Skip to main content
Log in

Complications of Spinal Cord Stimulators—A Comprehensive Review Article

  • Chronic Pain Medicine (A Kaye, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Spinal cord stimulation has been increasing in influence as an option to regulate pain, especially in the chronic pain patient population. However, even with the numerous changes made to this technology since its inception, it is still prone to various complications such as hardware issues, neurological injury/epidural hematoma, infections, and other biological concerns. The purpose of this article is to thoroughly review and evaluate literature pertaining to the complications associated with percutaneous spinal cord stimulation.

Recent Findings

Lead migration is generally the most common complication of percutaneous spinal cord stimulation; however, recent utilization of various anchoring techniques has been discussed and experienced clinical success in decreasing the prevalence of lead migration and lead fractures. With newer high-frequency systems gaining traction to improve pain management and decrease complications as compared to traditional systems, rechargeable implantable pulse generators have been the preferred power source. However, recent findings may suggest that these rechargeable implantable pulse generators do not significantly increase battery life as much as was proposed. Intraoperative neuromonitoring has seen success in mitigating neurological injury postoperatively and may see more usage in the future through more testing. Though the occurrence of infection and biological complications, including dural puncture and skin erosion, has been less frequent over time, they should still be treated in accordance with established protocols.

Summary

While many complications can arise following percutaneous spinal cord stimulator implantation, the procedure is less invasive than open implantation and has seen largely positive patient feedback. Hardware complications, the more common issues that can occur, rarely indicate a serious risk and can generally be remedied through reoperation. However, less common cases such as neurological injury, infections, and biological complications require prompt diagnosis to improve the condition of the patient and prevent significant damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46(4):489–91.

    Article  CAS  PubMed  Google Scholar 

  2. Melzack R, Wall PD. Pain mechanisms: a new theory. Science (New York, NY). 1965;150(3699):971–9. https://doi.org/10.1126/science.150.3699.971.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Sdrulla AD, Guan Y, Raja SN. Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Practice : The Official Journal of World Institute of Pain. 2018;18(8):1048–67. https://doi.org/10.1111/papr.12692.

    Article  PubMed  Google Scholar 

  4. Costantini A. Spinal cord stimulation. Minerva Anestesiol. 2005;71(7–8):471–4.

    CAS  PubMed  Google Scholar 

  5. • Blackburn AZ, Chang HH, DiSilvestro K, Veeramani A, McDonald C, Zhang AS, Daniels A. Spinal cord stimulation via percutaneous and open implantation: systematic review and meta-analysis examining complication rates. In World Neurosurgery. (2021);154. https://doi.org/10.1016/j.wneu.2021.07.077. This study utilized 32 articles and compared SCS implantation via a percutaneous and open approach while providing thorough data on a variety of metrics, including complication rates involving equipment, technical, and medical issues.

  6. Hayek SM, Veizi E, Hanes M. Treatment-limiting complications of percutaneous spinal cord stimulator implants: a review of eight years of experience from an academic center database. Neuromodulation J Int Neuromodulation Soc. 2015;18(7):603–8; discussion 608–9. https://doi.org/10.1111/ner.12312.

  7. Shaparin N, Gritsenko K, Agrawal P, Kim S, Wahezi S, Gitkind A, Hascalovici J, Vydyanathan A, Bernstein J, Dizdarevic A, Mehta N, Kaufman A. A retrospective case series of a novel spinal cord stimulator trial technique with less displacement and migration of the trial leads. Pain Res Manage. 2019;2019:1236430. https://doi.org/10.1155/2019/1236430.

    Article  CAS  Google Scholar 

  8. Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg. 2004;100(3 Suppl Spine):254–67. https://doi.org/10.3171/spi.2004.100.3.0254.

    Article  PubMed  Google Scholar 

  9. Mekhail NA, Mathews M, Nageeb F, Guirguis M, Mekhail MN, Cheng J. Retrospective review of 707 cases of spinal cord stimulation: indications and complications. Pain Practice : The Official Journal of World Institute of Pain. 2011;11(2):148–53. https://doi.org/10.1111/j.1533-2500.2010.00407.x.

    Article  PubMed  Google Scholar 

  10. Motov S, Aftahy K, Jörger A-K, Wagner A, Meyer B, Shiban E. High-frequency spinal cord stimulation in failed back surgery syndrome patients with predominant low back pain-single-center experience. Neurosurg Rev. 2021;44(5):2809–18. https://doi.org/10.1007/s10143-020-01462-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gupta M, Abd-Elsayed A, Hughes M, Rotte A. A retrospective review of lead migration rate in patients permanently implanted with percutaneous leads and a 10 kHz SCS device. Pain Res Manage. 2021;2021:6639801. https://doi.org/10.1155/2021/6639801.

    Article  Google Scholar 

  12. Gazelka HM, Freeman ED, Hooten WM, Eldrige JS, Hoelzer BC, Mauck WD, Moeschler SM, Pingree MJ, Rho RH, Lamer TJ. Incidence of clinically significant percutaneous spinal cord stimulator lead migration. Neuromodulation J Int Neuromodulation Soc. 2015;18(2):123–5; discussion 125. https://doi.org/10.1111/ner.12184.

  13. Speltz Paiz R, Kaizer A, Jain SV, Darrow DP, Shankar H, Goel V. Lead and pulse generator migration after spinal cord stimulation implantation: insights from an analysis of 7322 patients. Neuromodulation J Int Neuromodulation Soc. 2022. https://doi.org/10.1016/j.neurom.2022.06.001

  14. • Beletsky A, Liu C, Alexander E, Hassanin SW, Vickery K, Loomba M, Winston N, Chen J, Gabriel RA. The association of psychiatric comorbidities with short-term and long-term outcomes following spinal cord stimulator placement. Neuromodulation J Int Neuromodulation Soc. 2023. https://doi.org/10.1016/j.neurom.2022.12.010. In addition to having a large sample size of 12,751 SCS cases, this study was novel in how it separated the cases into those containing psychiatric comorbidities and those with no psychiatric comorbidities and evaluated how this affected postprocedural outcomes following implantation, including complications and reoperation rates.

  15. Jenkinson RH, Wendahl A, Zhang Y, Sindt JE. Migration of epidural leads during spinal cord stimulator trials. J Pain Res. 2022;15:2999–3005. https://doi.org/10.2147/JPR.S378937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Babu R, Hazzard MA, Huang KT, Ugiliweneza B, Patil CG, Boakye M, Lad SP. Outcomes of percutaneous and paddle lead implantation for spinal cord stimulation: a comparative analysis of complications, reoperation rates, and health-care costs. Neuromodulation J Int Neuromodulation Soc. 2013;16(5):418–26; discussion 426–7. https://doi.org/10.1111/ner.12065.

  17. Mollica S, Awad M, Teddy PJ. Lead migration in neuromodulation. Journal of Clinical Neuroscience : Official Journal of the Neurosurgical Society of Australasia. 2021;90:32–5. https://doi.org/10.1016/j.jocn.2021.05.014.

    Article  PubMed  Google Scholar 

  18. Oh BH, Kim HT, Yim KH, Park YS. Percutaneously inserted unilateral lead migration salvaged with a paddle electrode. Pain Practice : The Official Journal of World Institute of Pain. 2020;20(5):544–9. https://doi.org/10.1111/papr.12871.

    Article  PubMed  Google Scholar 

  19. Lee JJ, Simpson RK, Dalm B. Permanent paddle-lead trial for spinal cord stimulation. Cureus. 2018;10(5):e2645. https://doi.org/10.7759/cureus.2645.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leplus A, Voirin J, Cuny E, Onno M, Billot M, Rigoard P, Fontaine D. Is spinal cord stimulation still effective after one or more surgical revisions? Neuromodulation J Int Neuromodulation Soc. 2023. https://doi.org/10.1016/j.neurom.2023.03.009.

  21. Antonovich DD, Gama W, Ritter A, Wolf BJ, Nobles RH, Selassie MA, Hillegass MG. Reoperation rates of percutaneous and paddle leads in spinal cord stimulator systems: a single-center retrospective analysis. Pain Med (Malden, Mass). 2021;22(1):34–40. https://doi.org/10.1093/pm/pnaa215.

    Article  Google Scholar 

  22. Simopoulos T, Aner M, Sharma S, Ghosh P, Gill JS. Explantation of percutaneous spinal cord stimulator devices: a retrospective descriptive analysis of a single-center 15-year experience. Pain Med (Malden, Mass). 2019;20(7):1355–61. https://doi.org/10.1093/pm/pny245.

    Article  Google Scholar 

  23. Simopoulos T, Sharma S, Aner M, Gill JS. The long-term durability of multilumen concentric percutaneous spinal cord stimulator leads. Pain Practice: The Official Journal of World Institute of Pain. 2018;18(7):845–9. https://doi.org/10.1111/papr.12682.

    Article  PubMed  Google Scholar 

  24. Kim TH, Lee PB, Son HM, Choi JB, Moon JY. Spontaneous lead breakage in implanted spinal cord stimulation systems. Korean J Pain. 2010;23(1):78–81. https://doi.org/10.3344/kjp.2010.23.1.78.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heidecke V, Rainov NG, Burkert W. Hardware failures in spinal cord stimulation for failed back surgery syndrome. Neuromodulation J Int Neuromodulation Soc. 2000;3(1):27–30. https://doi.org/10.1046/j.1525-1403.2000.00027.x.

    Article  CAS  Google Scholar 

  26. Gill JS, Kohan LR, Hasoon J, Urits I, Viswanath O, Cai VL, Yazdi C, Aner MM, Kaye AD, Simopoulos TT. A survey on the choice of spinal cord stimulation parameters and implantable pulse generators and on reasons for explantation. Orthop Rev. 2022;14(4):39648. https://doi.org/10.52965/001c.39648.

    Article  Google Scholar 

  27. Costandi S, Mekhail N, Azer G, Mehanny DS, Hanna D, Salma Y, Bolash R, Saweris Y. Longevity and utilization cost of rechargeable and non-rechargeable spinal cord stimulation implants: a comparative study. Pain Practice : The Official Journal of World Institute of Pain. 2020;20(8):937–45. https://doi.org/10.1111/papr.12926.

    Article  PubMed  Google Scholar 

  28. Hajiabadi MM, Vicheva P, Unterberg A, Ahmadi R, Jakobs M. A single-center, open-label trial on convenience and complications of rechargeable implantable pulse generators for spinal cord stimulation: The Recharge Pain Trial. Neurosurg Rev. 2023;46(1):36. https://doi.org/10.1007/s10143-022-01940-y.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abejón D, Vancamp T, Monzón EM. A cost-consequence analysis examining the differences between non-rechargeable and rechargeable systems. Anest Pain Med  2020;10(1):e100308. https://doi.org/10.5812/aapm.100308.

  30. Hornberger J, Kumar K, Verhulst E, Clark MA, Hernandez J. Rechargeable spinal cord stimulation versus non-rechargeable system for patients with failed back surgery syndrome: a cost-consequences analysis. Clin J Pain. 2008;24(3):244–52. https://doi.org/10.1097/AJP.0b013e318160216a.

    Article  PubMed  Google Scholar 

  31. Deer TR, Pope JE, Falowski SM, Pilitsis JG, Hunter CW, Burton AW, Connolly AT, Verrills P. Clinical longevity of 106,462 rechargeable and primary cell spinal cord stimulators: real world study in the medicare population. Neuromodulation J Int Neuromodulation Soc. 2023;26(1):131–8. https://doi.org/10.1016/j.neurom.2022.04.046.

    Article  Google Scholar 

  32. Levy R, Henderson J, Slavin K, Simpson BA, Barolat G, Shipley J, North R. Incidence and avoidance of neurologic complications with paddle type spinal cord stimulation leads. Neuromodulation J Int Neuromodulation Soc. 2011;14(5):412–22; discussion 422. https://doi.org/10.1111/j.1525-1403.2011.00395.x.

  33. Bendersky D, Yampolsky C. Is spinal cord stimulation safe? A review of its complications. World Neurosurg. 2014;82(6):1359–68. https://doi.org/10.1016/j.wneu.2013.06.012.

    Article  PubMed  Google Scholar 

  34. Hagedorn JM, Deer TR, Falowski SM, Yadav A, Comer A, Al-Asadi Z, Engle AM. An observational study of intraoperative neuromonitoring as a safety mechanism in placement of percutaneous dorsal root ganglion stimulation and spinal cord stimulation systems. J Pain Res. 2020;13:3349–53. https://doi.org/10.2147/JPR.S289416.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lawton MT, Porter RW, Heiserman JE, Jacobowitz R, Sonntag VK, Dickman CA. Surgical management of spinal epidural hematoma: relationship between surgical timing and neurological outcome. J Neurosurg. 1995;83(1):1–7. https://doi.org/10.3171/jns.1995.83.1.0001.

    Article  CAS  PubMed  Google Scholar 

  36. Petraglia FW, Farber SH, Gramer R, Verla T, Wang F, Thomas S, Parente B, Lad SP. The incidence of spinal cord injury in implantation of percutaneous and paddle electrodes for spinal cord stimulation. Neuromodulation J Int Neuromodulation Soc. 2016;19(1):85–90. https://doi.org/10.1111/ner.12370.

    Article  Google Scholar 

  37. Buvanendran A, Young AC. Spinal epidural hematoma after spinal cord stimulator trial lead placement in a patient taking aspirin. Reg Anesth Pain Med. 2014;39(1):70–2. https://doi.org/10.1097/AAP.0000000000000029.

    Article  PubMed  Google Scholar 

  38. Moeschler SM, Warner NS, Lamer TJ, Bendel MA, Warner MA, Eldrige JS, Mauck WD, Gazelka HM, Kor DJ, Hoelzer BC. Bleeding complications in patients undergoing percutaneous spinal cord stimulator trials and implantations. Pain Med (Malden, Mass). 2016;17(11):2076–81. https://doi.org/10.1093/pm/pnw124.

    Article  Google Scholar 

  39. Scranton RA, Skaribas IM, Simpson RK. Spinal stimulator peri-electrode masses: case report. J Neurosurg Spine. 2015;22(1):70–4. https://doi.org/10.3171/2014.10.SPINE1425.

    Article  PubMed  Google Scholar 

  40. al Tamimi, M., Aoun, S. G., & Gluf, W. Spinal cord compression secondary to epidural fibrosis associated with percutaneously placed spinal cord stimulation electrodes: case report and review of the literature. World Neurosurg. 2017;104:1051.e1-1051.e5. https://doi.org/10.1016/j.wneu.2017.05.152.

    Article  PubMed  Google Scholar 

  41. Hwang R, Field N, Kumar V, Paniccioli S, Grey R, Briotte M, Sukul V, Pilitsis JG. Intraoperative neuromonitoring in percutaneous spinal cord stimulator placement. Neuromodulation J Int Neuromodulation Soc. 2019;22(3):341–6. https://doi.org/10.1111/ner.12886.

    Article  Google Scholar 

  42. Esquer Garrigos Z, Farid S, Bendel MA, Sohail MR. Spinal cord stimulator infection: approach to diagnosis, management, and prevention. Clin Infect Dis. 2020;70(12):2727–35. https://doi.org/10.1093/cid/ciz994.

    Article  PubMed  Google Scholar 

  43. Bendel MA, O’Brien T, Hoelzer BC, Deer TR, Pittelkow TP, Costandi S, Walega DR, Azer G, Hayek SM, Wang Z, Eldrige JS, Qu W, Rosenow JM, Falowski SM, Neuman SA, Moeschler SM, Wassef C, Kim C, Niazi T, Choi DY. Spinal cord stimulator related infections: findings from a multicenter retrospective analysis of 2737 implants. Neuromodulation J Int Neuromodulation Soc. 2017;20(6):553–7. https://doi.org/10.1111/ner.12636.

    Article  Google Scholar 

  44. Hoelzer BC, Bendel MA, Deer TR, Eldrige JS, Walega DR, Wang Z, Costandi S, Azer G, Qu W, Falowski SM, Neuman SA, Moeschler SM, Wassef C, Kim C, Niazi T, Saifullah T, Yee B, Kim C, Oryhan CL, Rosenow JM, Warren DT, Lerman I, Mora R, Hayek SM, Hanes M, Simopoulos T, Sharma S, Gilligan C, Grace W, Ade T, Mekhail NA, Hunter JP, Choi D, Choi DY. Spinal cord stimulator implant infection rates and risk factors: a multicenter retrospective study. Neuromodulation. 2017;20(6):558–62.

    Article  PubMed  Google Scholar 

  45. Falowski SM, Provenzano DA, Xia Y, Doth AH. Spinal cord stimulation infection rate and risk factors: results from a United States payer database. Neuromodulation. 2019;22(2):179–89.

    Article  PubMed  Google Scholar 

  46. Engle MP, Vinh BP, Harun N, Koyyalagunta D. Infectious complications related to intrathecal drug delivery system and spinal cord stimulator system implantations at a comprehensive cancer pain center. Pain Physician. 2013;16(3):251–7.

    Article  PubMed  Google Scholar 

  47. Provenzano DA, Deer T, Luginbuhl Phelps A, Drennen ZC, Thomson S, Hayek SM, Narouze S, Rana M, v, Watson, T. W., & Buvanendran, A. An international survey to understand infection control practices for spinal cord stimulation. Neuromodulation J Int Neuromodulation Soc. 2016;19(1):71–84. https://doi.org/10.1111/ner.12356.

    Article  Google Scholar 

  48. Tarakji KG, Mittal S, Kennergren C, Corey R, Poole JE, Schloss E, Gallastegui J, Pickett RA, Evonich R, Philippon F, McComb JM, Roark SF, Sorrentino D, Sholevar D, Cronin E, Berman B, Riggio D, Biffi M, Khan H, WRAP-IT investigators. Antibacterial Envelope to Prevent Cardiac Implantable Device Infection. N Engl J Med. 2019;380(20):1895–905. https://doi.org/10.1056/NEJMoa1901111.

    Article  CAS  PubMed  Google Scholar 

  49. Deer TR, Provenzano DA, Hanes M, Pope JE, Thomson SJ, Russo MA, McJunkin T, Saulino M, Raso LJ, Lad SP, Narouze S, Falowski SM, Levy RM, Baranidharan G, Golovac S, Demesmin D, Witt WO, Simpson B, Krames E, Mekhail N. The Neurostimulation Appropriateness Consensus Committee (NACC) recommendations for infection prevention and management. Neuromodulation J Int Neuromodulation Soc. 2017;20(1):31–50. https://doi.org/10.1111/ner.12565.

    Article  Google Scholar 

  50. Hussain N, Karri J, Dimitrov T, D’Souza RS, Zhou S, Abdel-Rasoul M, Abd-Elsayed A, Gill J, Simopoulos T, Weaver TE. Incidence and predictors of inadvertent dural puncture after percutaneous spinal cord stimulation: a retrospective data base analysis. Neuromodulation J Int Neuromodulation Soc. 2022;S1094–7159(22):00760–7. Advance online publication. https://doi.org/10.1016/j.neurom.2022.06.008.

  51. Simopoulos TT, Sharma S, Aner M, Gill JS. The incidence and management of postdural puncture headache in patients undergoing percutaneous lead placement for spinal cord stimulation. Neuromodulation J Int Neuromodulation Soc. 2016;19(7):738–43. https://doi.org/10.1111/ner.12445.

    Article  Google Scholar 

  52. Dadkhahfar S, Chehrassan M, Faldini C. Hypersensitivity reactions to metals in spine surgery. Musculoskelet Surg. 2023;107:29–35. https://doi.org/10.1007/s12306-022-00765-8.

    Article  CAS  PubMed  Google Scholar 

  53. Brown A, Mandelberg NJ, Munoz-Mendoza D, Palys V, Schalock PC, Mogilner A, North R, Petersen A, E. Allergy considerations in implanted neuromodulation devices. Neuromodulation J Int Neuromodulation Soc. 2021;24(8):1307–16. https://doi.org/10.1111/ner.13332.

    Article  Google Scholar 

  54. Woźniak-Dąbrowska K, Nowacka A, Smuczyñski W, Śniegocki M. Skin allergic reaction to a spinal cord stimulation (SCS): an analysis of the world literature and a case report. Postepy dermatologii i alergologii. 2020;37(1):114–6. https://doi.org/10.5114/ada.2020.93389.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Murphy CA, Roig RL, Trimble WB, Bennett M, Doughty J. Review of efficacy and safety of spinal cord stimulation in veterans. Federal Practitioner : For the health care professionals of the VA, DoD, and PHS. 2022;39(1):32–36a. https://doi.org/10.12788/fp.0204.

    Article  PubMed  Google Scholar 

  56. Huang M, Desai VR, Ho D, Simpson RK. Acute neuropathic orchalgia and scrotalgia after percutaneous spinal cord stimulator lead placement: two cases with an unusual complication. Cureus. 2017;9(1):e1003. https://doi.org/10.7759/cureus.1003.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Spirollari E, Vazquez S, Ng C, Naftchi AF, Graifman G, Das A, Greisman JD, Dominguez JF, Kinon MD, Sukul VV. Comparison of characteristics, inpatient outcomes, and trends in percutaneous vs open placement of spinal cord stimulators. Neuromodulation J Int Neuromodulation Soc. 2022;S1094–7159(22):01253–3. https://doi.org/10.1016/j.neurom.2022.08.456.

    Article  Google Scholar 

  58. Hussain N, Gill J, Speer J, Abdel-Rasoul M, Abd-Elsayed A, Khan S, Nguyen A, Simopoulos T, Weaver T. Evaluating the incidence of spinal cord injury after spinal cord stimulator implant: an updated retrospective review. Reg Anesth Pain Med. 2022;47(7):401–7. https://doi.org/10.1136/rapm-2021-103307.

    Article  PubMed  Google Scholar 

  59. Southerland WA, Hasoon J, Urits I, Viswanath O, Simopoulos TT, Imani F, Karimi-Aliabadi H, Aner MM, Kohan L, Gill J. Dural puncture during spinal cord stimulator lead insertion: analysis of practice patterns. Anesth Pain Med. 2022;12(2):e127179. https://doi.org/10.5812/aapm-127179.

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Koushik, J. Raghavan, S. Saranathan, K. Slinchenkova, O. Viswanath, and N. Shaparin were all extensively involved in the writing, editing, and publication of this manuscript.

Corresponding author

Correspondence to Sarang S. Koushik.

Ethics declarations

Ethics Approval

Not applicable as this was a literature review study only.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koushik, S.S., Raghavan, J., Saranathan, S. et al. Complications of Spinal Cord Stimulators—A Comprehensive Review Article. Curr Pain Headache Rep 28, 1–9 (2024). https://doi.org/10.1007/s11916-023-01178-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-023-01178-3

Keywords

Navigation