
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11920-022-01319-2

EATING DISORDERS (J STEINGLASS, SECTION EDITOR)

Rethinking the Approach to Preclinical Models of Anorexia Nervosa

Marie François1 · Lori M. Zeltser1,2

Accepted: 1 December 2021 
© The Author(s) 2022

Abstract
Purpose of Review The goal of this review is to describe how emerging technological developments in pre-clinical animal 
research can be harnessed to accelerate research in anorexia nervosa (AN).
Recent Findings The activity-based anorexia (ABA) paradigm, the best characterized animal model of AN, combines restricted 
feeding, excessive exercise, and weight loss. A growing body of evidence supports the idea that pathophysiological weight loss 
in this model is due to cognitive inflexibility, a clinical feature of AN. Targeted manipulations that recapitulate brain changes 
reported in AN — hyperdopaminergia or hyperactivity of cortical inputs to the nucleus accumbens — exacerbate weight loss 
in the ABA paradigm, providing the first evidence of causality.
Summary The power of preclinical research lies in the ability to assess the consequences of targeted manipulations of 
neuronal circuits that have been implicated in clinical research. Additional paradigms are needed to capture other features 
of AN that are not seen in ABA.

Keywords Activity-based anorexia · Animal models · Anorexia nervosa · Cognitive inflexibility · Perseverative behavior · 
Neural circuits

Introduction

A suite of newly developed tools in pre-clinical (animal) 
models can help overcome several obstacles to understand-
ing brain mechanisms of anorexia nervosa (AN). Advances 
in current methods can characterize, map, and manipulate 
neural circuits with unprecedented cellular precision [1–3]. 
Application of these cutting-edge tools is leading to rapid 
advances in the understanding of many psychiatric disorders, 
such as schizophrenia and autism spectrum disorder [4]. To 
leverage these tools to study AN, relevant preclinical mod-
els are needed. Historically, animal models have attempted 
to recapitulate as many features of AN as possible. In this 
review, we use the best characterized preclinical model of 
AN, activity-based anorexia (ABA), to illustrate limitations 

in the traditional approach to animal models and to highlight 
emerging approaches that use the ABA model to identify 
circuits and molecular pathways responsible for discrete 
aspects of AN.

ABA Paradigm: Classical Approaches

In the ABA paradigm, rodents are provided with continuous 
access to a running wheel and are then exposed to time-
restricted feeding, such that access to food is confined to the 
first 1–2 h of the dark phase. Instead of eating during this 
limited feeding period, some rodents paradoxically choose 
to run; this leads to a precipitous decrease in body weight 
and decrease in survival over the next few days [5]. This 
relatively simple model captures features of AN, includ-
ing increased susceptibility in adolescence, physiological 
and hormone changes associated with weight loss, exces-
sive exercise, and caloric restriction (although it should be 
acknowledged that limited access to food is not the case in 
humans) [6]. Researchers have particularly touted the ABA 
as a powerful system to study the interaction between hyper-
activity, caloric restriction and weight loss that is observed 
in AN [7–10].
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Similar to clinical research, rodent studies compare 
ABA groups with unaffected “healthy comparison”  
groups. The comparison groups consist of ad libitum fed 
animals; a weight-recovered group is sometimes included 
as well. These studies demonstrate that, like in patients 
with AN, ABA rodents have decreased brain volume that 
is reversed by re-feeding [11–14, 15•]. Weight loss is  
also associated with increased markers of oxidative 
stress in the prefrontal cortex that is reversed by weight 
restoration [16]. The ABA model provided new insights 
into the impact of AN on the brain by identifying reductions 
in astrocyte number and proliferation in the cerebral cortex  
without a change in neuronal number [15•]. This find-
ing challenges the existing assumption that deficits in the 
grey matter and white matter of patients with AN stemmed  
from decreased neurogenesis [17] and introduces a new  
potential mechanistic hypothesis involving a role for astrocytes 
in AN. Animal models, including ABA, have the potential  
to provide ways of distinguishing components of illness 
and differential brain effects. For example, by including 
control groups that may disentangle effects of exercise and  
caloric restriction on the brain.

A control group can be exposed to exercise alone, without 
weight loss, or to restricted feeding only, which produces 
the same amount of weight loss, but with less associated 
mortality [18, 19, 20•]. Comparisons between mice exposed 
to restricted feeding only vs. the ABA paradigm reveal  
that patterns of neuronal activation in the hypothalamus are 
largely driven by restricted feeding [21, 22]. While the inclu-
sion of additional control groups is very powerful, it is also 
laborious.

Another strategy involves exposing a large cohort of ani-
mals through the ABA paradigm and then comparing the 
group that develops ABA (vulnerable) versus the group 
that does not (resilient). Vulnerable mice rapidly lose body 
weight within the first few days, while resilient mice adapt to 
an initial period of weight loss and maintain a stable weight 
[20•, 23]. Because the animals experience the same exper-
imental conditions, it is easier to identify factors driving 
vulnerability. Some groups have shown that baseline run-
ning activity predicts susceptibility to ABA [24–26, 27••],  
but translating this observation to human behavior and phys-
iology is not straightforward. Rodents adapt to a schedule 
of restricted feeding by increasing their locomotor activity 
immediately before access to food is expected [28]. This 
phenomenon, called “food anticipatory behavior,” reflects an 
evolutionarily advantageous adaptation to increase motiva-
tion to seek food when it is available in limited supplies [29]. 
Thus, food anticipatory behavior promotes caloric intake 
under restricted access paradigms and is associated with 
resilience to the ABA [20•]. On the other hand, some have 
posited that excessive running in the ABA model reflects a 
pathophysiological expansion of food anticipatory behavior 

[30]. Greater resolution in activity measurements is needed 
to resolve this issue.

Changes in synaptic transmission in the hippocampus  
are associated with vulnerability to ABA [31]. For  
example, there is a strong negative correlation between hip-
pocampal expression of the glutamate transporter GLT1 and 
running wheel activity and weight loss in the ABA model 
[32•]. Loss of GLT1 function is sufficient to enhance wheel 
running activity and repetitive behavior [33••], consistent 
with the idea that the resulting increase in glutamate trans-
mission promotes ABA vulnerability. At the same time, the 
two primary manipulations in the ABA model, voluntary 
exercise and caloric restriction, are associated with increases 
in hippocampal GLT1 expression and glutamate uptake that 
are predicted to decrease glutamate transmission [34, 35]. 
Thus, vulnerability to ABA could reflect low baseline lev-
els of GLT1 and/or the failure to appropriately upregulate 
its expression in response to caloric restriction or activity. 
These animal models can identify behaviors, physiological 
adaptations, or biomarkers of susceptibility.

ABA Paradigm: Moving Beyond Correlation 
to Causation

New powerful techniques can be used to physically target a  
specific brain region, and genetic tools can target a specific 
neuronal population within that region. These techniques  
can be used to replicate neuronal changes that have been 
observed in neuroimaging studies in patients with AN. 
For example, increased binding to the D2/D3 dopamine 
receptor (D2R/D3R) is observed in the ventral striatum 
of women who recovered from AN [36]. In animals, this 
finding is mimicked by overexpression of the D2R auto-
receptor exclusively in the nucleus accumbens. This tar-
geted manipulation produces localized hyperdopamin-
ergia [37, 38] and accelerates weight loss in the ABA  
paradigm in females, but not in males [39••]. These findings  
are consistent with reports that hyperdopaminergia produced 
by genetic reductions in dopamine transporter expression 
increases susceptibility to the ABA paradigm in female mice 
[20•]. Understanding how D2R circuits influence metabolic 
adaptation to restricted feeding could provide novel insights 
into the mechanism underlying sex differences in suscepti-
bility to AN [40, 41]. Moreover, further characterization of 
this overexpression model using other behavioral and physi-
ological assays can help to identify additional features of 
AN that might be caused by increased D2R in the ventral  
striatum.

Neural circuits can also be manipulated with emerging 
neuroscience techniques. Pathway specific “chemogenetic” 
tools have yielded a particularly compelling experimental 
story relevant for AN [27••]. Chemogenetic tools are used 
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to modulate activity of projections from the prefrontal cor-
tex to the nucleus accumbens. This circuit was identified in 
human neuroimaging studies to show abnormal connectivity 
in acute AN and after weight restoration [42]. Stimulation of 
this circuit increases perseverative wheel running behavior 
and exacerbates weight loss [27••]. Conversely, inhibition of 
this pathway improves flexibility during early reversal learn-
ing by reducing perseverative responding and promotes food 
intake [27••]. This is consistent with the literature show-
ing that this circuit modulates set shifting in rodents [43, 
44]. Cognitive inflexibility is also seen in patients with AN 
[45–47] and in rodents in the ABA paradigm [48].

These observations raise the possibility that the ABA 
model captures a failure to adapt to restricted access to food 
in the face of preservative running behavior. In support of 
this idea, acclimation to restricted feeding before provid-
ing access to the running wheel suppresses hyperactivity 
in the ABA paradigm [19]. Additionally, the excessive run-
ning and weight loss phenotypes of the ABA model are no 
longer observed when the total time with access to food is 
distributed across several shorter time periods (four 15-min 
sessions or two 30-min sessions vs. one 1-h session) [49]. 
Since humans spread their daily food intake across multiple 
meals, studies of circuits regulating feeding behavior per 
se in the ABA model may not be translationally relevant. 
On the other hand, the perseverative running could reflect a 
broader pattern of repetitive behavior, as mice exposed to the 
ABA paradigm exhibit other perseverative behaviors, such 
as increased marble burying as well [50], the most reliable 
assay to measure perseverative behavior in rodents [51–53].

The ABA paradigm  has been criticized for its failure to 
recapitulate aspects of AN such as sex differences, genetic 
susceptibility, anxiety, social phobias, harm avoidance and 
fear, and avoidance of dietary fat [6]. It may be that narrow-
ing the scope of what ABA is modeling can be viewed as 
a strength, because it accelerates direct comparisons with 
observations in humans. Recapitulation of the link between 
D2R overexpression and hyperactivity of prefrontal cortical 
to nucleus accumbens connections and cognitive inflexibility 
in the ABA model [27••, 39••] opens the door to discover 
the molecular pathways underlying this key feature of AN 
[45–47]. If the ABA paradigm does, in fact, primarily cap-
ture cognitive inflexibility and perseverative behavior, cir-
cuits identified in this model could contribute to both AN 
and obsessive–compulsive disorder (OCD) [54, 55]. In sup-
port of this idea, compulsivity contributes to the variance in 
eating disorders and OCD and is associated with gray matter 
volume in the orbitofrontal cortex, ventral striatum, and dor-
solateral prefrontal cortex [56]. Neural circuits and molecu-
lar pathways uncovered in mouse models could lead to the 
identification of novel transdiagnostic therapeutic targets.

This review focuses on recent evidence that the ABA 
paradigm captures both behavioral and neuronal signatures 

associated with cognitive inflexibility and preservative 
behaviors observed in AN. This does not exclude the possi-
bility that it can also be used to model metabolic [57–59] or 
psychological [60–63] adaptations to chronic food restriction 
and weight loss that promote susceptibility to AN [64–67]. 
The studies highlighted here provide a roadmap for leverag-
ing the current neuroscience toolbox to  demonstrate con-
struct validity in animal  models of AN.

Conclusions

To date, the goal of preclinical studies has been to develop 
a model that recapitulates as many of the features of AN 
as possible. While additional control groups in rodents can 
be used to parse causative factors from secondary conse-
quences of AN, in the end, the sheer complexity of these 
paradigms makes these analyses extremely expensive and 
tedious. The power of preclinical research lies in the ability 
to assess the consequences of targeted manipulations of neu-
ronal circuits that have been implicated in clinical research. 
Therefore, the primary obstacle to preclinical studies of AN 
is not the lack of a unitary model that fully recapitulates 
the disease in humans, but rather the absence of comple-
mentary models that capture other features of AN that are 
not seen in ABA. Better communication between preclinical 
and clinical researchers is needed to develop translationally 
relevant paradigms that can be used in cross-species studies 
to examine how changes in specific brain circuits influence 
susceptibility to AN.
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