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Abstract
Purpose of Review Systemic lupus erythematosus is a severe
autoimmune/inflammatory condition of unknown pathophys-
iology. Though genetic predisposition is essential for disease
expression, risk alleles in single genes are usually insufficient
to confer disease. Epigenetic dysregulation has been sug-
gested as the missing link between genetic risk and the devel-
opment of clinically evident disease.
Recent Findings Over the past decade, epigenetic events
moved into the focus of research targeting the molecular path-
ophysiology of SLE. Epigenetic alteration can be the net result
of preceding infections, medication, diet, and/or other envi-
ronmental influences. While altered DNA methylation and
histone modifications had already been established as
pathomechanisms, DNA hydroxymethylation was more re-
cently identified as an activating epigenetic mark.
Summary Defective epigenetic control contributes to uncon-
trolled cytokine and co-receptor expression, resulting in im-
mune activation and tissue damage in SLE. Epigenetic alter-
ations promise potential as disease biomarkers and/or future

therapeutic targets in SLE and other autoimmune/inflammatory
conditions.

Keywords Lupus .Epigenetic . Inflammation .Methylation .

Hydroxymethylation . Histone . Non-coding RNA

Introduction

Systemic lupus erythematosus (SLE) is a severe autoimmune/
inflammatory condition that can affect any organ of the human
body [1]. Systemic inflammation and tissue damage contrib-
ute to the clinical picture of SLE and can cause severe sequel-
ae that may result in disability or death. The pathophysiology
of SLE is complex. While gain- or loss-of-function mutations
in single genes may result in SLE or an SLE-like picture in a
small subset of patients (approximately 1–4%), most SLE
patients suffer from more pathophysiologically complex
forms that remain incompletely understood [1]. Most patients
are genetically predisposed to the development of SLE.
However, so-called risk alleles are by themselves not strong
enough to confer “full-blown” disease. In such cases, addi-
tional factors, including female gender and hormonal factors,
environmental triggers (including infections, medication, ex-
posure to toxins, and chemicals), immune regulatory factors,
and epigenetic events provide additional pathophysiological
impact that contributes to disease expression.

Epigenetic mechanisms are reversible as well as heritable
events that govern gene expression without altering the under-
lying DNA sequence. They control the accessibility of DNA to
the transcriptional complex, including transcription factors and
RNA polymerases. Thus, epigenetic events control gene ex-
pression in a tissue- and signal-specific manner. Epigenetic
events are responsible for the fact that (with the exception of
gametes that carry only half of the genetic information) all cells
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of the human body carry the same genetic information, while
exhibiting variable and sometimes highly specialized pheno-
types (e.g., liver cells vs. adipose tissue vs. lymphocytes).

A number of molecular mechanisms contribute to what is
called “the epigenome,” including DNA methylation, histone
modifications, and non-coding transcripts. Alterations to the
epigenome are involved in the dysregulation of signaling mol-
ecules and receptors in various autoimmune/inflammatory
conditions, including SLE [2–6]. Thus, epigenetic events are
interesting targets in the search for disease pathomechanisms,
and even promise the potential of future therapeutic interven-
tions. Though not “officially labelled” as epigenetic treat-
ments, several medications are currently being used to modify
epigenetic marks, thereby providing further evidence for a
central involvement of the epigenome in immune regulation
and disease pathology [1–6].

DNA Methylation

DNA methylation is probably the most well-studied epigenetic
event. Adding a methyl-group to the 5′ carbon position of cy-
tosine in cytosine-phosphate-guanosine (CpG) dinucleotides is
a potent epigenetic mechanism. It controls the accessibility of
regulatory regions to transcription factors, transcriptional co-
activators, and RNA polymerases. The central involvement of
DNA methylation in the pathophysiology of SLE was further
underscored when Javierre et al. [7] demonstrated significantly
variable DNAmethylation patterns in disease discordant mono-
zygotic twins. Indeed, in genetically identical twins, altered
DNA methylation patterns differentiate immune cells from
SLE patients and those of healthy siblings [7].

DNA methylation is conferred by DNA methyltransferase
(DNMT) enzymes. Historically, two classes of DNMTs were
distinguished: (i) maintenance DNMTs (DNMT1) were be-
lieved solely responsible for re-methylation during cell divi-
sion, while (ii) de novo DNMTs (DNMT3a and 3b) were
claimed to confer DNA methylation independent of pre-
existing patterns [2–4]. More recently, it has become increas-
ingly clear that the historic classification was an over-
simplification and that maintenance DNMTs can also confer
de novo DNA methylation [3]. Indeed, DNA methylation and
its regulation are more complex than previously assumed.
Multiple proteins are involved in its regulation, and dysregu-
lation of some may contribute to inflammation. Methyl-CpG-
binding proteins are responsible for the solidification of tran-
scriptional repression. Six family members were reported, in-
cluding methyl-CpG-binding domain (MBD)1 through
MBD4, Kaiso, and methyl-CpG-binding protein (MeCP)2
[8, 9]. Methylated-CpG-binding proteins are structural pro-
teins that recruit histone deacetylases (HDACs) and other
chromatin remodeling factors. MBD proteins thereby aid in

translating DNA methylation into histone modifications (see
below) [3].

Aberrant DNA methylation was first linked to altered gene
expression in cancer [10, 11]. More recently, disrupted DNA
methylation patterns were established as a central contributor
to autoimmune/inflammatory disorders, including SLE [6].
DNA methylation patterns are complex with areas of in-
creased DNAmethylation and areas with reduced DNAmeth-
ylation co-existing in cells or tissues of individuals with
autoimmune/inflammatory conditions [2–6] (Table 1).

Various molecular mechanisms have been identified as
contributing to altered DNA methylation in immune cells
from patients with SLE (Table 2):

Altered DNMT Expression and Activity in SLE

In several studies of T cells from patients with SLE, reduced
expression of DNMT1 and DNMT3a was demonstrated.
However, conflicting reports exist suggesting no differences
in the expression of DNMTs in lymphocytes from SLE patients
vs. healthy controls. Reported differences may be due to vari-
able disease activity of SLE patients included in the studies,
variable ethnicities, and the possibility that mRNA expression
may not reflect protein expression or activity of DNMTs in the
studied populations [67–69]. Furthermore, DNMT recruitment
and activity are largely signal-, target-, and tissue-specific and
can be directed by transcription factors (see below), and
mitogen-activated protein (MAP) kinases [2–4, 37•, 49, 50].

Mitogen Activated Protein Kinases

Altered methylation of genomic DNA in lymphocytes from
SLE patients was linked to uncontrolled activation of mitogen
activated protein kinases (MAPK). Impaired activation of pro-
tein kinase C (PKC)δ results in reduced activation of extracel-
lular signal-regulated kinases (ERK) and impaired DNMT1
activity, subsequently contributing to reduced DNA methyla-
tion and increased expression of the costimulatory molecules
CD11A, CD70, CD40L, the pro-inflammatory effector cyto-
kine IL-17A, and several interferon-regulated genes [3, 4, 70•,
71]. Another mechanism contributing to reduced DNMT1 ex-
pression is the increased expression of protein phosphatase 2A
(PP2A), which suppresses ERK signaling and DNMT1 activity
[49, 50].

Growth-Arrest and DNA Damage Inducible Protein45α

The growth-arrest and DNA damage inducible protein
(GADD)45α is expressed at increased levels in T cells from
SLE patients. In a highly complex manner, it induces DNA
demethylation through the interaction with activation-induced
deaminase (AID) and MBD4, involving 5-methyl-cytosine-
deaminase and G:T mismatch-specific thymine glyosylase
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[4, 72]. GADD45α interacts with the regulatory protein high
mobility group box (HMGB)1, which in turn functionally
interacts with MeCP2, a protein that is centrally involved in
the recognition of methylated DNA, directing DNA methyla-
tion. Together, these mechanisms result in gradual DNA de-
methylation of ITGAL (encoding for CD11A) and TNFSF7
(encoding for CD70) in T cells from patients with SLE [73].

Dysregulated Transcription Factor Networks

During the differentiation of the lymphocyte population, tran-
scription factors instruct epigenetic remodeling, thereby defin-
ing the phenotype of cells and tissues. Altered transcription
factor networks are a hallmark of SLE T cells [2–4, 65].
Expression of the transcription factor cAMP responsive ele-
ment (CREM)α is increased in T cells from SLE patients and
reflects disease activity [74]. CREMα instructs epigenetic re-
modeling of SLE-associated genes through its interaction with
DNMT3a, contributing to the generation of effector T cells in
SLE [2–4, 13, 14•, 15–19, 74].

TET Proteins and DNA Hydroxymethylation

More recently, DNA hydroxymethylation was considered an
epigenetic event [75] and to be involved in the pathophysiol-
ogy of autoimmune/inflammatory disease, including SLE
[76]. DNA hydroxymethylation can act as an intermediary
in the process of active DNA demethylation [77, 78••, 79,
80]. In various cells and tissues, positive correlation between
gene expression and DNA hydroxymethylation has been dem-
onstrated. DNA hydroxymethylation is the result of oxidation
of methylated cytosines within CpG dinucleotides by the
hydroxytransferase ten eleven translocation (TET) family pro-
teins [77, 80–82, 83••]. DNA hydroxymethylation results in
reduced affinity of DNA toMBDs and increased transcription
factor binding. Thus, DNA hydroxymethylation is currently
considered a permissive epigenetic mark, promoting gene ex-
pression [64, 84, 85]. In agreement with these reports, TET
family mRNA expression positively correlates with increased
DNA hydroxymethylation in SLE. However, DNA
hydroxymethylation patterns are complex and incompletely
understood with areas of increased and reduced
hydroxymethylation [3, 66, 76] (Table 2).

Non-coding-RNAs

Transcription of non-coding RNAs from either intronic or
intergenic regions of the genome is potentially important for
the regulation of gene expression. Though highly interesting
and promising in the search for molecular mechanisms contrib-
uting to altered gene expression in autoimmune/inflammatory
conditions, our understanding of the physiological as well as

the pathophysiological role in gene expression is very limited.
Furthermore, the question of whether non-coding RNAs should
be considered an epigenetic event or not remains somewhat
controversial. Based on their general heritability, the involve-
ment gene regulation without affecting the underlying DNA
sequence, non-coding RNAs fulfill the criteria of epigenetic
mechanisms of gene regulation. Non-coding RNA expression
occurs at the interface between the transcription of genes, chro-
matin remodeling, and the translation of messenger RNA into
protein products, regulating approximately 30% of human
genes [86]. This may partially be achieved by providing an
“open” chromatin conformation by ongoing transcriptional ac-
tivity. During this, non-coding transcripts mediate interactions
between core promoters and enhancers, which may be located
far apart, sometimes even on different chromosomes [87].
However, the function of non-coding RNAs is not limited to
providing an “open” chromatin conformation. Non-coding
RNAs can be processed by the nuclear ribonuclease Drosha
and the cytoplasmic Dicer enzyme. Resulting micro RNAs
(miRNAs) are usually 21–23 base-pair spanning processed
transcripts that can interfere with gene expression through du-
plex formation with target genes or transcripts, usually at the 3′
untranslated region (3′ UTR) [3, 4, 87–92], resulting in tran-
scriptional repression, mRNA cleavage, or translational arrest
[3, 89–92]. Non-coding RNA expression can be either the result
or the cause of other epigenetic alterations, and several connec-
tions between non-coding RNA expression and DNA methyl-
ation have been established: miRNA29 and miRNA143 influ-
ence DNAmethylation through the regulation of DNMT3a and
DNMT3b [93–96]. In cancer, miRNA126 was linked with re-
duced MAPK activity and subsequently reduced DNMT1 ex-
pression in T cells from SLE patients [3, 97].

Histone Modifications

In addition to DNAmethylation and the effects of non-coding
RNAs discussed above, post-translational modifications of
histone proteins regulate gene expression on the epigenetic
level. In the nucleus of eukaryotic cells, histone proteins ag-
gregate to octamers with two copies of each H2A, H2B, H3,
and H4. Histone octamers form complexes with genomic
DNA (147 base-pairs). These complexes are referred to as
nucleosomes. Histone proteins undergo post-translational
modifications at amino acid termini which serve three-
dimensional arrangement of nucleosomes, controlling the ac-
cessibility to transcriptional factors and finally gene expres-
sion [2–4]. Important histone modifications include acetyla-
tion, citrullination, phosphorylation, and methylation.
Activating histone modifications that confer chromatin “open-
ing” include histone H3 lysine 18 acetylation (H3K18ac).
Conversely, histone H3 lysine 9 (H3K9me3) and/or lysine
(H3K27me3) trimethylation mediate chromatin condensation
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and transcriptional silencing. A number of enzymes and
multiprotein complexes have been suggested to mediate spe-
cific epigenetic marks [2–6], which include lysine acetyltrans-
ferases (HATs), HDACs, lysine methyltransferases (KMTs),
and lysine demethylases (KDMs) [98].

Epigenetic marks are highly specific and determine the
phenotype and function of cells and tissues. Disturbed histone
marks centrally contribute to the pathophysiology of
autoimmune/inflammatory disorders, including SLE. Both
histone acetylation and histone H3K9 methylation are de-
creased in CD4+ T cells from SLE patients [99] (Table 3).
However, histone modifications are complex and very incom-
pletely understood [2, 4]. Alterations to the histone code have
extensively been studied in cytokine genes. T cells from SLE
patients exhibit permissivemodifications to histone proteins at
the IL17 gene cluster (increased H3K18ac and reduced levels
of H3K27me3) contributing to uncontrolled expression of
pro-inflammatory IL-17A [16, 19]. Conversely, the IL2 gene
undergoes epigenetic silencing in T cells from SLE patients.
Reported histone modifications along the IL2 gene are repres-
sive with impaired histone acetylation and increased methyl-
ation. Together, these histone modifications contribute to the
effector phenotype of T cells from SLE patients [13, 16, 17,
19] (Table 3). In concert with the involvement in disrupted
DNA methylation, the transcription factor CREMα plays a
role in these events through its interaction with HDAC1 and
the histone methyltransferase G9a [14•, 17].

Another cytokine undergoing significant dysregulation in
lymphocytes from SLE patients is IL-10. While generally
considered an immune regulatory or anti-inflammatory cyto-
kine, IL-10 also has pro-inflammatory effects. It contributes to
B cell proliferation, differentiation, and activation as well as
the induction of antibody production and immunoglobulin
class switch [32, 87, 102]. Enhanced IL-10 expression in
SLE was linked with high disease activity. Indeed, a small
cohort of treatment resistant SLE patients responded to IL-
10 blockade with antibodies [103]. We demonstrated that, in
T cells from SLE patients, IL10 undergoes epigenetic remod-
eling through DNA demethylation and histone acetylation
[33••] (Table 3). The transcription factor Stat3 that is over-
activated in T cells from patients with SLE is centrally in-
volved through its interactions with the histone acetyltransfer-
ase p300 [33••].

Demographic Factors and Environment

As many other autoimmune/inflammatory conditions, SLE is
characterized by female predominance (f:m = 9–10:1).
Because prevalence of SLE in pre-pubertal children is about
equal in girls and boys, hormones appear central in the path-
ophysiology of SLE. Estrogens have been most widely stud-
ied in SLE and indeed are involved in T cell subset

differentiation and distribution through epigenetic remodeling
[2, 4, 20, 56, 104–107]. Estrogen receptor signaling enhances
the expression of the transcription factor CREMα, which
greatly contributes to the generation of effector CD4+ T cell
and DN T cells in SLE [2, 4, 13, 14•, 16, 17, 19, 74].

Furthermore, the presence of a second X chromosome may
contribute to the increased prevalence of SLE in women.Most
X-linked genes are not gender-specific and exhibit equal ex-
pression rates. A complex epigenetic event referred to as “X
chromosome inactivation” is responsible for stable gene ex-
pression. X inactivation involves the aforementioned epige-
netic events, DNA methylation, histone modifications, and
miRNA expression. Several X-linked genes contribute to the
pathophysiology of SLE [2, 4, 108]. Reduced DNA methyla-
tion of CD40L contributes to female predominance of SLE
[53, 54, 109, 110]. Furthermore, women who lack one X
chromosome (Turner syndrome: 45, X0) exhibit lower inci-
dences of SLE. Conversely, individuals with an additional X
chromosome (Klinefelter’s syndrome: 47, XXY) are at an
increased risk for the development of SLE [2, 4, 111, 112].

Elderly men exhibit greater SLE incidences when compared
to elderly women. With increasing age, epigenetic events ap-
pear to accumulate and impact gene expression even more than
genetic predisposition [51]. A possible explanation is reduced
DNMT1 activity in the elderly [2, 4, 57, 65]. One result of
cumulative DNA demethylation may be the generation and
accumulation of “senescent” T cells that are characterized by
reduced CD28 expression, shortened telomeres, and increased
expression of SLE-associated genes [2, 30, 44, 113].

Several routinely used medications cause epigenetic alter-
ations that represent a well-accepted environmental trigger for
inflammation [2–4]. Furthermore, modifications to DNA and/
or histone proteins depend on substrates derived from diet or
products of intermediary metabolism. Through methionine
adenosyltransferase (MAT), a redox-sensitive enzyme in the
S-adenosyl methionine (SAM) cycle, SAM derives from aden-
osine triphosphate (ATP) andmethionine [114]. Thus, the avail-
ability of B vitamins and methionine directly regulate SAM
generation. Global DNA methylation is reduced in SLE pa-
tients and in the elderly, suggesting alterations to the SAMcycle
and/or DNMT activity as likely contributors to DNA demeth-
ylation [2, 56, 115]. Particularly in individuals with reduced
DNMT1 activity, sufficient nutritional intake of SAM may be
essential to prevent autoimmune reactions [115•]. Hydralazine
(used to treat hypertension) inhibits the activity of proteinkinase
Cδ, resulting in impaired ERK kinase activation and subse-
quently altered activity of DNMT1 [70•, 71, 116]. Through
these mechanisms, hydralazine mediates DNA demethylation
and lupus-like phenotypes in predisposed individuals.

Lastly, sunlight exposure triggers flares in SLE patients
[117, 118]. Indeed, UV exposure results in reduced DNMT1
mRNA expression and reduced DNA methylation in T cells
from SLE patients [118]. This may be due to the induction of
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GADD45α through UV light promoting DNA demethylation
and altered gene expression [4, 72, 119].

The Epigenome as Therapeutic Target

In contrast to the situation in cancer, therapeutic approaches
“officially labelled” as epigenetic treatment are not available
for SLE. However, several currently available therapeutic
agents modify the epigenome. In general, epigenetic treatment
strategies in autoimmune/inflammatory conditions are limited
by untargeted effects and the fact that epigenetic patterns in
SLE are highly complex. Thus, untargeted approaches may
cause severe adverse events. In the presence of relatively
well-established alternative (though often toxic) treatment op-
tions, epigenetic approaches are currently considered unethical
and risky [2–4].

Available therapeutic regimens in SLE include antimalaria
medication (chloroquine and hydroxy-chloroquine), cortico-
steroids, and immune-modulating agents (methotrexate, my-
cophenolate mofetil, and cyclophosphamide) [3].

DNA Methylation Methotrexate reduces DNMT1 activity
through the depletion of SAM, the substrate of DNMTs during
DNAmethylation [3, 120, 121]. Cyclophosphamide treatment
in systemic vasculitis increases DNA methylation through the
induction of DNMT1 activity [3, 122]. Thus, epigenetic ef-
fects of methotrexate and cyclophosphamide may explain ef-
fectiveness in SLE [3]. DNA methylation can furthermore be
altered by 5′-azacytidine (Vidaza) or 5′-aza-2′-deoxycytidine
(Decitabine), cytosine analogues that integrate into DNA dur-
ing cell division and prevent DNA methylation [123].

Though several therapeutic interventions influence DNA
hydroxymethylation, no targeted approaches are available to
correct altered DNA hydroxymethylation. Treatment of RA pa-
tients with methotrexate reduced DNA hyroxymethylation [76,
124], and inhibition of TAT family proteins by the IDH1 inhib-
itors AGI-5198 or HMS-101 reduce DNA hydroxymethylation
and exert in vitro effects on tumor cell proliferation. Thus, TET
inhibition may prove useful in autoimmune/inflammatory con-
ditions, including SLE [124–126].

Micro RNAs Several miRNAs are targetable by small mole-
cules. Some of them have already made their way into pre-
clinical studies in infectious hepatitis C and cancers
[127–129]. However, no data exist yet concerning miRNA
blockade in autoimmune/inflammatory disorders.

Histone Modifications Though histone modifying enzymes
have not been “directly” targeted in SLE yet, several therapeutic
regimens alter histone modifications [3]. Several currently
available drugs inhibit HDACs, including the antiepilepic
valproic acid, vorinostat (Zolinza), and romidepsin (Istodax),

both used in T cell lymphoma. Increased histone acetylation
was suggested to be beneficial in SLE, since global histone
acetylation is reduced in T cells from SLE patients [4].
Indeed, HDAC inhibition with suberoylanilide hydroxamic ac-
id (SAHA) or trichostatin A (TSA) results in clinical improve-
ment of disease in lupus-prone mice [130, 131]. Conversely,
application of the “HDAC inhibitor” valproic acid in epilepsy
patients sometimes results in lupus-like symptoms [132]. Thus,
currently available epigenetic treatment may be limited by glob-
al effects that may cause adverse reactions that outweigh poten-
tial benefits.

Mycophenolate mofetil influences the histone code, while
not affecting DNAmethylation [133]. Histone methyltransfer-
ase G9a mediates methylation at Histone H3K9 and H3K27
termini, both repressive epigenetic modifications. G9a inhib-
itors have been developed and are currently under investiga-
tion in preclinical cancer studies [134].

Future InterventionsDisrupted transcription factor networks
are a hallmark of T lymphocytes from SLE patients [1]. As
mentioned above, T cells from SLE patients are characterized
by increased expression and activation of CREMα and in-
creased Stat3 activation. Both transcription factors centrally
contribute to the inflammatory phenotype of SLE through the
induction of epigenetic remodeling [2, 3, 13, 14•, 33]. Thus,
blocking transcription factor expression or activation appears
promising in the search for target-directed treatment options in
SLE and other autoimmune/inflammatory diseases. To date,
blockade of Stat transcription factors signaling is already
achievable through Janus kinase (JAK) inhibitors. However,
JAK inhibition is currently not part of standard treatment pro-
tocols, and its role in future approaches remains to be deter-
mined [135].

Conclusions

Immune cells from patients with the systemic autoimmune
disease SLE are characterized by dysregulated gene expres-
sion profiles. A significant proportion is caused by epigenetic
alterations. Over the past years, a number of molecular mech-
anisms have been linked with epigenetic dysregulation.
Altered epigenetic marks may therefore be the “missing link”
between genetic predisposition and disease expression in SLE
but also in other autoimmune/inflammatory disorders.
Provided the sometimes highly specific epigenetic patterns
in lymphocytes from SLE patients, epigenetic events hold
potential in the search for targets for individualized therapeu-
tic interventions and disease biomarkers. However, additional
studies are warranted focusing on target-directed alterations to
the epigenome in autoimmune/inflammatory disorders.
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