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Abstract
Purpose of Review Sex differences in cognitive function are well documented yet few studies had adequate numbers of women
and men living with HIV (WLWH; MLWH) to identify sex differences in neurocognitive impairment (NCI) and the factors
contributing to NCI. Here, we review evidence that WLWH may be at greater risk for NCI.
Recent Findings We conducted a systematic review of recent studies of NCI inWLWHversusMLWH. A power analysis showed
that few HIV studies have sufficient power to address male/female differences in NCI but studies with adequate power find
evidence of greater NCI inWLWH, particularly in the domains of memory, speed of information processing, and motor function.
Summary Sex is an important determinant of NCI in HIV, and may relate to male/female differences in cognitive reserve,
comorbidities (mental health and substance use disorders), and biological factors (e.g., inflammation, hormonal, genetic).
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Introduction

With the National Institutes of Health (NIH) mandate to con-
sider sex as a biological variable [1], there is growing appre-
ciation and recognition of sex differences in brain function
and brain disorders [2]. Historically, very few studies included
adequate numbers of women to sufficiently address key

questions about possible sex differences in neurocognitive
complications of HIV. From 1988 to 1997, females comprised
only 9.3% of research participants in studies of HIV and cog-
nition [3]. Since the introduction of effective antiretroviral
therapy (ART), more neurocognitive studies focused on wom-
en living with HIV (WLWH), but sample sizes have remained
modest [4–11]. TheWomen’s Interagency HIV Study (WIHS)
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is the largest prospective cohort study inWLWH in the United
States and has made fundamental contributions to understand-
ing about neurocognitive function in WLWH. The WIHS
neurocognitive studies have several strengths including a lon-
gitudinal design, a large sample (> 1500), a well-matched
group of HIV-seronegative (HIV−) women [12, 13], and ex-
tensive comorbidity data (e.g., cardiovascular, mental health).
Through its merge with the Multicenter AIDS Cohort Study
(MACS) as the MACS/WIHS Combined Cohort Study
(MWCCS), there is also now access to a well-matched group
of men living with HIV (MLWH) and HIV− men [14••, 15].

Compared to MLWH, WLWH may be at greater risk for
neurocognitive impairment (NCI) due in part to a dispropor-
tionate burden of poverty, low literacy levels, low educational
attainment, substance abuse, poor mental health, barriers to
health care services, and environmental exposures prevalent
in predominantly minority urban communities [11, 13, 14••].
There is also evidence to suggest that WLWH may be more
cognitively susceptible than MLWH to the effects of the same
challenges [15]. In addition, biological factors such as sex
steroid hormones (e.g., estrogen, progesterone, testosterone)
and female-specific hormonal milieus (e.g., pregnancy, men-
strual cycle, menopause transition) may contribute to sex dif-
ferences in the pattern and magnitude of HIV-associated alter-
ations in neurocognitive function. The goal of this review is to
provide a systematic review of sex differences in the preva-
lence and patterns of neurocognitive function in HIV, identify
key gaps in knowledge, and discuss some of the potential
biological drivers.

Literature Search

To identify peer-reviewed studies on sex differences in the
prevalence and patterns of neurocognitive function in people
living with HIV (PLWH), we searched PubMED (May 2019)
for titles/abstracts containing MeSH terms “sex,” or “gender”
combined with “cognition,” “cognitive,” “HIV-associated
Neurocognitive Disorders (HAND),” “neurocognitive,”
“neurocognition,” or “neuropsych,” combined with “HIV,”
or “HIV-infected” with additional limits of “English
Language,” “Humans,” and published in the last 5 years
(2013 and after) per article instructions. Our search yielded
307 abstracts which were reviewed for the following inclusion
criteria: (1) HIV sample size ≥ 100, (2) neurocognitive func-
tion determined based on two or more validated neuropsycho-
logical tests, and (3) prevalence or pattern of neurocognitive
function by sex. Six articles met criteria. Five additional pub-
lications [14••, 16, 17, 18••, 19] meeting criteria but not gen-
erated by this search were also included, for a total of 11
publications (Table 1). Two of the eleven publications reflect
different analyses (one cross-sectional, one on a longitudinal
subset) from the same cohort (CNS HIV Anti-Retroviral

therapy Effects Research-CHARTER) [18, 19] and both pa-
pers were included.

Characteristics of Included Studies and Study
Participants

Of the eleven articles, nine produced cross-sectional results
and two longitudinal results. Sample sizes ranged from 137
to 1361 (median = 266) for a total of 4456 PLWH. Six studies
(54%) included HIV− controls in sample sizes ranging from
58 to 710 (median = 300), for a total of 2143 HIV− individ-
uals. The percent of WLWH ranged from 15 to 62% (medi-
an = 43%) and HIV− females from 30 to 65% (median =
55%). The average age of participants was 40 years. Overall
58% of PLWH had undetectable HIV RNA (median = 62%).
The articles spanned eight different countries, with 27% based
in the US.

Of the eleven articles, two [16, 25] used raw neuropsycho-
logical test scores, three [14••, 21, 24] transformed raw scores
into demographically adjusted (age, education, sex,
race/ethnicity) T-scores based on the HIV− individuals from
the same cohort, and six [17, 18••, 19, 20, 22, 23] transformed
raw scores into demographically adjusted T-scores based on
an external normative sample of HIV− individuals.

Findings Related to Sex Differences in Global
Cognitive Function

Of the nine cross-sectional analyses, seven [17, 18••, 20–24]
examined sex differences on a global neurocognitive measure
in PLWH (Table 1). In unadjusted analyses, three [17, 18••,
24] of seven [20–23] analyses (43%) demonstrated that the
prevalence of NCI was higher in WLWH. In the first of those
three studies, global NCI (defined as a global deficit scores
[GDS] score of at least 0.50) was found in 52% of WLWH
versus only 41% of MLWH, for an 11% difference and an
odds ratio (OR) of 1.53 (95% confidence interval [CI] 1.13–
2.06, P = 0.005) [18••]. No sex difference was observed
among the HIV− individuals (women = 27% vs. men =
26%). In the second study, the prevalence of NCI plus func-
tional impairment (mild neurocognitive disorder + HAD) was
30% in WLWH versus 19% in MLWH, again for an 11%
difference (OR = 1.79, 95% CI 1.10–2.87, P = 0.02) [17].
That study did not include a HIV− control group. In the third
study, WLWH had a significantly lower GDS score (mean
[M] = 0.38; standard deviation [SD] = 0.35) than MLWH
(M = 0.27, SD = 0.30) (P = 0.04) [24]. Additionally, the mean
sex difference in PLWH was greater than the mean difference
in HIV− individuals. In adjusted analyses across seven anal-
yses, the sex differences remained significant in three studies
[18••, 22, 24], were attenuated in two [17, 20] with one just
missing significance after adjusting for disease characteristics
particularly current CD4 count (P = 0.08) [20], and were no
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longer significant in three analyses [20, 21, 23]. Of the three
analyses in which the sex differences remained significant
[18••, 22, 24], one demonstrated that WLWH were less likely
to have HAND (29%) then MLWH (50%); however, this
study only had 31 WLWH [22].

Only one longitudinal study [19] to date has examined
the risk of decline on a global measure of neurocognitive
function between WLWH and MLWH. In univariate anal-
yses, WLWH showed a 76% increased risk of decline over
a 35-month follow-up versus MLWH (OR = 1.76, P =
0.01); however, sex no longer remained a significant pre-
dictor of risk of decline in the final multivariable model.
This model controlled for demographic (years of educa-
tion), disease, laboratory, treatment, and mental health fac-
tors (lifetime major depressive disorder [MDD] and sub-
stance use disorders).

Findings Related to Sex Differences in Specific
Cognitive Domains

Across the eleven studies, six [16, 18••, 20, 21, 24, 25] cross-
sectional and one [14••] longitudinal analysis examined sex
differences in domain-specific cognitive performance in
PLWH (Table 2). For learning and memory, two [20, 24] of
five [18••, 21, 25] analyses (40%) demonstrated that WLWH
were more likely have lower performance scores or greater
impairment than MLWH. Only Royal et al. [24] included
HIV−men and women as comparators. For speed of informa-
tion processing (SIP), two [14••, 16] of seven [18••, 20, 21, 24,
25] analyses (28%) demonstrated that WLWH were more
likely to perform lower or show higher impairment than
MLWH. For motor skills, two [14••, 21] of seven [16, 18••,
20, 24, 25] analyses (28%) demonstrated that WLWH per-
formed lower than MLWH. Among seven studies examining
executive function [14••, 16, 18, 20, 21, 24, 25], only one
[14••] analysis (14%) demonstrated that WLWH performed
lower than MLWH. However, this pattern was only noted on
a measure of mental flexibility and not behavioral inhibition
[14••]. No sex differences were evident for fluency [16, 18••,
20, 21, 24, 25] or attention/working memory [16, 18, 20, 21,
24, 25]. The largest longitudinal study to date found that fe-
males performed worse on SIP and motor function, and that
the magnitude of this sex differences did not change over time
[14••]. Learning, memory, fluency, and the attention/working
memory domains were not assessed [14••] and thus additional
research is needed to determine if these other domains remain
stable in HIVover time.

To determine the rigor and reproducibility of the eleven
analyses, we ran a series of power analysis using both the T-
score (continuous) and NCI (categorical). Figure 1 shows the
power versus effect size (T-score difference) for different sam-
ple sizes when the sample size for men and women is (A)
equal (50/50), (B) 60/40, (C) 70/30, and (D) 80/20. As the Ta
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proportion of MLWH and women in the sample diverge, larg-
er sample sizes are needed to have adequate (e.g., 80% pow-
er). For example, to detect a T-score difference of 0.25 SD
when the number of men and women are equal, a sample of
504 (n = 252/group) is needed whereas a sample of 525 is
needed when the split is 60/40 (315 men; 210 women), 600
when the split is 70/30 (420 men, 180 women), and 785 when
the split is 80/20 (628 men, 157 women). Of the studies ex-
amining sex differences in T-scores, only two [14••, 18••] of
seven studies [16, 20, 21, 24, 25] were adequately powered; it
is notable that these two studies had divergent findings, one
with sex differences and one without.

We also examined the sample sizes needed to detect a sig-
nificant increased odds (odds ratio) of NCI in WLWH than
MLWH, using prevalence rates from studies reviewed above
[17, 18]. Figure 1 panels E–G show the sample size needed to
detect a significant odds ratio with sufficient power when NCI
is set at 30% for WLWH and 19% for MLWH [17] and the
sample size for men and women is (E) equal (50/50), (F) 60/
40, (G) 70/30, and (G) 80/20. Figure 1 panels H–L show the
sample size needed to detect a significant odds ratio with
sufficient power when NCI is set at 52% for WLWH and
41% for MLWH where even larger sample sizes are needed
(50/50 split; N = 650: 325 per group; 80/20 split; N = 1025:
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NCI in MLWH is 19% and 30% in WLWH:
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Fig. 1 Power simulations computed to determine the sample size needed/
group to have 80% power to detect sex differences in T-scores
(continuous) and neurocognitive impairment (NCI; categorical) in HIV.
For T-scores, power versus effect size is plotted for different sample sizes
(n) when the proportion of men and women living with HIV is a equal
(50%/group), b 60/40, c 70/30, and d 80/20. For NCI, power versus odds

ratio is plotted for different sample sizes when we assume 19% NCI in
MLWH and 30% inWLWHandwhen the proportion of HIV-seropositive
men and women is e equal, f 60/40, g 70/30, and h 80/20 women. Power
versus odds ratio is plotted for different sample sizes when we assume
41% NCI in MLWH and 52% in WLWH and when the proportion of
HIV-seropositive men and women is i equal, j 60/40, k 70/30, and l 80/20
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820 men, 205 women). Of the studies examining sex differ-
ences with a categorical outcome (e.g., NCI, HAND), only
one [18••] of seven studies [17, 19, 22–25] was adequately
powered.

While powering for the sex difference in PLWH is perti-
nent, the optimal study design is to examine sex differences by
HIV-serostatus on a T-score or NCI; this allows analysis of the
sex by HIV infection interaction. We conducted a series of
power simulations to determine the sample sizes needed per
cell to have 80% power to detect an interaction effect size of
0.25 when we vary the proportion of men and women (50/50,
60/40, 70/30, 80/20) and the proportion of PLWH (66% or
75%) (Supplemental Materials). Of the studies examining an
HIV-serostatus by sex interaction, only one [14••] of four [21,
24, 25] studies was adequately powered. For NCI, we also
conducted a series of simulations to determine power needed
to detect a significant odds ratio (Supplemental Materials).
Only one [18••] of the two studies [24] was adequately
powered.

In sum, although a number of recent studies have examined
sex differences in neurocognitive function, few studies are
adequately powered to detect a meaningful sex difference.
The lack of statistical power appears to be an important con-
sideration and likely contributes to inconsistent findings of sex
differences in NCI. The strongest available evidence indicates
a higher prevalence of NCI in WLWH compared to MLWH,
with the largest differences in memory and learning followed
by SIP and motor, and inconsistent findings in executive func-
tion. Adequately powered studies are needed to determine the
reproducibility and longitudinal course of these findings.
Adjusting for critical factors such as reading ability, education,
mental health, and poverty reduces the magnitude of the sex
difference, and elucidates factors that contribute to NCI in
women. Given that neuropsychological testing in clinical
practice adjusts for age and educational differences but not
mental health and other factors, a higher prevalence of NCI
in women in the clinical setting may be expected, and the
consequent need for interventions may be higher in women.

Why Are There Sex Differences in the Prevalence
and Patterns of Neurocognitive Function in HIV?

Sex Differences in Cognitive Reserve

A greater likelihood of NCI among WLWH versus MLWH
may reflect differences in psychological risk factors (e.g., pov-
erty, low education, substance use, depression, early life trau-
ma, barriers to healthcare) which are more common in women
versus men [26, 27]. These factors can additively or synergis-
tically lower cognitive reserve before HIV infection and con-
tribute to greater cognitive dysfunction following infection
[28, 29]. Cognitive reserve is a key determinant of NCI be-
cause it sets a threshold level of brain insult that is necessary

for NCI tomanifest [30, 31]. Applied to HIV, womenwith low
cognitive reserve would be less able to compensate for the
myriad adverse neurobiological effects of HIV and, thus,
would be more susceptible to NCI than those with high cog-
nitive reserve. Accordingly, the higher rates of neurocognitive
risk factors in WLWH versus MLWH and the resulting lower
cognitive reserve may contribute to women’s increased sus-
ceptibility to NCI.

Reading level, as assessed by word pronunciation tests
such as the Wide Range Achievement Test (WRAT) and
the North American Reading Test (NART), is a common
proxy for cognitive reserve. Reading level is thought to
better reflect educational attainment than years of educa-
tion especially in lower socioeconomic, ethnically diverse
populations due to factors that limit the effectiveness of
schools serving these populations including less access to
quality education, reading materials and school supplies,
and teaching expertise [32]. Consistent with this notion,
low reading level, but not low education (< 12 years), was
a risk factor for neurocognitive decline in HIV cohort
studies [13, 32]. Low reading level is also associated with
a range of clinical outcomes including hospitalizations
and outpatient doctor visits [33], and therefore could also
indirectly influence neurocognitive performance through
factors such as low health literacy, increased medical co-
morbidities, and medication non-adherence.

In the WIHS, reading level, years of education, income,
and race were more strongly associated with neurocognitive
performance than HIV-serostatus [13], indicating that adverse
sociodemographic factors are key determinants of
n e u r o c o g n i t i v e f u n c t i o n i n WLWH. An H IV
Neurobehavioral Research Program (HNRP) study addressed
whether the higher rates of psychosocial risk factors in
WLWH account for their higher rates of NCI versus MLWH
[18••] and for any sex differences in association between HIV-
serostatus and NCI. NCI was more prevalent in WLWH ver-
sus MLWH, but not after adjustment for the lower reading
level in WLWH. HIV-seropositivity was more strongly asso-
ciated with NCI in women versus men and this association
was attenuated but not eliminated after adjustment for reading
level. Those results were driven by non-Hispanic Blacks
[18••]. The greater prevalence of NCI in WLWH may there-
fore be due in part to their suboptimal educational experience,
which may lower cognitive reserve and increase susceptibility
to NCI. Further, study samples that are predominantly White
and more educated may be less likely to yield a sex difference.
It is notable that two studies in Africa did find evidence of
worse NCI in WLWH compared to MLWH [20, 24].

Sex Differences in Mental Health Risk Factors and Disorders

Stress and early life trauma as well as mental health disorders
including depression and post-traumatic stress disorder
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(PTSD) may contribute to higher rates of NCI in WLWH
versus MLWH. Stigma and social isolation associated with
the diagnosis of HIV may contribute to progression of NCI.
Mental health risk factors and disorders are strongly associat-
ed with neurocognitive function in WLWH. In a series of
cross-sectional WIHS studies, we examined associations be-
tween PTSD, anxiety, perceived stress, depression, and
neurocognitive function. PTSD, anxiety, perceived stress,
and depression were each associated with deficits in learning,
memory, and attention [13, 34–36]. High stress and elevated
anxiety were associated with decreased learning and memory
only among WLWH [35, 36]. In WLWH but not HIV− wom-
en, higher perceived stress and PTSD were associated with
accelerated declines in fluency, learning, and memory [37].
Irrespective of time or HIV-serostatus, depression, perceived
stress, and PTSD were associated with lower SIP, executive
function, and global neurocognitive function. In a longitudinal
study of South African WLWH, trauma exposure was related
to less improvement in executive function and fluency [38].

Few large-scale HIV cohort studies assess sex differences
in mental health risk factors and disorders on NCI. We exam-
ined the association of elevated depressive symptoms with
NCI in the WIHS and MACS [15]. AlthoughMLWH showed
a higher frequency of elevated depressive symptoms than
WLWH (perhaps due to sexual minority status), WLWH with
elevated depressive symptoms had 5 times the odds of impair-
ment in executive control/inhibition versus HIV−womenwith
elevated depressive symptoms, and 3 times the odds of im-
pairment on that measure versus MLWH with elevated de-
pressive symptoms. Including comprehensive mental health
measures particularly diagnostic measures in HIV cohort stud-
ies is warranted to better understand how mental health and
sex differences in mental health contribute to HIV-associated
NCI.

Sex Differences in Sex Steroid Hormones and Hormonal
Milieus

Sex steroids, particularly estradiol, progesterone and testoster-
one, influence cognition in healthy individuals, contributing,
for example, to sex differences in performance on verbal tasks
(favoring females) and visuospatial tasks (favoring males).
For women, changes in sex steroid hormones across the men-
strual cycle, pregnancy, and the menopause contribute to
changes in neurocognitive performance [39]. In HIV, sex has
an influence on pretreatment viral load [40], the immune re-
sponse to HIV itself [41], and on measures of viral persistence
and immune activation during effective ART [42•, 43•].
Estradiol has been directly linked to HIV transcriptional ac-
tivity [44, 45] and may further influence neurocognitive func-
tion through effects on viral suppression and replication. Both
estradiol and progesterone also have immunomodulatory ef-
fects, impacting cytokines and chemokine levels [46],

contributing to sex differences in immune function. The role
of peripheral aromatization of testosterone to estradiol is
understudied in relation to NCI in PLWH. In WLWH, there
is initial evidence of an association between testosterone in-
sufficiency and cognitive complaints [47]. The cognitive ef-
fects of testosterone deficiency inMLWH are unclear [48, 49].
As sex steroids have both direct effects on neurocognitive
indices and can also modulate HIV viral activity, the contri-
bution of sex steroids and relative deficiencies to changes in
neurocognitive function in MLWH and WLWH warrants fur-
ther investigation.

Sex Differences in Immune Function

Immune responses are modulated by biological sex with im-
plications for infectious, inflammatory, and autoimmune dis-
eases [50, 51]. Recent work highlighted the critical influence
of sex on the immune system and the potential for sex-specific
genetic determinants of immune function [52]. Early in the
HIV epidemic, a sex difference in HIV viral load was identi-
fied, and importantly, despite lower viral loads in women, they
were not protected against disease progression and CD4 de-
cline. This sex difference had direct implications for treatment
guidelines which were at the time based on viral load [40, 53,
54]. Sex differences in the immune response to HIV infection
[41, 55] are likely contributors to these variations in pathogen-
esis. Chronic immune activation and inflammation predict
HIV disease progression and mortality independent of viral
load [56–61] and can trigger HIV-induced neurotoxicity and
other comorbid diseases [62, 63].

A growing body of research demonstrates the importance
of considering sex differences in monocyte-driven inflamma-
tory biomarkers in PLWH. For example, sCD163 concentra-
tions are higher in ART-naive WLWH versus ART-naive
MLWH, both before and after 24 months of suppressive
ART [64]. We found similar results in the WIHS and MACS
(see analyses below). These differences may increase with
aging. In a study ofWLWH andMLWHwith viremic control,
sCD163 levels increased more with age among women versus
men [65] (see also [66]). Other work indicates that WLWH
show less of a decrease in sCD14 levels after cART initiation
versus MLWH [56]. Hormonal factors appear to relate to
sCD163 levels as women with lower ovarian reserve as mea-
sured by antimullerian hormone levels have higher sCD163
levels, independent of age [67]. Sex differences in monocyte-
driven inflammatory biomarkers in HIV have been studied in
relation to cardiovascular disease [65, 67].

We examined sex differences in markers of monocyte activa-
tion and inflammation in 778 WIHS (74% PLWH) and 503
MACS participants (65% PLWH) [68]. In unadjusted analyses,
PLWH versus HIV− individuals had higher levels of the
monocyte-driven inflammatory markers sCD163 and sCD14
(P’s < 0.05; Fig. 2). Females had higher sCD163 levels than
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males (P < 0.05). Moreover, there was a significant HIV× sex
interaction on IL-6, a non-specific marker of inflammation (P =
0.04) with a trend for an interaction on sCD14 (P = 0.08). No sex
differences in sCD14 were found among the seronegative con-
trols, but MLWH had higher levels thanWLWH. This pattern of
results held after adjusting for age and race/ethnicity. These find-
ings and other studies [64–67] demonstrate male/female differ-
ences in inflammatory biomarkers, setting the stage for future
studies examining these factors in relation to NCI.

Neopterin, a marker of cellular immune activation, is pro-
duced by activated monocyte/macrophage cells. CSF
neopterin levels were associated with NCI, while plasma
neopterin levels were associated with NCI only in WLWH
[69–72]. NCI was related to higher plasma neopterin levels
in but not MLWH in a small cohort study from Thailand of
individuals with chronic HIVwhowere about to initiate cART
treatment [70]. A substantial proportion of the cohort met
criteria for the most severe form of HAND, HAD.
Individuals with HAD showed the highest neopterin levels
versus individuals with normal cognition. The pattern of ef-
fects appeared more specific to women than men.

Altogether, findings suggest distinct patterns of im-
mune response to HIV in women and men. Delineating
the specific patterns of association between markers of
inflammation and indices of neurocognitive function
may help to identify sex-specific therapeutic targets and
causal disease pathways.

Sex Differences in Hypothalamic Pituitary Adrenal Axis
Function

The hypothalamic pituitary adrenal (HPA) axis is a key medi-
ator of the stress response. A major player in this axis is cor-
tisol, a glucocorticoid, which exerts actions after finding to
glucocorticoid receptors which are abundant in the hippocam-
pus and prefrontal cortex [73–77], two brain regions that are
important for learning and memory. At a cellular level, in-
creased glucocorticoids can disrupt suppress neuronal excit-
ability, disrupt long-term potentiation, and casual apoptosis

and atrophy in the hippocampus and dendritic shortening
and atrophy in the prefrontal cortex [78–80]. The HPA axis
response is initiated by release of corticotrophin releasing hor-
mone (CRH) from the hypothalamus which stimulates release
of adrenocorticotrophic hormone (ACTH) from the pituitary
that subsequently triggers production of cortisol by the adrenal
glands. The impact of CRH on neurocognitive function is
highlighted by a recent finding that single nucleotide polymor-
phisms (SNPs) in CRH receptor 1 or the gene that encodes the
CRH binding protein associates with NCI in WLWH. The
SNP in CRH receptor 1 also moderated the association of
childhood trauma and NCI [81].

The HPA axis may play an important role in NCI in PLWH
given that the HPA axis may be perturbed in HIV [82–85]. In
many but not all [86, 87] studies, PLWH versus HIV− indi-
viduals show elevated basal cortisol levels [88–92], increased
cortisol over time [93], attenuated cortisol responsivity to be-
havioral [94] and CRH challenges [91], and alterations in the
diurnal rhythm of cortisol secretion [95]. The relevance of
those findings to WLWH may be limited as they are based
primarily on small studies of men that predate effective ART.
There are sex differences in HPA axis activity [96, 97] and
neurocognitive function (e.g., memory) vulnerabilities to cor-
tisol [98, 99]. Our recent work highlights a potential causal
relationship between cortisol and neurocognitive function in
HIV that differs by sex. In a double-blind, placebo-controlled,
cross-over study, a single dose of hydrocortisone (10 mg) im-
proved learning and memory 4 h following treatment in
WLWH [100] but not in MLWH [101].

Sex differences in neurocognitive function may also be in
part driven by the interplay between the HPA axis function
and the immune system at the level of the glucocorticoid re-
ceptor. The immune response to an acute laboratory stressor, a
threat of shock stressor, was altered in PLWH such that TNF-
alpha responsivity was blunted for both sexes but IL-1β and
cortisol responsivity were blunted in WLWH only [102]. It is
unclear whether such differences are adaptive or maladaptive.
Evidence of alterations at the level of the glucocorticoid re-
ceptor was found in the WIHS, where HIV and depressive

Fig. 2 Male/female differences in
monocyte-associated
inflammatory markers and less
specific markers of inflammation
among people living with and
without HIV. HIV+, HIV-
seropositive; HIV-, HIV-
seronegative
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symptoms were independently associated with impaired glu-
cocorticoid signaling [103]. How those alterations influence
neurocognition is not yet elucidated but warrants further
investigation.

Conclusions

Based on a systematic review of recent studies to assess
whether WLWH are more cognitively vulnerable than
MLWH, paired with a power analysis to guide the interpreta-
tion of existing studies, we found that few HIV studies are
adequately powered to address male/female differences in the
presence and pattern of NCI but that those with adequate
power do find evidence of greater NCI inWLWH, particularly
in the domains of memory, SIP, and motor function.
Biological sex needs to be considered in neurocognitive stud-
ies in PLWH. Factors that may contribute to these sex differ-
ences include cognitive reserve, mental health and other co-
morbidities, and biological factors.
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