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Abstract
Purpose of Review Abnormal interoception has been consistently observed across eating disorders despite limited inclusion 
in diagnostic conceptualization. Using the alimentary tract as well as recent developments in interoceptive neuroscience 
and predictive processing as a guide, the current review summarizes evidence of gastrointestinal interoceptive dysfunction 
in eating disorders.
Recent Findings Eating is a complex process that begins well before and ends well after food consumption. Abnormal predic-
tion and prediction-error signals may occur at any stage, resulting in aberrant gastrointestinal interoception and dysregulated 
gut sensations in eating disorders. Several interoceptive technologies have recently become available that can be paired with 
computational modeling and clinical interventions to yield new insights into eating disorder pathophysiology.
Summary Illuminating the neurobiology of gastrointestinal interoception in eating disorders requires a new generation of 
studies combining experimental probes of gut physiology with computational modeling. The application of such techniques 
within clinical trials frameworks may yield new tools and treatments with transdiagnostic relevance.

Keywords Anorexia nervosa · Bulimia nervosa · Binge-eating disorder · Avoidant/restrictive food intake disorder · 
Interoceptive awareness · Digestion

Introduction

Eating disorders are psychiatric conditions characterized by 
aberrant eating and compensatory behavior patterns that are 
associated with severe medical complications, psychological 
comorbidities, and increased mortality [1]. Neurobiologi-
cal models of eating disorders commonly emphasize the 
role of interactions among psychological traits and various 

cognitive functions (e.g., cognitive control, habit-learning), 
value processing (e.g., reward learning), and affective func-
tioning (e.g., fear learning/generalization) [2–6]. Although 
interoceptive signaling is often linked with these processes, 
less attention is paid to the role of interoception.

The current review critically re-evaluates the role of 
interoception in eating disorders, with a focus on gastroin-
testinal interoception. It is organized around the potential 
points of altered interoception throughout the gastrointesti-
nal tract and considers the associated implications for eating 
disorders.1 While prior reviews have touched on the role 
of interoception in eating disorders [7–9], gastrointestinal 
symptoms [10, 11], or related processes such as hunger/thirst 
[12], here we emphasize the importance of understanding 
gastrointestinal interoception through the lens of predic-
tive processing, whereby the nervous system is engaged in 
predicting upcoming states in relation to current states, and 
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/ Published online: 21 January 2022

Current Psychiatry Reports (2022) 24:47–60

http://crossmark.crossref.org/dialog/?doi=10.1007/s11920-022-01318-3&domain=pdf


1 3

refining these predictions via error signaling. Finally, we 
highlight several methodological developments relevant to 
the study of gastrointestinal interoception and discuss their 
implications for advancing the clinical understanding and 
treatment of eating disorders.

Interoception Overview

Interoception refers to the process by which the nervous 
system senses, interprets, and integrates signals originating 
from within the body, providing a moment-by-moment map-
ping of the body’s internal landscape across conscious and 
unconscious levels [13]. Interoception has traditionally been 
considered to be a one-way street in which “bottom-up” sig-
nals traveling from the body to the brain cause sensation and 
elicit “top-down” regulatory responses when bodily homeo-
stasis is disrupted [14••]. More recently, interoception has 
been adopted into the conceptual framework of Bayesian 
inference (a method of statistical inference in which new 
observations are used to continuously update or infer the sta-
tistical probability that a hypothesis/outcome may be true), 
based on the premise that afferent sensory input to the brain 
is constantly shaped and modified by the individual’s expec-
tations [15–18]. Thus, interoception can be reconceptualized 
as a bidirectional process between the brain and the body, 
with feedback and feedforward loops that constantly update 
an internal model aimed at predicting and regulating future 
states of the body [19••]. Despite these theoretical advances 
and evidence supporting the idea that the brain and the body 
cannot be fully understood when studied separately, most 
explanatory neuroscientific approaches attempting to under-
stand cognitive, emotional, and behavioral functioning in 
eating disorders have not integrated these two dimensions.

Neurobiology of Interoception

The brain sits at the interface between the external world, 
which it samples through the exteroceptive senses, and the 
inner world of the body, which it accesses through intero-
ceptive sensory channels. Interoceptive brain regions play 
primary roles in directly mapping the autonomic, chemosen-
sory, endocrine, and immune systems, which relay infor-
mation through peripheral nerves and direct neurochemical 
interfaces to the brainstem, hypothalamus, thalamus, and 
ultimately into cortical sectors including principally the 
insular and somatosensory cortices (for a detailed review see 
[14••]). The processing of information across these chan-
nels occurs in a hierarchical fashion, with multiple feedback 
loops starting in the autonomic nervous system and lower 
brainstem [20], providing a scaffold to delineate peripheral 
from central interoceptive dysfunction.

Perceptual Inference and Predictive 
Processing

While distinct from interoception, perceptual inference is 
an overlapping construct referring to the process by which 
a person generates beliefs or explanations about the causes 
and effects of events occurring in the world [21]. Percep-
tual inferences are strongly influenced by expectations. 
They may be explicit or implicit and can rapidly change 
depending on the environmental context. Eating disorders 
are conditions that can be characterized by erroneous per-
ceptual inferences—about appetitive, cognitive, sensory, 
affective, and interoceptive phenomena. Because they 
reflect beliefs, it is natural that these inferences can form 
the basis of subsequent disorder-specific behaviors (e.g., 
restrictive eating, binge eating, or purging).

Computational neuroscience has provided mechanis-
tic insights into the underpinnings of causal inference 
in the nervous system. In predictive processing models 
[22], neurons transmitting predictions about sensory states 
communicate with neurons detecting deviations from those 
predictions (so-called “prediction errors”) to develop an 
explanation for the perceptual information received via a 
“generative model” [23]. Over time, when the observed 
information deviates from what is predicted, the genera-
tive model is updated through learning, and thus percep-
tion emerges from processing the external or internal 
world within the context of a prior model. In addition, 
the metacognitive evaluation of perceptual content plays a 
role in generating awareness states [24], and it is conceiv-
able that abnormalities in the neural circuitry underlying 
metacognition (i.e., the awareness and understanding of 
one’s own thought processes) underpin aspects of eating 
disorder symptomatology [25], particularly in relation to 
interoceptive signaling.

A Call to Reorient Interoceptive 
Investigations of Eating Disorders

Despite an early physiological focus on gut processing 
[26–33], progress in understanding the links between 
interoception and eating pathology has been limited by a 
predominant and selective reliance on self-report scales 
(see [34] and supplemental discussion in [13]). No experi-
mental studies of interoception in eating disorders have 
utilized model-based analyses, which could formally test 
for altered predictive processing. Additionally, most exist-
ing studies focus narrowly on one feature (e.g., interocep-
tive accuracy) or one sensory channel (e.g., perception 
of heartbeats), ignoring the multifaceted interoceptive 
processes that may impact individuals with eating pathol-
ogy. As mounting evidence suggests that individuals with 
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eating disorders demonstrate maladaptive responses to 
food and eating-related sensations [35–37], new studies 
focused on gastrointestinal interoception are warranted. 
Such work would clarify associations of the neural cir-
cuitry central to the representation of gastrointestinal 
system with the affective and behavioral consequences of 
alterations within this system.

Current Evidence of Gastrointestinal 
Dysfunction in Eating Disorders

Individuals with anorexia nervosa (AN) show an extreme 
ability to voluntarily ignore hunger/thirst signals to restrict 
caloric intake. This prolonged, severe food restriction, in 
turn, impacts the state of the gastrointestinal tract [38]. In 
clinical settings, patients with AN commonly report gas-
trointestinal complaints such as exaggerated fullness in 
response to small meals (i.e., postprandial fullness), early 
satiety, and abdominal pain [39•]. They also report bowel 
and bladder symptoms outside of mealtimes, such as full-
ness, bloating, and constipation [40–42], and frequently 
exhibit gastrointestinal disorders [43] as well as functional 
gastrointestinal disorders [44]. The physiology underlying 
these abnormal perceptions has not been examined exten-
sively in laboratory settings. Most available studies have 
used naturalistic designs following inpatients during the 
refeeding process. For example, within inpatient settings, 
individuals with AN report premature fullness after eating 
small amounts of food [45–47]. Fructose-sorbitol bolus 
ingestion disproportionately provokes gastrointestinal symp-
toms [48], further suggesting a heightened visceral sensitiv-
ity in acutely ill inpatients. After short-term refeeding to 
promote weight gain and restore homeostatic balance to the 
gut, persons with AN continue to report exaggerated full-
ness [47], although to a somewhat lower extent [46]. These 
symptoms decrease substantially in the 6 months follow-
ing inpatient treatment [49], raising the possibility that they 
reflect an indicator of successful treatment response.

Individuals with binge-eating disorder (BED) and bulimia 
nervosa (BN) engage in recurrent cycles of food overcon-
sumption, and those with BN also engage in compensatory 
behaviors (e.g., restriction, self-induced vomiting, laxative 
misuse, excessive exercise). These behaviors influence and 
may be perpetuated by alterations in the gastrointestinal 
tract. Gastrointestinal complaints including bloating, nau-
sea, and constipation are also common in BN and improve 
with treatment [50]. Childhood onset of gastrointesti-
nal complaints is associated with earlier onset of bulimic 
symptoms[51]; however, it remains unclear whether gastro-
intestinal alterations precede or follow the development of 
binge eating and purging behaviors for most individuals. 
More laboratory studies have focused on the physiological 

underpinnings of these symptoms and characteristic behav-
iors in BN and BED than in AN. Results indicate distur-
bances in the perception of satiety [52] and reduced sensitiv-
ity to gastric distension [53] in BN and in BED [54•], which 
are associated with altered gastric motor function [54•] and 
abnormal gut hormone release (e.g., cholecystokinin [55]).

Finally, it has been noted that those with avoidant/restric-
tive food intake disorder (ARFID) may demonstrate elevated 
sensitivity in response to gastrointestinal symptoms; how-
ever, the extent to which heightened gastrointestinal sensi-
tivity is driven by heightened sensory input from peripheral 
cues, or by heightened central sensory processes is currently 
unknown [11]. More work in this area is needed.

Methodological Challenges and Solutions 
to Studying Gastrointestinal Interoception

Most attempts to examine the conscious perception of gas-
trointestinal sensations have used invasive approaches. These 
involve insertion of inflatable balloons into the esophagus 
[56–58], stomach [59], colon [60], or rectum [61–64], or 
direct gastric perfusion with chemical irritants [65]. While 
such mechanosensory approaches can be used to engage 
putative interoceptive cortical neural circuitry (i.e., insular 
and somatosensory cortices) [66–68], the invasiveness of 
these procedures is limiting, and they may provoke addi-
tional, confounding distress among eating disorder patients 
who have high levels of body image concerns.

Less invasive approaches exist but these, too, have certain 
constraints. For example, a water loading test involves ad-
libitum ingestion of water until reaching a feeling of fullness 
[69]. This procedure can only be repeated once per testing 
session, hindering the ability to computationally model the 
perceptual processes underlying gastrointestinal sensation, 
and the protocol provides no information related to the pro-
cessing of solid food. Other approaches have involved deliv-
ery of small amounts of tastants directly onto the tongue, 
such as sucrose solution [70], or milkshakes [71]. These 
approaches have contributed greatly to the understanding of 
the neurobiology of taste in eating disorders. However, they 
purposefully do not evoke the perceptual processes occur-
ring in the gut after swallowing food, which represent most 
of the postprandial state.

Fortunately, recent developments provide a diversity of 
pharmacological and non-pharmacological approaches that 
are compatible with both experimental and observational 
methods for studying gastrointestinal interoception in eat-
ing disorders (Table 1). For example, we recently developed 
a minimally invasive probe for stimulating mechanosen-
sory sensations in the stomach, via ingestion of a vibrat-
ing capsule [72]. Using a Bayesian computational mode-
ling approach based on active inference, we could identify 
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individual differences the evolution of prior beliefs during 
the task and their interactions with internal estimates of the 
reliability of gastrointestinal signals [73••]. Beyond the 
advantages of a minimally invasive method, notable benefits 
include the ability to administer repeated stimulations, thus 
facilitating sophisticated analyses. Several other commonly 
available approaches are relevant. Hydrogel capsules are a 
minimally invasive means capable of stimulating fullness 
sensations [74•]; the absence of caloric input associated 
with this approach allows for more naturalistic experiments 
separating the mechanosensory impact of gut distension 
from the caloric contents of a meal. Ingestible capsules for 
passive sensing of gut pressure, pH and temperature [75], 
and high-density electrogastrogram (EGG) arrays [76•] have 
been developed, which could facilitate laboratory as well as  
ambulatory (i.e., real-world) assessments of gut physiology 
in eating disorders across different stages of illness recovery.  
The discovery of a cortical “gastric network” in the brain 
using simultaneous analysis of resting EGG and brain fMRI 
recordings [77•] lays the groundwork for experimental stud- 
ies testing the state-specific role of this network as a home-
ostatic regulator of food intake and of motivationally rel-
evant hunger and satiety cues [78]. Glucagon-like peptide-1 
(GLP1) receptor stimulation represents a noteworthy target 
for potential food craving modulation [79•] and is currently 

employed as an effective weight loss intervention in over-
weight or obese individuals [80]. A judicious and time- 
limited application of this approach as a research assessment  
tool in carefully screened eating disordered individuals may 
be warranted. For example, investigating the role of GLP1 
agonism in modulating food craving and associated intero-
ceptive neural circuitry in overweight individuals with BED 
would seem to be an appropriate approach, whereas similar 
studies in individuals with AN (or those engaging in pro-
longed fasting) might potentially increase harm by reinforc-
ing food avoidance and propagating weight reduction. The 
motilin receptor agonist erythromycin has been shown to 
induce gastric contractions, hunger signals, and increased 
food intake [81], suggesting potential utility as an experi-
mental probe of susceptibility to binge-eating behavior. The 
blockade of oral sucrose receptors [82] allows an opportu- 
nity to directly examine the influence of sucrose detecting cells  
in the stomach [83] in humans, particularly in relation to 
food cue processing in eating disorders. Finally, acute fast-
ing represents a potent means of naturalistically modulating 
the strength of neurochemical hunger signaling with direct 
impacts on interoceptive neurocircuity [84••]. Collectively, 
these methods represent a diverse array of available tools 
for assessing the predictive value of individual differences 
in gastrointestinal interoception in eating disorders.

Table 1  Recent approaches relevant for investigating gastrointestinal interoception in eating disorders

Approach Intended effect Sensory transduction mechanism

Vibrating capsule (Vibrant Inc.) [72, 73••] Provide mechanosensory stimulation to gut 
afferents, to measure conscious sensation

Unknown; likely stimulates mechanoreceptors 
(e.g., voltage-gated, PIEZOs)

Gelesis 100 hydrogel capsule (Gelesis Inc.) 
[74•]

Increase volume and elasticity of the stomach 
and small intestine contents, to generate the 
feeling of fullness

Unknown; non-aggregating cross-linked 
cellulose and citric acid particles increase 
in volume after absorbing water, creating a 
nearby mass effect

SmartPill™ Motility testing system (Medtronic 
Inc.) [75]

Measure pressure, pH and temperature 
throughout the GI tract, providing informa-
tion on gastric emptying and GI transit time

None

High-density electrogastrogram [76•] Estimate direction and speed of gastric slow 
waves following caloric stimulation

None

Gut-brain synchrony via resting state EGG-
fMRI [77•]

Identify the “gastric network” defined by cor-
related activity between stomach and brain

Unknown

Semaglutide (Wegovy™) [79•] Chronic weight management for overweight or 
obese individuals

Unknown; glucagon-like peptide-1 (GLP1) 
receptor agonist resulting in lower blood 
glucose levels. GLP1 receptors are located in 
the brain in interoception- and reward-rele-
vant regions including the nucleus accum-
bens, ventral tegmental area, hypothalamus, 
and brainstem (nucleus tractus solitarius; 
NTS)

Erythromycin [81] Induce gastric contractions, hunger signals, 
and food intake

Motilin receptor agonist

Gymnema sylvestre [82] (Sugarbreak Resist™ 
Strips/Spray)

Eliminate sweet taste perception Block sucrose receptors in mouth or block 
intestinal sucrose absorption

16-h fast [84••] Remove stomach contents and elicit hunger 
hormonal signaling cascade

Modulate food reward-motivation neurocir-
cuitry
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From Expectation to Ingestion to Digestion: 
a Predictive Processing Account 
of Gastrointestinal Interoception

Food consumption involves a series of anticipatory pro- 
cessing steps beginning with foraging during the cephalic 
phase followed by commencement of the ingestive process  
(Fig.  1). The cephalic phase includes processing via 
exteroceptive senses such as viewing and smelling. The 
motoric act of eating starts with tasting and chewing and  
is demarcated by swallowing, a key volitional checkpoint 
during which the ingested stimulus acquires the character-
istics of an endogenous sensory signal [14••]. Subsequent 
steps with key relevance to interoception include esophageal 
transit, gastric filling and emptying, small intestine filling 
and emptying, and finally, colorectal filling and emptying. 
We suggest that abnormal interoception in eating disorders 
can manifest at each step via dysregulated bottom-up and 
top-down neural circuit interactions influenced by innate and 
developmental predisposing factors and various cognitive, 
valuative, and affective functions. In the following sections, 

we outline potential points throughout the alimentary tract 
for assessment and modulation of gastrointestinal interocep-
tion that may inform future research questions (Table 2) and, 
potentially, clinical applications targeting gastrointestinal 
interoceptive dysfunction in eating disorders.

Procuring and Preparing

Exposure to food cues elicits cephalic phase responses 
(CPRs; i.e., physiological changes which prepare the body 
for digestion) [85]. Because foraging relies on the formula-
tion of a hunger concept and an ensuing set of behaviors 
focused on obtaining food, from a predictive processing 
standpoint, we would argue that CPRs occur during the act 
of shopping, cooking, or simply ordering at a restaurant, and 
come with perceptible sensations. This stage thus requires 
the sensory predictive processing of hunger or desire and a 
future-oriented perspective that triggers a series of decision-
making steps and ensuing actions. It is furthest from the 
receipt of the expected sensory signals that come from eat-
ing, and given the energy expenditures involved, requires 

Fig. 1  Phases of food consumption from foraging to expulsion. Start-
ing with the cephalic phase, each phase involves predictive process-
ing and likely has a dedicated gastrointestinal interoceptive neurocir-

cuitry. Studies of interoception in eating disorders have preferentially 
focused on the cephalic rather than the ingestive phase of the diges-
tive process. See text for details
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the most in terms of motivation to maintain the necessary 
behaviors. The role of reward learning mechanisms has clear 
applications to this stage [86], and there is some evidence 
that individuals with eating disorders show goal-directed 
impairments in food and non-food related contexts [87, 88]. 
Yet, no studies have addressed the role of gastrointestinal 
interoception at this stage of food processing.

Viewing and Smelling

Foraging is terminated by the arrival of food, when process-
ing of the associated visual and olfactory sensory signals 
ensues. This cephalic stage of processing has been exten-
sively studied in eating disorders, and abundant evidence 
indicates aberrant activation in interoceptive neural circuits 
in response to food images [36]. For example, individuals 
with AN show atypical relationships between stomach sen-
sations and neural responses to food images in limbic and 
ventral striatal brain regions, both of which comprise key 
components of neurally-mediated interoceptive pathways 
that connect with the insular cortex [89]. Studies consistently 
report altered insula activation in response to food images in 
AN and BN, but the direction of these alterations has been 
inconsistent. As such, abnormal interoceptive processing in 
response to visual food cues may play a role in both disor-
ders, but precisely how this processing is altered and how it 
might contribute to disordered eating remains unclear.

Though less studied than visual cues, responses to smells 
may be particularly important for gastrointestinal predic-
tive processing. For example, parotid salivary secretion (the 
main component of appetitive salivary anticipation) depends 
upon exposure to olfactory signals [90], and olfactomotor 
responses to odors vary according to perceptions of pleasant-
ness [91]. Hedonic ratings of food smells are associatively 
learned and depend upon the food- and hunger-related con-
text [92]. Evidence that individuals with eating disorders 
show a heightened sensitivity to smells [93, 94] raises the 
possibility that interoceptive processing abnormalities trig-
gered by olfactory stimulation play a reinforcing role.

Tasting and Chewing

There is a longstanding debate regarding the extent to which 
taste is an interoceptive experience. Neurobiological argu-
ments that taste is an interoceptive sense suggest that there 
are shared neural correlates of gustatory/taste experiences 
and interoceptive experiences, for example, within overlap-
ping regions of the insula [95]. Taste signals are conveyed 
by similar channels as other interoceptive signals, and it has 
been suggested that defining gustatory neural representations  
could inform the understanding of interoceptive signals that 
are difficult to consciously access [96]. Conversely, studies 
of consummatory food reward suggest that gustatory sig-
nals may be more accurately conceptualized as exterocep-
tive [97, 98]. Debating the interoceptive versus exteroceptive 
categorization of taste perception is well outside the scope of 
the current review. However, recent studies have found that 
orosensory (e.g., taste) stimulation elicits overlapping and 
distinct neural activation patterns with interoceptive signals 
associated with gastric distension [99••]. As such, further 
investigation regarding the extent to which taste might rep-
resent a process that contributes to or maintains eating dis-
order psychopathology seems warranted.

In recent years, taste perception has garnered interest as 
a potential mechanism underlying food choice and eating 
behavior in individuals with eating disorders [100, 101]. 
Neuroimaging studies have shown anatomical alterations 
in women with eating disorders in brain regions centrally 
involved in taste and its valuation (e.g., medial orbito-
frontal cortex, insula, striatum) [102]. Prior findings also 
suggest that women with acute restricting-type AN [103] 
and those recovered from AN or BN show aberrant ante-
rior insula responses to sucralose [104, 105]. Women with 
restricting-type AN display a reduced ability to discrimi-
nate between sucrose, artificial saliva, or no solution, com-
pared to healthy women and to women recovered from AN 
[106]. Additional findings suggest that individuals across 
the spectrum of eating disorders demonstrate abnormal ven-
tral striatal-hypothalamic activation during a sucrose taste 

Table 2  Future research questions

•  What is the relationship between microbiome-host interactions and the trafficking of interoceptive signals in the gut? How does this crosstalk 
influence eating disorder expression?

•  How do metabolic-, energetic-, and exercise-related genetic markers for eating disorders influence the neural circuits of interoception?
•  How do gut predictions and prediction errors at each stage of food consumption influence the development and/or maintenance of eating 

disorder symptoms? Do increased gut prediction error signals promote restriction, while decreased gut prediction error signals promote binge 
eating and purging?

•  How do the neural circuits of gastrointestinal interoception interact with those implicated in reward, emotion regulation, habitual behav-
ior, and cognitive control?

•  To what extent does the neurocircuitry underlying eating disorders overlap with that of functional gastrointestinal disorders?
•  Which interoceptive targets within the gastrointestinal system show the most promise for early identification, prevention, or treatment of eat-

ing disorders?

52 Current Psychiatry Reports (2022) 24:47–60



1 3

classical conditioning paradigm, with elevated prediction-
error responses (violations of learned associations between 
conditioned visual and unconditioned taste stimuli) in AN 
[107] and reduced prediction-error responses in BN [108]. 
Altogether, although the taste-interoception debate has yet to 
be settled, taste-related deficits clearly play a role in eating 
disorder pathology.

Chewing is an understudied area of eating disorders, 
despite the fact that chewing and spitting behaviors are 
observed frequently in adolescent females [109]. Orosensory  
stimulation may be reinforcing in some individuals with 
eating disorders, as evidenced by the fact that social stress 
increases chewing rates in AN as compared to healthy indi-
viduals [110], and by modified sham feeding observations 
that women with BN sip more liquids [111] and women with 
AN sip less liquids [112] (independent of swallowing) than 
healthy individuals. More laboratory studies linking eating 
behaviors with gastrointestinal interoception are needed.

Swallowing and Esophageal Transit

Deglutition, the action or process of swallowing, is a volun-
tary behavior that involves the triggering of a coordinated 
set of reflexes between the pharynx and upper and lower  
esophageal sphincter, which work together to transport food 
from the mouth through the esophagus. Under typical circum- 
stances, the ingestion of food or liquid via swallowing marks 
a decision to move nutrients into the body as a metabolic 
means of maintaining homeostasis and survival, leading to 
a reflexive opening of the gastroesophageal sphincter for 
approximately 8 s [113]. Swallowing difficulties have been 
linked to posterior insular cortex stimulation [114], suggest-
ing it may be a key node in the cortical neurocircuitry of this 
visceromotor action. We have previously argued that swal-
lowing is a decisional checkpoint that serves as a pragmatic 
demarcation of the transition from object to interoceptive 
signal within the gastrointestinal system [14••].

Physical complications or disorders that interfere with 
this process can perturb the system and lead to distress, 
anxiety, and eating avoidance. Oropharyngeal dysphagia 
refers to difficulty with swallowing or transporting a food 
or liquid bolus from the mouth into the esophagus. Although 
commonly observed across eating disorders [115–117] dys-
phagia has been infrequently studied in relation to eating 
pathology. In ARFID, emerging evidence suggests that food 
avoidance and restriction develops in the context of medi-
cal conditions characterized by dysphagia or related fears 
of aversive outcomes associated with swallowing [118]. In 
AN, some individuals develop symptoms of dysphagia; this 
can be accompanied by the sensation of food getting stuck 
in the esophagus. For example, one case series suggested 
that dysphagia may occur in severe AN and can be treated 
using neuromuscular electrical stimulation in conjunction 

with swallowing therapy [119]. However, to date, no stud-
ies have examined the neurophysiological underpinnings of 
deglutition in eating disorders, suggesting further research 
in this area is needed.

Swallow studies provide a validated means of clinically 
assessing characteristics of swallowing, including oral sen-
sation, chewing, salivation, and oromuscular coordination 
of food bolus transit. These tests use a radiopaque artificial 
food bolus for a contrast-enhanced fluoroscopic evaluation 
of swallowing [120]. They have revealed some evidence of 
abnormal swallowing sensations in AN [121] and could be 
used more broadly to interrogate esophageal interoception 
in eating disorders. Most studies of individuals with purging 
have focused on the reversal of the sensation of fullness in 
the stomach. However, assessing relationships among esoph-
ageal interoception, dysphagia, and self-induced vomiting 
behaviors (i.e., systematic reversals of esophageal transit) 
may pinpoint new mechanistic targets for treatment. In addi-
tion, many patients with BN report symptoms of esophageal 
acid reflux, but these  may occur in the absence of abnormal 
esophageal or gastric mucosa [122]. Research investigating 
potential conditioned associations among swallowing sen-
sations, negative affect, and urges to purge would help to 
delineate the regulatory influence of chronic vomiting on 
esophageal interoception.

Gastric transit

The mechanosensory impact of gastric filling and emptying 
is a primary component of stomach sensation [123]. Altered 
postprandial gastric sensations are well-documented in eat-
ing disorders, and research to date suggests that these may 
arise from true (not just perceived) alterations in gastric 
function. In restrictive eating disorders, common reports of 
increased postprandial fullness and early satiety may relate 
to delayed gastric emptying and slowed orocecal transit [46, 
124], and in BN and BED, delayed satiety may relate to 
reduced sensitivity to gastric distension [53, 54•]. To begin 
to elucidate how altered gastric predictive processing may 
maintain disordered eating, future studies could focus on 
integrating multilevel measures of gastric interoceptive 
accuracy (the correspondence between perceived gastric  
distension and objectively measured distension), beliefs 
about gastric interoceptive sensitivity, and subjective rat- 
ings of confidence in gastric interoceptive accuracy, with 
the correspondence or mismatch between confidence and 
accuracy [125]. Previous data suggest that large mismatches 
between objectively measured heartbeat perception accu- 
racy and self rated sensitivity (conceptualized as  
“interoceptive trait prediction errors”) distinguish some 
individuals with autism spectrum conditions from healthy 
individuals, and that these “prediction errors” are inversely 
related to emotional sensitivity [126]. A similar mismatch 
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between expectation and experience, but in the gastric 
domain, may maintain eating disorder symptoms. Thus, 
individuals with eating disorders may have abnormally and 
inaccurately strong expectations about situations that elicit 
gastric change (i.e., hyperprecise priors [127]), and they may 
have great difficulty adjusting these expectations in response 
to environmental changes. Characterizing abnormalities in 
gastric predictive processing could yield modifiable targets 
for novel eating disorder interventions.

Small Intestinal Transit

Primary functions of the small intestine include the break-
down of semi-solid food in the proximal (duodenal) seg-
ment followed by nutrient and water absorption from the 
distal (jejunal and ileal) segments. Although not commonly 
investigated, there are both mechanoreceptors and chemo-
receptors present in this region of the gut [128], and fasting  
as well as eating both influence the rate of filling/relaxation [129].  
Mechanostimulation of the jejunum via balloon distension 
and chemostimulation via capsaicin (the active component 
of chili peppers) both induce feelings of pressure/fullness or 
cramping/pain and are typically localized in the same central 
abdominal region [130]. Thus, from an interoceptive stand-
point, there are likely overlapping sets of sensory signal- 
ing processes at this segment of the gut. To date, there have 
been few experimental studies of small intestinal interocep-
tion in eating disorders, though one study suggested delayed 
small bowel transit times in individuals with AN [131], and 
a case study reported evidence of jejunal blockage in an indi-
vidual with AN [132]. It is presently unclear to what extent 
abnormal processing of small bowel sensations plays a role 
in symptom generation in eating disorders.

Colorectal Transit

The primary sensations associated with the distal end of the 
GI tract are linked to colorectal filling and emptying. In AN, 
high rates of defecatory disorders, constipation, and obstruc-
tive defecation syndrome suggest there may be slower than 
normal colonic transit timing [133]. These symptoms are 
supported by preliminary findings indicating delayed colonic 
transit times in individuals with AN who report chronic 
constipation [134]. Some individuals with AN also report 
abnormal sensation of rectal filling during anorectal manom-
etry [134]. However, delayed colonic transit times normalize 
with refeeding [134], and data from a small group of patients 
with AN suggest that abnormalities in rectal sensation, inter-
nal anal sphincter relaxation threshold, rectal compliance, 
sphincter pressures, or expulsion patterns, normalize follow-
ing weight restoration [135]. Additional work is needed to 
determine the extent to which sensorimotor rectal function 
is caused or maintained by interoceptive mechanisms (e.g., 

alterations in interoceptive network activation and increased 
or decreased perception of stimuli/sensations in the rectum) 
in eating disorders.

As previously noted, constipation is often reported by 
individuals with BN, and constipation and bowel hypo-
function are common side-effects of laxative misuse [136]. 
These symptoms can, in turn, lead to increased sensations 
of bloating, promoting further eating-disorder behaviors. 
Medical complications often associated with chronic laxa-
tive or diuretic use (e.g., rectal prolapse) are also reported 
across eating disorders. The extent to which purgative eat-
ing disorder behaviors may be preceded by or contribute 
to aberrant colorectal interoception is unknown. Overall, 
there is presently great potential for the minimally invasive 
approaches (outlined in Table 1) to shed light on the causal 
neurobiological mechanisms related to gastric or colorectal 
transit of food signals and eating disorder symptoms.

Non‑Gastrointestinal Interoception in Eating 
Disorders

While the current review is primarily focused on gastroin-
testinal interoception, it is important to note that alterations 
broadly spanning other interoceptive domains (e.g., cardiac, 
respiratory, pain, soft cutaneous touch, temperature) have 
been postulated to contribute to a wide range of AN and 
BN symptoms: from extreme restriction despite starvation, 
out-of-control overeating episodes, and purging behavior to 
those that are less directly related to the gastrointestinal sys-
tem such as body image distortion, anxiety, and alexithymia 
[137–140]. For example, a recent network analysis indicated 
that body mistrust, and not feeling safe in one’s body, most 
linked self-reported interoceptive awareness to severe eat-
ing disorder psychopathology [141]. These findings suggest 
that that mistrust of one’s interoceptive afferents in general 
is associated with eating disorder symptoms.

In the last 5 years, research focused on cardiac and respira-
tory systems in eating disorders has shed light on the abnor-
mal anticipation and processing of interoceptive afferents that 
may underpin this mistrust. Women with current or past eating 
disorders show an altered brain response when attending to 
cardiorespiratory signals [142], and before and during pertur-
bations in these systems. For example, women with a history 
of BN show insular hyperactivation during the anticipation of 
aversive breathing restriction and abnormally declining acti-
vation during this aversive interoceptive experience, whereas 
women with a history of AN show hypoactivation during the 
anticipation of breathing restriction and abnormally steep 
increases in activation during breathing restriction [143, 144]. 
These results support a potential role for interoceptive pre- 
dictive processing, and specifically prediction errors, in both  
disorders. In addition, affective reactions to aversive respira- 

54 Current Psychiatry Reports (2022) 24:47–60



1 3

tory sensations are elevated in AN and in BN [145•], suggest-
ing that interoceptive signals may be not only “untrustwor-
thy” but also more distressing. Notably, non-gastrointestinal 
interoception and gastrointestinal-related interoception likely 
interact to maintain eating disorder symptoms. For example, 
in AN, the anticipation of eating is associated with heightened 
sensations of heart palpitations, dyspnea, and anxiety, all of 
which decrease after meal completion [146, 147]; these stud-
ies raise the possibility of multisensory integration deficits in 
eating disorders via interactions between gastrointestinal and 
cardiorespiratory afferent signaling.

Clinical Implications and New Horizons

Recent advances in the ability to modulate interoception 
provide new tools that may inform the development of 
individualized models and clinical interventions for eating 
disorders. For example, emerging evidence suggests that 
interoceptive exposure techniques targeting the gastrointes-
tinal interoceptive cues (e.g., fullness, bloating) triggering 
anxiety and aversive states may attenuate symptom severity 
in adults and adolescents with eating disorders [148, 149, 
150•]. Neuromodulation approaches such as vagus nerve 
stimulation (VNS) may have a physiological role in enhanc-
ing cardiovagal interoceptive processing [151], but auricular 
VNS does not modulate vagally-mediated heart rate vari-
ability [152], and the clinical applicability of non-invasive 
VNS for eating disorders is presently uncertain. Finally, 
reduced environmental stimulation therapy (aka floatation 
therapy) has received increasing study as a potential non-
pharmacological anxiolytic. This approach is noteworthy in 
that it increases cardiorespiratory sensations while leaving 
gastrointestinal sensations unaffected [153]. After an early-
phase trial showed this intervention to be safe, well toler-
ated, and associated with reduced anxiety and improved 
body-image symptoms in individuals with AN [154•], we 
are currently conducting a randomized efficacy trial. Despite 
initial hints of progress with respect to symptomatology, 
additional research is needed to clarify the extent to which 
these approaches effectively target interoceptive processes 
(especially predictive processing) that may contribute to or 
maintain pathological behaviors across the different phases 
of food consumption.

Conclusions

In the current review, we have described a predictive pro-
cessing approach to interrogating interoception at relevant 
points throughout the alimentary system. We have empha-
sized key conceptual definitions, methodological advances, 

and clinical implications that remain unexplored. There are 
still many gaps in our knowledge, but several existing tools 
could be easily applied to assess the role of gastrointestinal 
interoception in eating disorders. By revealing the basic neu-
ral circuitry involved in predicting and sensing gut feelings 
and defining those that are disrupted by eating disorders, 
these methods pave the way for a new generation of enteri-
cally focused assessments and clinical interventions for eat-
ing disorders.
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