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Abstract
Purpose of Review Persistent joint pain is a common manifestation of arthropod-borne viral infections and can cause long-term
disability. We review the epidemiology, pathophysiology, diagnosis, and management of arthritogenic alphavirus infection.
Recent findings The global re-emergence of alphaviral outbreaks has led to an increase in virus-induced arthralgia and arthritis.
Alphaviruses, including Chikungunya, O’nyong’nyong, Sindbis, Barmah Forest, Ross River, andMayaro viruses, are associated
with acute and/or chronic rheumatic symptoms. Identification of Mxra8 as a viral entry receptor in the alphaviral replication
pathway creates opportunities for treatment and prevention. Recent evidence suggesting virus does not persist in synovial fluid
during chronic chikungunya infection indicates that immunomodulators may be given safely.
Summary The etiology of persistent joint pain after alphavirus infection is still poorly understood. New diagnostic tools along
and evidence-based treatment could significantly improve morbidity and long-term disability.
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Introduction

Arthropod-borne viruses are a major cause of virally induced
joint pain worldwide. Usually, joint pain occurs during acute
infection and is self-limited, such as in Flavivirus infections
such as Dengue [1]. However, arthropod-borne viruses from
the genus Alphavirus can cause chronic and persistent

arthralgia and arthritis following infection [2, 3]. In particular,
old world alphaviruses, including Chikungunya virus
(CHIKV), O’nyong’nyong virus (ONNV), Sindbis virus
(SINV), Barmah Forest virus (BFH), Ross River virus
(RRV), and new world alphavirus, Mayaro virus (MAYV),
can cause persistent joint pain [4]. Factors like climate change,
travel, globalization, aging, and urbanization have increased
the number of arthropod-borne outbreaks in the last quarter
century [5]. CHIKV is the best-studied Alphavirus and causes
debilitating and long-term chronic joint disease. This review
will analyze current knowledge about the epidemiology, path-
ophysiology, diagnosis, treatment, and management of arthro-
pod infections that cause persistent joint pain.

Epidemiology of Alphavirus Infection

Mosquitos such as Aedes aegypti, Aedes albopictus, Aedes
vigilax, and Culex annulirostris are the main vectors for
alphavirus transmission; however, other vectors including
birds, kangaroos, and wallabies also play a role [6].
Alphaviruses are maintained through the sylvatic transmission
cycle which consists of viral transmission from mosquitos to
animals, with vertebrates often serving as the amplifying hosts
[6–8]. During human outbreaks, transmission occurs in an
urban cycle where humans serve as hosts and mosquitos are
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vectors that infect other humans [4]. For example, during a
SINV outbreak, Culexmosquitos infect humans who serve as
the hosts for the virus [9]. Between human outbreaks, the viral
transmission is dominated by the sylvatic cycle as demonstrat-
ed by RRV where marsupials serve as hosts and decreased
human infection occurs [10]. These transmission and host
patterns are held by all alphaviruses varying only in host and
vector species.

Chikungunya Virus

CHIKV was first isolated from a febrile individual in what is
now Tanzania in 1952 [11]. Several CHIKV outbreaks oc-
curred in Africa and Asia between 1960 and 1980 [12].
After 1980, the next major outbreak occurred in 2004 on
Lamu Island, Kenya, where 70% of the island’s population
was infected [12]. The virus then spread to other nearby
islands, including the La Réunion island, due to the migration
of humans and Aedesmosquitos. Genetic analysis confirmed a
mutation at residue 226 of the membrane fusion glycoprotein
E1 (E1-A226 V) in the virus during September 2005 which
increased replication rates in Aedes albopictus mosquitos that
were often co-infected with Semliki forest virus [12, 13]. This
mutation which enabled wider distribution of transmission
drove the 2005–2006 CHIKV outbreak [13]. In December
2013, the first reported case of CHIKV in the Americas oc-
curred in Saint Martin [14]. The virus eventually spread to the
mainland of the Americas through human and mosquito trav-
el. In 2014, there were reports of CHIKV and DENV co-
infection in a traveler returning to Portugal from Angola
[15]. CHIKV is now a global disease and infections have been
reported in all continents except Antarctica [16]. In 2019, the
CDC reported 171 travel associated CHIKV cases in the USA
and 2 locally transmitted cases in Puerto Rico [17]. Puerto
Rico experienced the highest local transmission rate in 2014
when 4242 cases were reported [17]. In the last 6 years, local
transmission of CHIKV in a US state was recorded in 2015
with one case in Texas, and in 2014 with 14 cases in Florida
[17]. Recently, there have been outbreaks in the Americas,
Caribbean, Sudan, Yemen, Cambodia, and Chad [18].
Continued CHIKV transmission fuels the imperative to devel-
op a reliable vaccine to prevent outbreaks and treatments to
relieve chronic CHIKV arthritic disease.

O’nyong’nyong virus

ONNV is an arbovirus that is transmitted by Anopheles mos-
quitos and was first isolated in 1959 in Uganda during an
epidemic that involved 2 million patients [19–21]. The coun-
tries affected by the 1959–1963 epidemic were Kenya,
Tanzania, Zaire, Malawi, Mozambique, and Uganda [22].
There were no signs of ONNV until the next major epidemic
in 1996 which began in Southern Uganda and spread to the

districts of Masaka and Mbarra [23]. Molecular studies
showed that the ONNV genetic sequence shares a high degree
of homology with the 1959 ONNV isolate [20]. In the areas
that were affected, the infection rate was 45% [20]. A report-
edly smaller outbreak took place in 2002 in Central Uganda,
although surveillance and testing were very limited [24]. In
2003, in a Liberian refugee camp 31 refugees had ONNV
fever symptoms; due to the political nature of the situation,
further investigation into this outbreak was not done [25, 26].
ONNV has not spread outside of its geographic origins, and as
a result, extensive surveillance has not been done and the
degree of viral penetrance into the population is uncertain.
Humans are the only known vertebrate reservoir which may
explain the sporadic nature of ONNV outbreaks historically
[27].

Sindbis Virus

SINV is an arthritogenic alphavirus that is transmitted bymos-
quitoes and is found in Africa, Europe, Australia, and Asia
[28, 29]. SINVwas first isolated in Cairo, Egypt, from aCulex
mosquito during an outbreak of a febrile illness that also
caused rash and arthritis [30]. Since this discovery, outbreaks
of SINV on the African continent have only occurred in South
Africa [31]. The two largest outbreaks in South Africa oc-
curred in 1963 and 1974 and coincided with detection of
SINV in Northern Europe [31]. SINV likely spread from
South Africa to Sweden via migratory birds, although some
investigators believe that the virus spread from Central Africa
to Sweden in a singular isolated event [32, 33]. From Sweden,
SINV then spread to Finland, Russia, and Germany [32]. The
first isolated SINV case in Germany occurred in 2009 inCulex
mosquito species [34]. The endemic SINV areas in Europe,
primarily Central Sweden, report about 3 human cases of
SINV annually during non-outbreak years [35]. In 2013,
Sweden experienced an outbreak outside of the endemic area
where 50 patients had confirmed SINV IgG [35]. After a 6–8-
month follow-up, 39% of these patients still had joint pain as a
result of SINV infection [35]. Since 2013, no major SINV
outbreaks have been reported.

Mayaro Virus

MAYV is transmitted by Haemagogus, Culex, Mansonia,
Aedes, Psorophora, Sabethes, and Coquillettidia mosquitos
[36, 37]. It is the only known arthritogenic new world
alphavirus [38]. MAYV was first isolated from five workers
in Mayaro, Trinidad, in 1954 [39, 40]. It spread to several
other countries in Central America and the northern portions
of South America [40–42]. One of the largest outbreaks oc-
curred in Venezuela in 2010 that involved 77 cases [38]. In
2015, the virus was detected in a young patient in Haiti who
lived in a non-forest area [41, 43, 44]. Cases have also been
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reported in North America and Europe mostly likely due to
international travel [44]. From the discovery of MAYV in
1954 to 2019, Brazil has had 495 cases, Peru has had 230
cases, Venezuela has had 81 cases, and Bolivia has had 61
cases. Other countries in the region have each reported less
than 6 cases [45, 46].

Barmah Forest Virus

BFV is an alphavirus that is most commonly found in
Australia. BFV was initially isolated in 1974 from Culex
annulirostris mosquitos that were collected in the Barmah
Forest in Victoria, Australia [47]. The first human cases were
reported in Australia in 1986 [48]. Traditionally, BFV was
thought to the only endemic to Australia, but the virus has
been found in Papua New Guinea. A 5-year-old child from
Papua New Guinea with no history of international travel was
found to have BFV in 2014 suggesting possible endemic
spread [49]. In the past 10 years, about 1600 annual cases of
BFV have been reported in Australia [50]. There have been
several larger outbreaks reported in Australia in 1992, 1993,
1994, 1995, and 2002 [47]. BFV may have an avian or bat
host and is transmitted by mosquitoes to humans [48]. BFV is
often confusedwith Ross River virus as both have very similar
symptoms and are found in similar regions in Australia. Like
other mosquito-borne diseases, climate change may have an
impact on transmission and outbreak timing. Having been
only isolated in Australia and Papua New Guinea thus far,
BFV is one of the least studied alphaviruses; however, it
should not be underestimated. It has the potential for wide-
spread distribution similar to Chikungunya virus.

Ross River Virus

Ross River virus (RRV) was discovered in 1959 from an
Aedes vigilax mosquito in Queensland, Australia [7]. RRV is
very similar to BFV; however, it has a much greater impact on
health in Australia than BFV. RRV has an annual incidence
rate of greater than 40 cases per 100,000 persons per year or
about 5000 cases annually [51, 52]. Similar to BFV, RRV is
also endemic in Papua New Guinea and some other Pacific
islands [51]. There was an epidemic of RRV in 1979–1980
that affected many Pacific islands including Fiji, Tonga,
Samoa, Cook Islands, and New Caledonia [53]. This outbreak
was characterized by a new strain of RRV that had been iden-
tified years earlier in Australia and resulted in human-
mosquito spread with little evidence of amplifying vertebrae
host involvement [53]. Since the spread of CHIKV to Latin
America, there is speculation about whether viruses like RRV
can spread globally due to changing climate and global travel.
Australia has also reported an increase in annual RRV cases in
endemic areas and has also documented spread of RRV into
novel parts of Australia [54, 55].

Pathophysiology

All of the alphaviruses share a similar mechanism of infection
and replication. Almost all of the known pathways of infection
and replication are based on CHIKV, which, as a result of its
prevalence has been very heavily studied. The first phase of
infection is the pre-acute phase in which the mosquito bite
transfers the virus into human tissue. This bite triggers an
immediate inflammatory response with increased capillary
permeability and release of chemokines CXCL1 and
CXCL2 by tissue macrophages and mast cells that attract neu-
trophils to the site of infection [56, 57•]. The neutrophils pro-
duce reactive oxygen species and form neutrophil extracellu-
lar traps (NETs) to decrease and trap the virus immediately
after infection [57•]. Nevertheless, the virus can enter permis-
sive cells at the infection site as well as distant sites due to
hematogenous spread. The CHIKV incubation period is about
2–4 days during which the viral load can reach 108 particles
per milliliter of blood [58]. CHIKV enters and replicates in a
variety of cell lineages, including fibroblasts andmacrophages
at the infection site. It can then travel systemically through the
lymph nodes, spleen, liver, muscles, and joints [59–62].
MAYV also targets macrophages in order to replicate [63].

Although the alphavirus life cycle (Fig. 1) is not fully
understood in all arthritogenic alphaviruses, the CHIKV
life cycle can provide insight into the general alphavirus rep-
lication mechanism. First, the alphavirus enters the target
cell through clathrin-mediated endocytosis; however, some
studies have shown that entry may also occur through
a clathrin independent pathway or via micropinocytosis
[64]. Mxr8 has been implicated as an important viral entry
receptor for CHIKV, RRV, MAYV, and ONNV; it consists
of two immunoglobulin-like domains and its expression was
found to be necessary for efficient infection of fibroblasts,
skeletal muscle cells, and chondrocytes [65••, 66••, 67].
Mxra8 is not an exclusive receptor because residual CHIKV
infection was detected in Mxra8-deficient mice [64].
Treatment of mice with anti-Mxra8 antibody reduced the
number of cells in the chronic phase of infection and lowered
levels of chronic viral RNA [68]. Other receptors that assist in
viral entry include dendritic cell-specific ICAM3 grabbing
non-integrin 1 (DC-SIGN), liver and lymph node SIGN. In
addition, laminin, heparan sulfate, keratan sulfate, chondroitin
sulfate, dermatan sulfate, and other factors have been pro-
posed [58, 69, 70]. In RRV infection, collagen α1β1 integrin
serves as an important receptor. Inhibition ofα1β1 integrin by
type IV collagen and anti-α1β1 antibodies inhibited RRV
infection in mice [64]. The alphaviral glycoprotein E2 medi-
ates fusion between the virus and host cell receptors which is
followed by receptor mediated endocytosis.

In the endosome, the acidic environment leads to the fusion
of alphaviral glycoprotein E1 to the endosomal membrane
resulting in the release of viral RNA into the cytoplasm of the
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cell [70]. The viral positive-sense RNA is translated to
polyprotein P1234 directly in the cytosol which, after cleavage,
forms non-structural proteins (nsP) 1, 2, 3, and 4 (Fig. 1) [58,
70]. The four nsPs and genomic RNA assemble at the plasma
membrane into viral replication compartments (spherules) that
synthesize antigenomic, genomic, and subgenomic RNA (Fig.
1) [70]. The spherule-synthesized subgenomic RNA is translat-
ed into capsid protein which internalizes the genomic RNA to
form icosahedral nucleocapsids (Fig. 1) [58, 70].
Simultaneously, E3-E2-6K/TF-E1 polyprotein, synthesized
from subgenomic RNA, enters the endoplasmic reticulum
post-transcriptionally and is secreted through the ER-Golgi
pathway where it is integrated into the plasma membrane
(Fig. 1) [70]. The genomic RNA nucleocapsid then buds off
at the site where E2- and E1-secreted proteins are located to
form a mature virion (Fig. 1) [58, 70, 71].

After alphaviral infection, there is both an acute and
chronic stage, resulting in polyarthralgia which is often
debilitating to patients. There is widespread viral dissem-
ination through the circulatory and lymphatic systems to
multiple organs and joints after which multiple immune
effector cells infiltrate the site of infection leading to the

production of pro-inflammatory cytokines which results
in severe polyarthralgia (Table 1) [56, 69, 72]. These
cytokines persist in the infected tissues even during the
recovery phase which may indicate that they play a role
in leading to chronic viral arthritogenic arthritis [91]. A
type 1 interferon response also occurs in SINV, RRV,
and CHIKV [35].

After infection, neutralizing antibodies are usually detected
4–7 days after the onset of symptoms and contribute to
alphaviral clearance from the blood [56]. CD8+ T cells are
vital to RRV clearance from infected muscle tissues and im-
portant in mediation of vaccine-induced protection against
CHIKV in mice [92, 93]. The ultimate outcome of the infec-
tion is mediated by macrophage polarization and phenotype
switching from pro-inflammatory (M1) to anti-inflammatory
(M2) [56]. Interestingly, arginase 1 is an M2 macrophage
enzyme that was associated with decreased tissue damage
and enhanced RRV clearance in mice [94, 95•]. The exact
mechanistic differences by which certain patients are able to
clear infection without developing chronic arthritis while
others suffer from debilitating joint pain are poorly
understood.

Fig. 1 Mechanism of alphavirus replication. Alphaviruses attach to the
host cell through attachment of viral E2 glycoprotein to cell surface
receptors such as Mxra8 and GAGs. After endocytosis, the acidic
endosome triggers membrane fusion of E1 glycoprotein resulting in the
release of viral contents into the cell. The genomic RNA is translated into
four non-structural proteins which go on to form a replicase that
synthesizes negative-sense RNA. The non-structural proteins can form

spherules where positive-sense and subgenomic RNA synthesis occurs
based on the negative-sense template. The subgenomic RNA is translated
to form the C-E3-E2-6K-TF-E1 polyprotein which is cleaved and
trafficked to the endoplasmic reticulum and Golgi apparatus where
post-translational modification results in the final individual structural
proteins of the virus
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The chronic phase of alphaviral arthritis seems to be associat-
ed with a pro-inflammatory state [56, 69, 72]. A primary cellular
mediator of chronic CHIKV-induced joint swelling is IFNγ-
secreting Th1 CD4+ T cells that attract phagocytic cells to the
site of infection [96]. There are two main hypotheses as to why
persistent arthritis occurs in patients with alphaviral infection.
First, the persistence of viral RNA or proteins in the joint and
muscle tissues or macrophages may cause the persistent arthritis
[97]. Second, there may be persistent immune activation similar
to rheumatoid arthritis (RA) which leads to chronic join pain
[97]. Although it is possible that CHIKV resides in macrophages
that upon activation cause relapsing-remitting arthritic symptoms
[98, 99••], the bulk of the evidence suggests that the chronic
arthritic condition is due to persistent immune activation. One
study did find CHIKV RNA and proteins in one patient 18
months post-infection [90]. However, there is a significant reduc-
tion in detectable viral RNAor viral particles in the chronic phase
after the initial acute infection [56]. Synovial fluid samples from
38 Colombian patients who reported chronic arthritis 22 months
post-infection did not reveal detectable CHIKV transcripts or
viral proteins [100]. The lack of viral RNA and proteins suggests
that the underlying cause of pain or synovitis years post-infection
is more likely persistent immune activation [99••]. CHIKV ar-
thritis persists in some patients 3 years post-infection, in many
cases as relapsing and remitting [101••]. This may suggest that
during the chronic phase, there is an intensity variation in the
inflammatory response causing relapsing-remitting symptoms
frequently reported in response to exercise or infection [101••].

Other alphaviruses, such as RRV, ONNV, SINV, and
MAYV, can induce similar rheumatic-like manifestations in
patients with persistent arthritis. A sequence alignment of viral
proteins from arthritogenic alphaviruses showed that there are
conserved regions in the protein structure that can activate T
cells similar to endogenous proteins that are implicated in RA
[102]. Another study demonstrated that patients with previous

RAwho became newly infected with CHIKV developed more
RA symptoms which may suggest that both CHIKV arthritis
and RA function through similar mechanisms [103]. These
findings suggest that the origin of chronic joint pain from
alphaviral infection is mediated through an autoimmune re-
sponse to conserved regions of the viral proteins.

Diagnosis

Alphaviral infections have an incubation period that ranges
from 1–12 days varying between each specific alphavirus
[96]. Symptoms are generally similar among alphaviral infec-
tions and include fever, macular rash, facial edema, edema of
the extremities, pruritus, myalgia, arthralgia, periorbital pain,
headache, lymphadenopathy, and minor bleeding [62].
Symptoms overlap among the alphaviruses, so serology test-
ing or RT-PCR is important for the diagnosis [69]. The latter is
perhaps the most sensitive method for detection of virus [4,
104, 105]. A fourfold increase of virus-specific IgM antibod-
ies at least 3 weeks apart can be used if RT-PCR is not avail-
able [69]. If the diagnosis cannot be made in the acute phase,
serological testing can still be used to detect virus-specific IgG
and IgM levels, because they persist for months to years post-
infection [69]. CHIKV IgM levels can persist or even increase
with disease activity during untreated chronic infection [106].
However, routine serologic testing is often complicated by
cross-reactivity among alphaviruses.

If symptoms persist beyond the acute phase of infection, the
common finding among the arthritogenic alphaviral infections is
persistent joint pain. In addition to serological testing, disease
activity measures should be used to evaluate the severity and
activity of ongoing arthritis. Methods used to assess rheumatoid
arthritis are often applied to other diseases, such as CHIKV ar-
thritis [107]. CHIKV frequently involves the small joints of the

Table 1 Elevated serum
cytokines and chemokines in
chronic CHIKV-associated
arthralgia and arthritis

Elevated serum cytokines/chemokines in chronic CHIKV arthritis

Cytokine/chemokine Function

IFN-α [72–75] Promotion of antiviral state, limits CHIKV replication and dissemination,
NK cell activation

IFN-γ [72, 76–78] Macrophage and B cell activation, Th1 differentiation, increased MHC 1
and MHC II

TNF [72, 79, 80] Pro-inflammatory signaling, neutrophil activation

IL-1β [72, 81, 82] Pro-inflammatory signaling, Th17 differentiation

IL-6 [72, 77, 81, 83–86] Th17 differentiation, T reg inhibition, synthesis of acute phase proteins,
stimulation of antibody production

IL-8 [72, 77, 86, 87] Neutrophil chemotaxis

IL-10 [72, 81, 88, 89] Suppresses expression of pro-inflammatory cytokines, inhibition of
neutrophil recruitment

IL-12 [72, 90] Th1 differentiation, IFNγ synthesis in NK and T cells

CCL2 [56, 72, 86] Recruits T cells, monocytes, and dendritic cells to sites of inflammation
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hands and feet and as such some instruments may underestimate
that the severity of the arthritis may be due to lack of inclusion of
these joints. In contrast to RA, swollen joints in CHIKV arthritis
are poor predictors of outcomes while joint pain and stiffness
may be independently associated with disability and quality of
life assessments. Musculoskeletal stiffness during CHIKV infec-
tion is often not associated with arthralgia; therefore, inclusion of
stiffness as a separate parameter may provide a more accurate
assessment of disease severity in CHIKV infection [108].

Treatment and Management

There is no specific antiviral treatment or approved vaccine
for any of the arthritogenic alphaviruses, although there are
numerous proposed treatments with putative efficacy
(Table 2). In the acute phase of infection, acetaminophen for
14 days is appropriate [62]. The use of NSAIDS or aspirin

should be avoided until a specific alphaviral infection is con-
firmed because of bleeding complications associated with
dengue fever which is clinically indistinguishable from
alphaviral infection [62]. France and Brazil have established
more specific guidelines for chronic chikungunya arthritis
(CCA) [109, 110]. 12 weeks post-infection, these guidelines
state that disease modifying antirheumatic drugs (DMARDs)
such as methotrexate (MTX) can be used [111]. However,
there are no adequately powered randomized clinical trials
showing that MTX improves outcomes [112]. Some studies
support the use of MTX treatment in CCA with reporting
resolution of joint symptoms, although there are potential con-
cerns about the safety of MTX in infected patients [113•].
Chloroquine and hydroxychloroquine have been tried as treat-
ments for CHIKV arthritis but there has been no evidence of
therapeutic benefit in clinical trials [114, 115]. Corticosteroids
are generally not recommended in acute infection due to the
immunosuppressive effect and other adverse effects even

Table 2 Prospective alphaviral arthritis therapies

Prospective alphaviral arthritis therapies

Therapy Mechanism of action Effect Alphavirus known to effect

NSAIDs [111, 119–123] Inhibition of cyclooxygenase Decreased prostaglandins, prostacyclins
leading to less inflammation

Acute symptom-based
coverage of all
alphaviruses

Steroids (Prednisone)
[116, 124–126]

Suppresses leukocyte migration,
reversal
of vascular permeability

Multiple immunomodulatory and
immunosuppressive effects, not recommended
for alphaviral arthritis due to risk of infection
exacerbation

CHIKV, RRV

Methotrexate
[106, 112, 113•, 118,
125, 127]

Inhibits dihydrofolate reductase,
increase
in adenosine release, decreased
reduction
of BH2 to BH4, inhibits NFκB
activation

Suppression of pro-inflammatory effects of T
cells, macrophages, fibroblast synoviocytes,
and endothelial cells

CHIKV, RRV

Hydroxychloroquine
[111, 114, 116,
128–131]

Disrupts lysosomal/endosomal pH,
inhibition
of MHC II presentation, inhibition of
TLR signaling, inhibition of cGAMP
synthase

Reduction of pro-inflammatory cytokines,
decreased T cell activation, no evidence
of therapeutic benefit

CHIKV, RRV

Sulfasalazine
[109, 111, 117, 118]

Inhibits NF-κB, RANKL suppression,
osteoprotegerin stimulation

Reduction of pro-inflammatory cytokines,
decreased T cell activation, decreased
tissue damage

CHIKV, RRV

Pentosan Polysulfate
[132–134]

GAG with heparin-like structure,
upregulation of IL-10,
downregulation
of IL-6

Anti-inflammatory, enhancement of tissue repair CHIKV, RRV

TNF inhibitors
[103, 135, 136]

Binds and inhibits TNF
pro-inflammatory cascade signaling

Reduction of pro-inflammatory effects of
TNF signaling, decrease in IL-1 and IL-6

CHIKV

Fingolimod [137, 138•] Modulates of sphingosine 1-phosphate
receptor

Prevents T cell escape from lymph nodes CHIKV

Abatacept [137, 139•] Binds to CD80/CD86 on APC’s Inhibits T cell activation CHIKV

Bindarit [140, 141] Inhibits MCP-1/CCL2, CCL7,
CCL8, and IL-12

Decreases joint inflammation and
osteoclastogenesis

CHIKV, RRV

Tofacitinib
[103, 142, 143]

Inhibits JAK Inhibits pro-inflammatory signaling cascade,
decreased T cell activation

CHIKV
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though there is evidence of potential therapeutic benefit when
in combination with NSAIDs especially in chronic infection
[111, 116]. Lastly, sulfasalazine treatment might have thera-
peutic benefit especially when combined with methotrexate
[117, 118]. It is necessary to further test the French and
Brazilian recommended therapies in randomized controlled
trials to know which treatments are effective.

Antivirals, antibody therapies, and vaccines are being tested
for potential efficacy against arthritogenic alphaviruses. The
Mxra8 receptor is a target for using monoclonal antibodies.
Mxra8 was inhibited by RRV-12 and CHIKV-70 human anti-
bodies [144]. Specifically, RRV-12 reduced clinical disease in
immunocompetent RRV and MAYV mouse models [144].
Another potential therapeutic, Bindarit, a MCP-1 inhibitor,
has shown activity against monocyte chemoattractant proteins
MCP-1, MCP-2, and MCP-3 resulting in decreased MCP-
driven monocyte infiltration into infected joints [140].
Bindarit treatment in a mouse model decreased joint swelling
compared with the control [140, 145]. Abatacept, a CTLA4-Ig
that inhibits T cell activation, decreased foot swelling on day 7
of CHIKV infection in mice. It had greater effectiveness when
combined with anti-CHIKV monoclonal antibodies which
eliminated viral particles and reduced viral RNA levels in joints
[137, 139•]. Another approach that has had success in mouse
models involved the use of fingolimod, a sphingospine-1-
phosphate receptor modulator, which prevented T cell escape
from lymphoid organs, thus reducing joint inflammation [137,
138•]. Another potential target for therapeutics is microRNAs
which have shown to positively and negatively impact both
osteoclastogenesis and osteoblastogenesis [146, 147]. Bone re-
modeling is an important part of CHIKV infection and a major
cause of morbidity and thus is a promising area of research.

In addition to potential therapeutics, there is an effort to
develop a CHIKV vaccine. The most recent phase 2 vaccine
trial of a CHIKV virus-like particle vaccine resulted in a last-
ing immune response through 72 weeks post-vaccination
[148]. Another vaccine candidate, MV-CHIK, completed its
phase 2 trial and induced neutralizing antibodies in 93% of
individuals in the high-dose group after a single immunization
[149]. Additional trials using live attenuated viruses are in
progress [150]. Other vaccine candidates include an mRNA
vaccine encoding for CHIKV antigenic proteins, live attenu-
ated virus vaccine, viral vectored vaccine, and a virus-like
particle vaccine all of which are in development [151•].

Conclusion

Although global travel has decreased in 2020 due to the
COVID-19 pandemic, arthropod-borne viruses continue to
cause outbreaks. Climate change, migration and future travel
will keep on increasing the regions that vectors populate. A
complete understanding of alphaviral pathophysiology will

undoubtedly lead to novel therapeutic targets. There is also
hope for an affordable vaccine in the coming future which will
be key to preventing large-scale outbreaks. Currently, the use
of mosquito deterrent strategies and the potential role some of
the agents listed abovemay be the best methods for prevention
and treatment of persistent joint pain following arthropod viral
infections.
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