PASC-induced musculoskeletal pain.
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