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Abstract
Purpose of Review In order to better treat pain, we must understand its architecture and pathways. Many modulatory 
approaches of pain management strategies are only poorly understood. This review aims to provide a theoretical framework 
of pain perception and modulation in order to assist in clinical understanding and research of analgesia and anesthesia.
Recent Findings Limitations of traditional models for pain have driven the application of new data analysis models. The 
Bayesian principle of predictive coding has found increasing application in neuroscientific research, providing a promising 
theoretical background for the principles of consciousness and perception. It can be applied to the subjective perception of pain.
Summary Pain perception can be viewed as a continuous hierarchical process of bottom-up sensory inputs colliding with 
top-down modulations and prior experiences, involving multiple cortical and subcortical hubs of the pain matrix. Predictive 
coding provides a mathematical model for this interplay.
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Introduction
To effectively treat pain, we must first understand it. How 
it arises from the integration of nociceptive signals into 
the nervous system is at the heart of anesthesiologists’ and 

pain therapists’ work [1••]. One theory of consciousness—
“predictive coding” in the model of the Bayesian brain [2, 3, 
4••]—lends itself well to discussing the perception of both 
pain and analgesia. Named after the statistician Bayes, the the-
ory is based on conditional probabilities. It is the aim of this 
article to discuss recent neuroscientific research within the 
framework of hierarchical Bayesian inference and to apply the 
concepts of predictive coding to pain perception. This review 
aims to help clinicians understand the mechanisms of pain 
perception and analgesia from a neuroscientific perspective.

The theory of predictive coding (PC) draws on a variety 
of concepts from biophysics, information theory, and statis-
tics. While this offers novel ways of understanding percep-
tion, it may also evoke confusion due to nomenclature unfa-
miliar to medical clinicians. Hence, we think it is prudent 
to first outline three fundamental concepts. We will use the 
nomenclature established here to apply PC to the perception 
of pain and analgesia in subsequent sections.

1. Bayesian or active inference is a form of statistical data 
analysis in which the probability of a hypothesis is con-
tinually updated according to newly arising evidence. 
The analysis is based on Bayes’ theorem (refer to Fig. 1 
for a statistical explanation). In neuroscience, active 
inference can be used to explain perception not as sim-

 * Friedrich E. Lersch 
 friedrich.lersch@insel.ch

 Fabienne C. S. Frickmann 
 fabienne.frickmann@insel.ch

 Richard D. Urman 
 urmanr@gmail.com

 Gabriel Burgermeister 
 gabriel.burgermeister@insel.ch

 Kaya Siercks 
 kaya.siercks@insel.ch

 Markus M. Luedi 
 markus.luedi2@insel.ch

 Sven Straumann 
 sven.straumann@insel.ch
1 Department of Anaesthesiology and Pain Medicine, 

Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
2 Department of Anaesthesiology and Pain Medicine, 

Inselspital, Bern University Hospital, University of Bern, 
Freiburgstrasse, 3010 Bern, Switzerland

3 Department of Anesthesiology, The Ohio State University, 
Columbus, OH 43210, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11916-023-01122-5&domain=pdf
http://orcid.org/0000-0001-5090-4989


632 Current Pain and Headache Reports (2023) 27:631–638

1 3

ple input–output processing, but as an internal model of 
the exterior world that is updated if sensory input does 
not correspond to it [5]. The internal model is called 
the prior, the updated model the posterior. The general 
idea that the brain’s main functions rely on this type of 
active inference is called predictive coding or hierarchi-
cal Bayesian inference [5].

2. Predictive error is the difference between a prior (i.e., 
how we expect the world to be) and the actual sensory 
input. It is a measure of surprisal. In the free energy 
principle, as postulated by Friston et al., the term free 
energy is often used synonymously with predictive error 
(PE) in this sense [6]. A core concept of the free energy 
principle is that the brain uses predictive coding to mini-
mize free energy, i.e., to build models of the surround-
ing world that are accurate enough to predict most of 
what the organism will encounter. It does so to keep the 
organism within safe boundaries that support its sur-
vival [6, 7•]. A basic example of this is temperature. We 
avoid touching stoves and being in blizzards because our 
internal model accurately predicts that the temperatures 
we would encounter would lie outside of our biological 
boundaries. Hence, we optimize our survival by mini-
mizing free energy.

3. Markov blanket is a statistical term describing a set of 
nodes in a network that provide all information about 
the nodes situated inside of the network. In the context 
of PC, it may be helpful to view the Markov blanket  
as all structures that separate an internal system from  
its surroundings [7•]. Markov blankets can be applied to  
both micro- and macroscales. The cell wall is an intui-
tive form of a Markov blanket on a microscale since it 

separates all interior processes of the living cell from its 
surroundings. In general, internal processes are kept in 
homeostasis by the organism, while external processes 
are more apt to be influenced by entropy. Thus, the con-
cept of Markov blankets provides a mathematical model 
to differentiate between the subject and the world it tries 
to navigate [8].

From Nociception to Pain

Increasing numbers of patients seem to embark on a trajec-
tory of chronic postoperative pain [9–11]. The opioid crisis 
and different problematic aspects of our analgesic practice 
[12] urge us to reconsider our concept of analgesia. Recent 
neuroscientific findings shape promising new concepts of 
the biological machinery underlying consciousness and the 
mind [6, 13, 14, 15•].

Any organism strives for stable homeostasis to survive. 
It is not simple nociception that drives our behavior but 
the affective valence we award nociception (i.e., the feeling 
that arises due to it). This affective valence is constantly 
created and re-evaluated. Aberrations from homeostasis, 
such as extreme temperature (exteroceptive), hypoglyce-
mia, or acidosis (interoceptive), induce acute changes in 
primordial emotions such as hunger, thirst, pain, or pleas-
ure [16, 17].

In the case of pain, data input that facilitates its evalua-
tion and re-evaluation is gained through two principal paths: 
nociception and modulating factors. The detection of (poten-
tial) tissue damage is the bedrock of pain perception. Yet, 
only in combination with input from a wealth of modulating 

Fig. 1  Excursus into the statisti-
cal background of the Bayesian 
theorem
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neurobiological networks, such as the limbic system, the 
striatum or the periaqueductal gray do we eventually assign 
it affective valence [1••, 18–20, 21••].

A Predictive Coding Model for Subjective Pain

A simplified predictive coding model of perception in gen-
eral, modified from Chen and Wang [21••], can be expressed 
as follows (Fig. 3):

The prior internal model we hold for a certain situation 
is the basis of perception. We then add the predictive error 
(PE), i.e., sensory input that does not match our prior. Cru-
cially, the PE is modulated by a factor gain comprising any 
circumstances that make us alter how we let surprisal affect 
our expectations. This relationship will become clearer when 
applied to nociception and pain [22, 23].

When applying PC to pain perception, negative affective 
valence can be viewed as the principal PE. It is what urges 
the re-evaluation of a prior model of homeostatic tranquility. 
If the PE is low, we perceive the situation just as we would 
have expected to perceive it prior to nociception [23].

Building on this model, we propose negative affective 
valence can be further partitioned into bottom-up nocicep-
tion and top-down modulation. Their ratio denotes precision, 
a factor determining whether the input will stay below or 
surpass a threshold value of pain perception [21••]:

It is important to note the difference between gain and 
top-down modulation in our model.

Gain defines how much the predictive error influences 
our perception through factors such as attention and moti-
vation. It does not alter the affective valence we assign 
to the PE, but how much we let it in turn affect our prior. 
A good example of this is regional anesthesia (RA). Any 
nociceptive stimulus we still perceive will hold the same 
negative affective valence as before the start of anesthesia, 
but the intensity of that feeling is dramatically reduced, 
preferably to a point where the gain equals 0. Sedation or 
opioid analgesia can also generally be assumed to reduce 
gain for an incoming nociceptive stimulus.

Top-down modulation, on the other hand, changes the 
affective valence we assign to a bottom-up stimulus. An 
example of this is motivation during physical exercise. 
Nociceptive signals arising from strained muscles and 
lungs are no longer interpreted as something negative; 

perception = prior + gain × predictive error

subjective pain = prior + gain × negative affective valence

subjective pain = prior + gain ×

(

bottom − up nociception

top − down modulation

)

hence, we do not perceive them as subjective pain. Keta-
mine can also alter top-down modulation through psy-
chological dissociation and an increased pain-threshold, 
especially when administered with anxiety-reducing drugs 
or positive suggestions and pleasant music.

In keeping with the tenets of active inference, it is 
important to note how gain and modulation influence not 
only the current perception of pain but also the alteration 
of the prior to form a new posterior. If we provide analge-
sia through any of those two pathways, we will not only 
decrease a patient’s momentary discomfort but also shape 
their expectation toward upcoming similar situations.

To paint a clearer picture, let us apply this model to 
orthopedic osteosynthesis under RA. The nociceptive input 
may be completely suppressed through a peripheral nerve 
block (gain). But if the patient has been in pain, is very 
anxious, or stressed (modulation), simple touch or proprio-
ception (bottom-up) induces negative emotional valence 
and may trigger subjective pain. This not only causes dis-
comfort for patients but also alters their prior to such extent 
that their perceived pain will only exacerbate in a similar 
situation in the future because their posterior will already 
hold a high amount of negative affective valence.

On the other hand, anxiolytic techniques such as hyp-
nosis, meditation, or music may reduce the precision by 
increasing the influence of top-down modulation [24, 
25]. In this case, no subjective pain will arise, since the 
patient’s prior (“being without pain”) remains unchanged.

Here it is useful to stress the “hierarchical” aspect of 
PC. As the incoming nociceptive perception climbs the 
rungs of the bottom-up integrational pathway, its signifi-
cance can be altered on each level, from dermal receptors 
to the dorsal horn via brainstem, subcortical networks to 
the limbic system, the thalamus, and finally neocortex 
(Fig. 2). This affords ample possibilities to halt the pro-
gression of nociception in a multi-modal strategy.

To name some examples, experienced meditators do 
not show pain reactions to thermal stimuli that cause sig-
nificant pain in non-meditators [26]. Hypnotic sugges-
tions reduce subjective pain in standardized pain stimuli 
along with causing alterations in fMRI patterns of the 
cingulate gyrus [27], parietal operculum, or the insula 
[28]. Listening to pleasant music will deflate the surprisal 
of a stimulus and though that its potential for pain and 
suffering [29, 30•].

Applying Our Model to Pain Therapy

To apply our simplified PC formula to analgesia, one more 
crucial factor needs to be considered: time. Here the appli-
cation of a Markov blanket comes into the picture. The 
perception of pain takes place within a confined system, 
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which is shielded from its surroundings by a Markov blan-
ket [20]. Notably, the Markov blanket is not equal to the 
anatomical separation of the brain from the outside world 
but comprises all systems that provide predictive error to 
the equation [8]. Interoceptive sensations, such as expecta-
tions and fear, are as much part of the Markov blanket as 
exteroception, such as nociception or visual input.

The Markov blanket persists over time and draws on 
sensory input (sensing) to formulate an adequate response 
(acting). It furthermore updates its posterior, so it can 
minimize its free energy (i.e., surprisal) in the future 
(Fig. 3) [31].

Now the variables in our model can be filled with con-
crete examples of pain perception and analgesia (Fig. 4). 
The bottom-up nociception is readily understood. It cor-
responds to any sensory input not already contained in the 
prior. In our case, this represents unexpected nociceptive 
signals. During a surgical procedure, such signals will 
invariably arise, and it is in our hands to modulate them 
to alter the impact on subjective pain.

The prior corresponds to how a patient expects to feel. 
We are not able to instantly change a patient’s prior. 

However, any sufficiently large PE will alter their pos-
terior. It is in our hands to help the patient experience 
positive affective valence associated with any PE. If 
we keep showing the brain that its current prior over-
estimates the level of subjective pain, the posterior will 
gradually decrease.

After having introduced some modulating factors, such 
as motivation or ketamine-analgesia as top-down modu-
lating factors and RA and anxiety as modulators of gain, 
other important modulators of the gain function are the 
attention to or distraction from pain [21••], neurochemi-
cal changes in the affected tissue such as inflammation 
[32] and chronic pain, which can trigger neurogenic 
inflammation through, among other mechanisms, the 
release of substance P, increasing the gain [33]. The list 
of factors that can influence the gain and top-down modu-
lation is too vast to be listed in this article. However, our 
simplified model can be used as scaffolding to describe 
how any analgesic technique or mental state influences 
subjective pain. The importance of expectation manage-
ment and anxiolysis at the outset of any perioperative 
situation cannot be stressed enough [34].

Fig. 2  The hierarchical principle of predictive coding applied to the 
pain pathway. At each level, predictions about the world are formed and 
sent to the level below (red arrows), where they are compared to the 
incoming information (green arrows). A prediction error is calculated 
and sent back to the level above, where the prior is updated accord-
ing to the new information. Actions of varying voluntary control can 

arise at each level of the hierarchy, from primitive reflexes to reflected 
reactions. (ANS, autonomous nervous system; RF, reticular formation; 
PAG, periaqueductal gray; RVM, rostral ventromedial medulla; INS, 
insular cortex; ACC, anterior cingulate cortex; PFC, prefrontal cortex; 
S1, primary somatosensory cortex; S2, secondary somatosensory cor-
tex; AMG, amygdala; Th, thalamus; HPC, hippocampus)
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Applying Our Model to General Anesthesia

As demonstrated above, different variables in pain percep-
tion can be modulated selectively while a patient is awake 
or only lightly sedated.

As the emotional valence lies at the heart of this con-
sciousness theory, strategies that target stress responses, 

anxiety, and pain evaluation need to be incorporated as filters 
in our model, even in the setting of general anesthesia (GA). 
As visualized by the Markov blanket, non-pharmacological 
analgesic strategies, as well as pharmacological sedation and 
GA all modulate the sensing and the acting state of the blan-
ket. It can be argued that the homeostatic affective valence 
a patient holds is gradually reduced through GA, but not 

Fig. 3  The Markov blanket of 
perception

Fig. 4  The Markov blanket of 
pain perception
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entirely erased. This idea has been previously explored in 
concepts of core consciousness under GA [35]. We know that 
different degrees of unconsciousness can still allow for pain 
perception, even while the individual is externally unrespon-
sive to painful stimuli [36].

Whether or not patients retain the ability for predictive 
coding under GA is inherently difficult to study. However, 
changes in subjective perception often go hand in hand with 
distinct electroencephalographical (EEG) patterns. These 
may provide insight into the perception of a patient under 
GA. Slow waves such as those in the delta (0.5–4 Hz) and 
theta (4–7 Hz) range, as well as alpha oscillations (8–13 Hz), 
suggest sufficient anesthesia and analgesia. Emerging beta 
waves (14–29 Hz), as described in analgetic hypnotic states 
[37] or analgetic musical chills [38], could be a signal of 
arousal under anesthesia. When ketamine is co-administered 
with propofol and dexmedetomidine during multimodal GA, 
it often alters the EEG-spectrum from the typical propofol 
alpha-delta-pattern to one reduced in delta-power but with 
increasing power in the low beta-range. We hypothesize that 
this ketamine-induced brain activity may be the hallmark of 
preserved PC in the brain during GA.

The neurobiological templates on which PC unfolds 
seem to be canonical cortical networks. Lower cortical lay-
ers (i.e., layer V) are presumed to code existing prior mod-
els by slow oscillations [39]. Superficial layers, oscillating 
in the gamma and beta ranges, may code prediction errors. 
This raises intriguing questions. Do these different states of 
cortical oscillation states have any bearing on active infer-
ence during general anesthesia? [40]. Can they transport 
previous factors of top-down modulations and gain, such as 
pre-operative anxiety, all the way to the recovery room? Or 
is all the effort of pre-operative expectation management, 
anxiolysis, and non-pharmacological analgesia drowned in 
layer V delta waves that are the end state of most anesthetic 
agents at sufficiently high doses [41].

The analysis of different activation states of the thalam-
ocortical level and the brain stem suggests that even core 
consciousness is annihilated during long spans of burst 
suppression. While this makes it highly unlikely for the 
brain to uphold a capacity for PC in such states, the same 
may not be true in more superficial levels of GA, which 
are often sufficient for most surgical procedures. It may be 
plausible to inquire into the role of dreams and retained—
albeit heavily altered—consciousness under GA through 
the concept of PC. Obviously, such states of conscious-
ness are unlikely connected to the exterior world [42, 43],  
but they may still be engaged in a therapeutic manner 
through retention of gain and modulating factors, imple-
mented before putting the brain under general anesthesia 
[44, 45•]. Raw EEG patterns during maintenance and emer-
gence determine important postoperative endpoints such as  

delirium [46] and pain [47]. This could be interpreted as a 
sign of residual active inference capacities during spindle 
(alpha-) rich anesthesia [48].

This proposition is strengthened by the strong correlation 
between preoperative anxiety and postoperative pain [49, 
50]. Nelson et al. recently demonstrated the inverse effect: 
expectation management and preoperative anxiolysis posi-
tively influence postoperative pain [51].

Drawing the line where PC abates completely during 
anesthetic unconsciousness is highly hypothetical. Along-
side future studies during GA, analogies to pain experiences 
in disorders of consciousness, such as vegetative or mini-
mally conscious states, may improve our understanding both 
in critical care and anesthesia practice [52]. Understanding 
that the regulation of neuronal networks and coding may be 
partially independent from wakefulness may aid our under-
standing why patients can be unresponsive but still in pain.

Conclusion

Although predictive coding and the underlying free energy 
principle may not end up being the universal theory of the 
brain [6], it offers a conceptual scaffolding for the clinical 
practice of anesthesiologists and pain therapists. Recent 
research suggests we may further our understanding of pain 
management by analyzing subjective pain through the lens 
of predictive coding. The brain may retain the function of 
active inference even during deep sedation and general anes-
thesia, which may explain why preoperative analgetic tech-
niques such as anxiolysis and expectation management can 
help curb postoperative pain.

Our simplified predictive coding model is based on our 
literature research and our personal insights and consid-
erations. We are convinced it is useful to both clinicians 
and researchers by offering explanations and descrip-
tions of how subjective pain arises through a wealth of 
modulating factors. We think mathematical models, even 
when simplified, are efficient and precise tools for com-
municating and researching pain and analgesia from a 
neuroscientific perspective.
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