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Abstract It is generally accepted that the major autoantigen
for antiphospholipid antibodies (aPL) in the antiphospholipid
syndrome (APS) is β2-glycoprotein I (β2GPI). However, a
recent study has revealed that some aPL bind to certain
conformational epitope(s) on β2GPI shared by the homolo-
gous enzymatic domains of several serine proteases involved
in hemostasis and fibrinolysis. Importantly, some serine
protease–reactive aPL correspondingly hinder anticoagulant
regulation and resolution of clots. These results extend
several early findings of aPL binding to other coagulation
factors and provide a new perspective about some aPL in
terms of binding specificities and related functional proper-
ties in promoting thrombosis. Moreover, a recent immuno-
logical and pathological study of a panel of human IgG
monoclonal aPL showed that aPL with strong binding to
thrombin promote in vivo venous thrombosis and leukocyte
adherence, suggesting that aPL reactivity with thrombin may
be a good predictor for pathogenic potentials of aPL.
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Introduction

Antiphospholipid syndrome (APS) is an autoimmune
disorder characterized by the persistent presence of anti-
phospholipid antibodies (aPL) and clinical features of
vascular thrombosis and pregnancy morbidity [1–4]. The
aPL include lupus anticoagulants (LA), as detected by their
abilities to prolong certain in vitro phospholipid (PL)-
restricted blood clotting tests, and anticardiolipin antibodies
(aCL) [5, 6]. Accumulated studies show that aPL in patients
with APS represent a heterogeneous group of antibodies
that recognize various PL in the presence of protein
cofactors [3]. The involved proteins include prothrombin
(PT), β2-glycoprotein I (β2GPI), and activated protein C
(APC) [7–9]. Antibodies directed against β2GPI and its
complexes with cardiolipin probably account for most of
the aCL activity found in patients with APS [3], whereas
anti-PT antibodies and anti-β2GPI antibodies are responsi-
ble for most LA activity [10].

Importantly, in vivo studies have shown that aPL from
patients promote fetal loss and thrombosis in animals,
indicating that circulating aPL are directly involved in the
clinical features of APS [11, 12]. To explain the pathogenic
properties of aPL in APS, numerous different mechanisms
have been proposed [3]. First, aPL may bind to protein C
and APC, and functionally inhibit activation of protein C
and the anticoagulant function of APC [9, 13–15].
Second, aPL may bind to platelets and functionally promote
platelet activation [16, 17]. Third, aCL may interact with
endothelial cells and functionally induce expression of
adhesion molecules and monocyte adhesion, resulting in
expression of tissue factor and a procoagulant state [18–21].
Fourth, aPL may activate the complement pathway,
generating split products that lead to fetal loss and
thrombosis [22, 23]. In addition, direct effects of aPL upon
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monocytes, endometrial cells, and trophoblast cells have
also been demonstrated [3].

The aPL-induced expression of tissue factor on endo-
thelial cells and monocytes is particularly important
because tissue factor is a major initiator of the coagulation
cascade. Tissue factor binds and accelerates the activation
of factor VII, and the activated factors VII (FVIIa) form
complexes with tissue factor (TF-FVIIa), which, in turn,
activate factors IX and, to a lesser degree, factor X
(generating factors FIXa and FXa, respectively).

Subsequently, FIXa works with activated factor VIII
to generate more FXa, and FXa with activated factor V
(FVa) to convert prothrombin to thrombin, which then
converts fibrinogen to a fibrin clot [24]. The coagulation
cascade is subjected to three major feedback regulation
mechanisms: 1) the tissue factor–pathway inhibitor inhibits
TF-FVIIa complexes from activating FIX and FX; 2)
antithrombin binds to thrombin, FIXa, FXa, and TF-
FVIIa, and inactivates their enzyme activity; and 3)
protein C is activated by the thrombin–thrombomodulin
complex on endothelial cells surface, and then APC
forms a complex with protein S on PL surfaces and
proteolytically inactivates factors FVa and FVIIIa [24].
Congenital, heterozygous deficiency in either antithrombin
or protein C increase the risk of thrombosis about five- to
tenfold [24–26].

Certain aPL Bind to Thrombin and Hinder Inactivation
of Thrombin by Antithrombin

Increasingly, evidence has emerged that identifies direct
interactions between aPL and components of the coagula-
tion cascade that may promote thrombosis. Around 1997,
increasing attention was paid to anti-PT antibodies (aPT) in
APS. In this context, Rao et al. [10] had previously shown
that affinity purified IgG aPT bound to immobilized
phosphatidylserine in the presence of Ca++ and prothrom-
bin, suggesting that aPT crosslinks prothrombin molecules
and thus increases the valence of interactions between
prothrombin and phosphatidylserine. Subsequently, the
same investigators showed that IgG purified from an LA-
positive plasma sample (designated LA IgG; from a patient
with hypoprothrombinemia) enhanced the binding of
prothrombin to human umbilical vein endothelial cells
(HUVEC) and increased thrombin generation on the surface
of HUVEC [27].

Unfortunately, the latter studies used LA IgG (which
might contain IgG against β2GPI, prothrombin, PL, and
complexes of these antigens) instead of purified aPT IgG.
Thus, to test the hypothesis that aPT may concentrate
prothrombin on cell surface PL and thus lead to a
hypercoagulable state, a monoclonal IgG aPT (designated

IS6) was derived from a patient with APS. Indeed, IS6
enhanced prothrombin binding to HUVEC and shortened
plasma clotting time measured on HUVEC [28]. In
addition, IS6 also induced tissue factor expression on
endothelial cells, and promoted thrombosis in mice [29].
Therefore, it was concluded that IS6 was likely to promote
thrombosis in the host patient by increasing prothrombin
concentration on endothelial cells and inducing tissue factor
expression on endothelial cells.

An additional way in which aPT may induce thrombosis
is through crossreactivity with thrombin (a key effector
enzyme in the coagulation cascade) derived from the
zymogen prothrombin. Thrombin converts fibrinogen to
fibrin, leading to the formation of fibrin clots. It also
feedback-amplifies the coagulation cascade by activating
factors V and VIII, which, in turn, enhance conversion of
prothrombin to thrombin [24]. Once thrombin is generated
in vivo, it is tightly regulated by antithrombin that binds to
thrombin in the presence of heparin-like glycosaminogly-
cans on endothelial cell surface and inactivates the enzyme
irreversibly [24, 30]. Therefore, it is conceivable that some
aPT may bind to thrombin at a site where thrombin
interacts with antithrombin and interfere with antithrombin
inactivation of thrombin. Indeed, IS6 aPT/aPL was found to
react with thrombin, and antibodies against thrombin were
found in 10 of 13 patients with APS [31]. Moreover, on
screening an additional panel of seven monoclonal IgG
aCL/aPL derived from two patients with the APS, five of
these antibodies (IS3, IS4, CL1, CL15, and CL24) were
also found to bind to thrombin (Table 1) [31]. Importantly,
CL24 at 11µg/mL (equivalent to about 0.1% of plasma
IgG) could reduce antithrombin inactivation of thrombin by
about 30% (Table 1) [31]. These findings defined a novel
anti-thrombin autoantibody in patients with APS and showed
that such antibodies may interfere with negative feedback
regulation of circulating thrombin and thus contribute to
thrombosis. Of note, antithrombin binds to the active site of
thrombin. Therefore, some antithrombin–interfering anti-
thrombin antibodies may also hinder thrombin interaction
with fibrinogen, resulting in anticoagulant effect. Further
studies to address this issue are warranted.

Notably, CL24 promotes thrombosis in a pinch-induced
thrombosis model in mice [32] and binds to thrombin with
a relative Kd value of 1.7×10–6 (Table 1), which is at least
tenfold better than relative Kd value of CL24 binding to
prothrombin [31]. Therefore, CL24 is more specific for
thrombin than prothrombin. Interestingly, thrombin con-
verts fibrinogen to fibrin in formation of a stable clot during
secondary hemostasis and also binds to and activates
platelets in primary hemostasis. Consequently, CL24 may
also activate platelets via unchecked thrombin, and thus
account for some of the aforementioned effects on aPL on
platelet activation [17].
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Certain aPL Bind to APC and Inhibit the Anticoagulant
Function of APC

Thrombin is a serine protease, and the serine protease family
contains several members involved in hemostasis and
fibrinolysis; these include the anticoagulant APC, several
activated coagulation factors (FVIIa, FIXa, and FXa), plus
plasmin and tissue plasminogen activator (tPA) of the
fibrinolytic system. The discovery of thrombin-reactive aPL
raised a possibility that such antibodies may also react with
other serine proteases in hemostasis and fibrinolysis.
Because the enzymatic domain of APC is most homologous
to that of thrombin (sharing a similarity of 50.5% at the
protein level), investigators first analyzed six thrombin-reactive
monoclonal aPL against APC, and found that all six bind to
APC (Table 1) [33]. Importantly, when the APC-reactive aPL
were examined for their effects on APC anticoagulant activity
in plasma coagulation, CL15 at 25µg/mL (equivalent to about
0.25% of plasma IgG) significantly inhibited the anticoagulant
function of APC (Table 1) [33]. These data provide further
support to the possible structural basis for the aforementioned
inhibition of APC by aPL [14, 15]. Of note, CL15 also
promotes thrombosis in the pinch-induced thrombosis model
(Table 1) [32].

Certain aPL React with Plasmin and Reduce
Fibrinolysis

Subsequently, these investigators studied IgG antibodies
against plasmin. Again, all six thrombin-reactive aPL bind
to plasmin (Table 1) [34]. In addition, a small study of the
plasma samples from 25 patients with APS showed that
seven (28%) of these patients had IgG antiplasmin anti-
bodies, using the mean optical density plus three standard
deviations (SD) of 20 normal controls as the cutoff [34].
Furthermore, functional analyses of the plasmin-reactive
aPL revealed that CL15 could inhibit plasmin-mediated
fibrinolysis (Table 1) [34]. This finding was consistent with
a report that IgG from patients with APS impaired the fibrin
dissolution with plasmin, and provided the potential
structural basis for the observation [35].

Intriguingly, the aforementioned aPL bound to plasmin
with the relative Kd values ranging from 1×10−6 to 6×
10−8M (Table 1) [34]. Of note, affinity-purified IgG anti-
β2GPI antibodies (from 5 patients with APS) bound to
β2GPI with the relative Kd values ranging from 3.4 to
7.2×10−6M [36]. Taken together, these data showed that
some IgG aPL in patients with APS bind to plasmin with
higher affinities than those to β2GPI, and suggested that

Table 1 Summary of binding and functional properties of eight monoclonal IgG antiphospholipid antibodies derived from two patients with
antiphospholipid syndrome

Antibodies IS1 IS2 IS3 IS4 IS6 CL1 CL15 CL24

Antigensa

CL/BS + + + + + + + +

Human β2GPI – − 10−6 + + + − +

Human thrombin − − 7×10−6 + + + 8×10−6 2×10−6

Human APC − − 4×10−6 + + + 2×10−6 +

Human plasmin − − 3×10−7 5×10−7 2×10−7 6×10−8 1×10−7 1×10−6

Human tPA − − 3×10−7 + 5×10−7 4×10−7 3×10−7 +

Human FIXa − − + + 8×10−7 + 2×10−6 5×10−6

Prothrombotic activities

Thrombusb

Size − 3+ + 3+ 2+ − 2+ 2+

Duration − 2+ 2+ + 3+ − + 3+

Functional activitiesc

Inhibit thrombin inactivation − − − − − − − +

Inhibit APC activity − − − − − − + −
Inhibit plasmin activity − − − − − − + −
Inhibit tPA activity − − − − − + + −
Inhibit FIXa inactivation − − − − + − + +

a Binding to cardiolipin (CL) in the presence of bovine serum (BS) and β2-glycoprotein I (β2GPI) is compiled from Zhao et al. [28] and Zhu et al.
[37]. Binding to thrombin, activated protein C (APC), plasmin, tissue plasminogen activator (tPA), and factor IXa (FIXa) are from Hwang et al.
[31, 33], Yang et al. [34], Lu et al. [38], and Yang et al. [50••], and are given in +, –, or Kd (if known).
b For prothrombotic activities, the relative activities of all aCL within each category are given. Original and more quantitative data are in Vega-
Ostertag et al. [29] and Pierangeli et al. [32].
c Functional activities are from Hwang et al. [31, 33], Yang et al. [34], Lu et al. [38], and Yang et al. [50••].
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plasmin may be the primary autoantigen that drives such
aPL in patients with APS. In support of this hypothesis,
recent studies have shown that plasmin immunization in
mice induces pathogenic aPL.

Certain aPL Bind to tPA and Decrease Plasmin
Activation

Based on the high affinity of aPL with plasmin, these
investigators switched their attention from thrombin to
plasmin and searched for the relevant serine protease that
was most homologous to plasmin, which led them to focus
on tPA. As predicted, all six plasmin-reactive aPL were
found to bind to tPA (Table 1) [37, 38]. Importantly, two
tPA-reactive aCL (CL1 and CL15) could inhibit tPA
activity in converting plasminogen to plasmin [38]. These
findings were consistent with reports that anti-tPA anti-
bodies were found in 15% of patients with APS and were
inversely correlated with the plasma tPA activity in patients,
and that anti-tPA IgG from two positive patients bound to
the enzymatic domain of tPA [39].

Crossreactive aPL Bind to the Enzymatic Domains
of Serine Proteases

Of the four serine protease that react with aPL, thrombin
contains only an enzymatic domain, whereas the other three
serine proteases contain additional domains, including the
epidermal growth factor (EGF) domain (in APC and tPA),
the kringle domain (in plasmin and tPA), and the
fibronectin domain (in tPA). Therefore, it is most likely
that the serine protease–reactive aPL bind to the enzymatic
domains common to all these target serine protease. To
prove this hypothesis experimentally, the CL15 monoclonal
antibody (mAb) was used to perform a crossinhibition
experiment with α-thrombin and tPA. It was shown that α-
thrombin could inhibit CL15 from binding to tPA (that
contains a fibronectin domain, an EGF domain, two kringle
domains, and an enzymatic domain) [38]. Therefore, it was
concluded that CL15 (and most likely other serine
protease–reactive aPL) bind to the enzymatic domains of
the target serine protease [38].

Certain aPL Recognize Conformational Epitopes
Shared by the Homologous Enzymatic Domains
of Several Serine Proteases and β2GPI

It is intriguing to note that, of the six serine protease–
reactive patient-derived IgG monoclonal aPL, five bind to
human β2GPI (Table 1), suggesting that some aPL in

patients with APS recognize certain antigenic epitopes
shared by the homologous enzymatic domains of the
aforementioned serine protease and β2GPI. To test this
hypothesis, four new IgG monoclonal aPL (including two
screened against human β2GPI, one against thrombin and
one against protein C) were generated from two other
patients with APS [40••]. Analyses of these monoclonal
aPL showed that both IgG anti-β2GPI mAbs (designated
B1 and B2) bound to thrombin, APC, and plasmin [40••].
On the other hand, one anti-thrombin mAb (T1) and one
anti-APC mAb (P1) also bound to β2GPI [40••]. Moreover,
the binding of the P1 mAb to human β2GPI was inhibited
by α-thrombin (the structurally simplest serine protease
with only an enzymatic domain) [40••]. Furthermore, all
four new monoclonal aPL displayed aCL activity, as
assayed for binding to cardiolipin in the presence bovine
serum that contained bovine β2GPI [40••]. Taken together,
these data demonstrated that certain aPL in patients with
APS recognize conformational epitopes shared by β2GPI
and the enzymatic domain of several regulatory serine
protease in hemostasis and fibrinolysis.

Plasmin Immunization in Mice Induce Pathogenic IgG
aPL

Given that serine protease–reactive aPL bind plasmin more
strongly (relative Kd values ranging from 1×10−6 to 6×
10−8M [34]) than the reported affinities of aPL to β2GPI, it
was suggested that plasmin may be the autoantigen that
drives such aPL. To determine whether plasmin may drive
some IgG aCL in patients with APS, mice were immunized
with human plasmin in complete Freund’s adjuvant and
examined for the presence of IgG antiplasmin antibodies
and IgG aCL. These experiments showed that plasmin
immunization induced high titers of IgG antiplasmin anti-
bodies in all mice, and that five of 10 (50%) immune sera
also displayed aCL activity [41•].

Subsequently, eight mAb were isolated from these
plasmin-immunized mice and studied. The results showed
that three of eight antiplasmin mAb (designated B12, E9,
and F10) displayed aCL activity [41•]. In addition, one of
these mAb (E9) bound to thrombin, and one other mAb
(C5) reacted with APC [41•]. These data showed that
plasmin could drive some IgG aCL, and that some plasmin-
driven antibodies could react with thrombin and APC, which
are homologous to plasmin in their enzymatic domains.

To determine the LA activity of the plasmin-induced
antibodies, all mAb were analyzed by the dilute Russell’s
viper venom time (dRVVT) test and the dRVVT-confirm
test according to Exner et al. [42]. The results showed that
the E9 mAb (with the strongest aCL activity) displayed LA
activity, prolonging the clotting time in the in vitro PL-
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restricted coagulation test by 20%. When this mAb was
subjected to the dRVVT confirmatory test, it remained
positive, with a dRVVT/dRVVT-confirm ratio of 1.26 [41•].

Thereafter, the pathogenic effects of two antiplasmin
mAb (E9 and C5) on pregnancy morbidity in mice were
studied. These mAb were chosen because the E9 mAb
displays both diagnostic aCL and LAC activity, whereas the
C5 mAb binds to APC, suggesting that it may mimic the
CL15 mAb in reducing activated protein C activity and
promoting thrombosis [32]. The results showed that the
fetal resorption rates in mice treated with E9 and C5 were
25.4 and 18.5%, respectively, compared with 11.2% in the
control mice treated with normal mouse IgG [41•].
Combined, these data provide further evidence that plasmin
may serve as a driving antigen for some pathogenic aPL.

Analyses of Recombinant Monoclonal aPL Reveal
that Thrombin Binding Best Predicts Prothrombotic
Potential of aPL

APS may occur either alone (ie, primary APS) or with other
autoimmune diseases, such as systemic lupus erythemato-
sus (SLE). About 30% to 40% of SLE patients have aPL,
but only about one third of these patients with aPL and SLE
will experience clinical manifestations of APS [3]. In
addition, the prevalence of aPL among young, healthy
control subjects has been shown to be 1.5% to 5% for both
aCL and LA, which increases with age [43]. The question
of whether individuals in both the SLE and general
population with aPL but no APS require primary prophy-
laxis with aspirin remains controversial [44]. Unfortunately,
current routine clinical aPL (aCL, anti-β2GPI, and LA)
assays do not allow accurate prediction of which patients
with aPL will develop APS. Therefore, it is critically
important to study whether other binding reactivities of aPL
better predict the pathogenic potentials of the detected aPL.

To address this question, Giles et al. [45] used an in vitro
expression system to produce a panel of human monoclonal
IgG aPL that were all based on IS4 (Table 1). These
recombinant mAb were engineered to have small differ-
ences in sequence between their antigen-binding sites
(known as the variable regions), which led to large changes
in their binding properties. Variant forms of whole IgG
were produced by site-directed mutagenesis in IS4 variable
region heavy-chain (VH) and variable region light-chain
sequence (VL) exchange. IS4VL was exchanged with
closely related human 2a2-derived VL sequences, from
B3 (a human antinucleosome antibody) and UK4 (a β2GPI-
independent aPL). In particular, altering one or more of four
arginine residues in IS4 VH and/or the paired VL had
dramatic effects on binding different antigens [45]. Recent-
ly, they selected five of these mAbs for further study on the
basis of their different patterns of strength and selectivity of
binding to different PL (including cardiolipin) and β2GPI
and correlated in vivo and in vitro biological properties

Table 2 Summary of binding properties and biological effects of five monoclonal IgG derived from native IS4 monoclonal antiphospholipid
antibody

Heavy chain Light chain CL bindinga β2GPI binding
a Thrombin bindinga Thrombus sizeb Leukocyte adherenceb

IS4VH IS4VL Strong Weak Strong 16c 8c

IS4VHi&ii IS4VL None None None 2.6 1.7

IS4VHi&ii B3VL Strong Weak Strong 22c 6c

IS4VH B3VL Strong Medium None 2.7 3

IS4VH UK4VL Weak None None 6.5 3.5

a The relative binding of each heavy-chain variable region (VH)/light-chain variable region (VL) sequence combination to cardiolipin (CL), β2-
glycoprotein I (β2GPI), and thrombin, and their biological effects on thrombus size and leukocyte adherence in vivo are from Giles et al. [45,
46••]. The identity of native heavy and light chains is clearly indicated. IS4VHi&ii contains two Arg to Ser replacements at positions 96 and 97
b Fold increase was calculated by dividing the median value of each group of animals/cells treated with monoclonal IgG by the median value of
corresponding animals/cells treated with monoclonal control IgG, which lacks cardiolipin and thrombin binding
c Statistically significant differences are indicated

Fig. 1 The target serine proteases in coagulation that are recognized
and affected by antiphospholipid antibodies (aPL). Green indicates
proteases; red indicates antithrombin (AT) and its irreversible
interaction; and blue indicates aPL and its target identification. APC
activated protein C, EPCR endothelial protein C receptor, F fibrin, PL
phospholipid, PT prothrombin, TF tissue factor, TM thrombomodulin,
tPA tissue plasminogen activator
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with their binding to cardiolipin, β2GPI, and thrombin
(Table 2). Intraperitoneal injection of these IgG into mice
subjected to a femoral vein pinch stimulus showed that only
those IgG (native IS4 and IS4VHi&ii/B3VL) which
showed strong binding to thrombin promoted in vivo
venous thrombosis and leukocyte adherence compared with
control IgG [46••]. In contrast, recombinant IS4VH/B3VL
(which differs from IS4VHi&ii/B3VL by only two arginine
to serine mutations) displayed strong cardiolipin and
moderate β2GPI binding with negligible binding to
thrombin did not significantly increase thrombus size in
treated mice compared with control human IgG. Therefore,
it is not just the strength of binding to cardiolipin that
controls the ability to enhance thrombus formation in this
panel of monoclonal aPL but selectivity of binding is also
important. In particular, binding to thrombin was most
closely associated with the ability of the monoclonal aPL to
cause thrombosis.

Certain aPL Bind to FIXa and Hinder
the Antithrombin Inactivation of FIXa

In addition to thrombin, antithrombin also binds to FIXa and
inactivates FIXa that is a key mediator of tissue factor–
induced coagulation (Fig. 1). Patients with high FIX levels
are associated with increased risk of venous and arterial
thromboembolism [47]. Therefore, FIXa is tightly regulated
by antithrombin in normal hemostasis. Inherited heterozy-
gous deficiency in antithrombin increases the risk of
thromboembolism by about fivefold and women with the
deficiency are at particularly high risk of abortion during
pregnancy [24, 48]. Hence, it is conceivable that interference
of antithrombin inactivation of FIXa may promote both
thrombosis and pregnancymorbidity in patients with the APS.

Interestingly, FIXa also belongs to the serine protease
family and its enzymatic domain is homologous to those
of thrombin [49]. Specially, at the protein level, the
catalytic domains of FIXa and thrombin share a similarity
of 52.7%, suggesting that some aPL in APS may bind to
FIXa and interpose antithrombin inactivation of FIXa.
Indeed, 10 of 12 patient-derived monoclonal IgG aPL
described previously with anti–serine protease reactivity
were found to react with FIXa. Furthermore, IgG anti-
FIXa antibodies in patients with APS were significantly
higher in 11 of 38 (28.9%) APS patients tested, compared
with 30 healthy controls using the mean + 3 SD of 30
normal controls as the cutoff [50••]. Importantly, four of
the 10 FIXa-reactive monoclonal aPL (including the B2
mAb generated against β 2GPI) significantly hindered
antithrombin inactivation of FIXa [50••]. More impor-
tantly, IgG from two positive plasma samples were found

to interfere with antithrombin inactivation of FIXa [50••].
Because FIXa is an upstream procoagulant factor, im-
paired antithrombin regulation of FIXa may contribute
more toward thrombosis than the dysregulation of the
downstream thrombin.

Conclusions

It is generally accepted that heterogeneous aPL bind to
cardiolipin in the presence of bovine serum and/or certain
plasma proteins, including β2GPI and prothrombin.
Recent accumulated studies have shown that some aPL
also bind to the homologous enzymatic domains of several
serine protease in hemostasis and fibrinolysis, including
thrombin, APC, plasmin, tPA, and FIXa (Fig. 1). Of these
aPL–serine protease interactions, some hinder inactivation
of the target serine protease (eg, FIXa and thrombin) by
antithrombin, whereas others directly inhibit the enzyme
activities of the target proteases in fibrinolysis, plasmin
activation, and inactivation of cofactors FVIIIa and FVa
(Fig. 1). Furthermore, anti-thrombin antibody reactivity
has been shown to most closely predict thrombogenicity
of monoclonal aPL in animal models. Consequently, such
aPL could promote thrombus formation at multiple points
in coagulation, and from both ends—by promoting clot
formation and inhibiting resolution of clots. In addition,
these findings reveal a novel class of autoantibodies that
recognize several members of an enzyme family instead of
a single autoantigen (eg, DNA for anti-DNA antibodies).
Surprisingly, certain aPL recognize conformation epitopes
shared by β2GPI and the homologous enzymatic domains of
the reactive serine protease. Of note, the prothrombotic IS2
mAb in Table 1 does not react with any serine protease, but
has been shown to induce expression of adhesion molecules
and promote in vivo leukocyte adhesion to endothelial cells
in microcirculation, suggesting that IS2 may promote
thrombosis by activating endothelial cells [32]. Further
research, however, is required to clarify the exact diagnostic
utility and pathogenic role of these anti–serine protease
antibodies.
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