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Abstract
Purpose of Review This comprehensive review discusses the complex relationship between Alzheimer’s disease (AD) and 
osteoporosis, two conditions that are prevalent in the aging population and result in adverse complications on quality of life. 
The purpose of this review is to succinctly elucidate the many commonalities between the two conditions, including shared 
pathways, inflammatory and oxidative mechanisms, and hormonal deficiencies.
Recent Findings AD and osteoporosis share many aspects of their respective disease-defining pathophysiology. These com-
monalities include amyloid beta deposition, the Wnt/β-catenin signaling pathway, and estrogen deficiency. The shared 
mechanisms and risk factors associated with AD and osteoporosis result in a large percentage of patients that develop both 
diseases. Previous literature has established that the progression of AD increases the risk of sustaining a fracture. Recent 
findings demonstrate that the reverse may also be true, suggesting that a fracture early in the life course can predispose one 
to developing AD due to the activation of these shared mechanisms. The discovery of these commonalities further guides 
the development of novel therapeutics in which both conditions are targeted.
Summary This detailed review delves into the commonalities between AD and osteoporosis to uncover the shared play-
ers that bring these two seemingly unrelated conditions together. The discussion throughout this review ultimately posits 
that the occurrence of fractures and the mechanism behind fracture healing can predispose one to developing AD later on 
in life, similar to how AD patients are at an increased risk of developing fractures. By focusing on the shared mechanisms 
between AD and osteoporosis, one can better understand the conditions individually and as a unit, thus informing therapeutic 
approaches and further research. This review article is part of a series of multiple manuscripts designed to determine the 
utility of using artificial intelligence for writing scientific reviews.
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Introduction

This is one of many articles evaluating the utility of using 
AI to write scientific review articles on musculoskeletal top-
ics [1]. The first draft of this review was written entirely by 
humans. Refer to this edition’s Comment paper for more 
information [2]. Alzheimer’s disease and related demen-
tias (AD/ADRD) and osteoporosis are two diseases that are 
prevalent in our aging population, and they unfortunately 
have a deleterious impact on quality of life [3]. Individu-
als living with AD typically experience a progressive loss 
of cognition, while those with osteoporosis are at increased 
risk of developing fractures. Patients diagnosed with both 
AD and osteoporosis may experience decreased cognitive 
agility, decreased mobility, and decreased ability to take care 
of themselves. Research has shown that these two disease 
processes are more intertwined than previously thought—
in fact, they share many of the same molecular pathways 
and risk factors, such as old age, lifestyle, and fractures 
[4, 5]. While not the focus of this review, it is important 
to note that bone-brain cross-talk may be important in this 
process. Indeed, Yuan et al. recently reviewed the role of 
bone-derived modulators and AD progression. They describe 
that bone-derived cells and secreted proteins interact with 
multiple organ systems including the central nervous sys-
tem, and such cross-talk between systems is important in the 
progression of AD [6]. In the current review, the commonali-
ties between AD and osteoporosis will be elucidated, and a 
discussion of AD and fractures will seek to uncover whether 
each of the diseases affects the onset and progression of the 
other. Uncovering the complex relationship between these 
conditions could have important implications for improving 
prognosis and quality of life for those afflicted, which will 
be especially significant for our aging population.

Background on Alzheimer’s Disease 
and Related Dementias (AD/ADRD)

AD is the most common cause of dementia in the elderly 
and affects 6.7 million people in the USA, equaling roughly 
1 in 9 individuals over the age of 65 [7]. Alzheimer’s dis-
ease and other dementias cost the USA $345B every year, 
with an additional estimated $339.5B in unpaid care, such 
as that provided by family and friends in the home [7]. AD 
is a deadly disease: deaths resulting from AD complications 
have doubled since 2000, and the 10-year survival rate for 
70-year-old AD patients is half that of those without AD. 
AD is a multifactorial disease with many associated risk 
factors including advanced age, sex, genetic markers (e.g., 
apolipoproteinE4 (ApoE4) allele), traumatic head injuries, 
and environmental factors. Patients with AD present with 

multiple impairments including declines in cognition and 
memory and behavioral changes.

AD/ADRD is characterized by extracellular amyloid 
plaque deposition and intracellular neurofibrillary tangles 
in the medial temporal lobe of the brain, as well as wide-
spread cerebral atrophy [8]. These pathological abnormali-
ties result in many neurological changes in AD, which can 
be divided into two categories: positive lesions and negative 
lesions. Positive lesions are characterized by accumulations 
of abnormal deposits in the brain, such as amyloid plaques, 
and neurofibrillary tangles and negative lesions involve neu-
ronal and synaptic loss. Abnormal deposition of beta-sheets 
has a strong correlation with dementia; beta-sheets provide 
the composition of fibrils, which aggregate to form amyloid 
plaques [9]. The transmembrane amyloid precursor protein 
(APP) is cleaved by proteolytic enzymes, yielding several 
varieties of amyloid beta (Aβ) monomers, including large and 
insoluble amyloid fibrils [10–12]. APP has been identified as 
a cause of early-onset AD when mutated [13]. The amyloid 
hypothesis posits that the degradation of the Aβ plaques is 
decreased with advanced age, thus leading to the aggrega-
tion of amyloid plaques. These amyloid plaques accumulate 
in chains of 39–43 amino acid Aβ peptides [14] throughout 
the brain causing neurotoxicity and inhibiting neural func-
tion, which can lead to cognitive impairment [8, 9, 12, 15]. 
Neurofibrillary tangles are hyperphosphorylated tau proteins 
and consist of accumulations of paired helical filaments that 
are characteristic of intracellular changes in AD [16]. Nor-
mally, tau acts as a scaffolding protein in microtubules to 
enrich axonal connections. Tau can undergo many post-trans-
lational modifications, such as monomethylation, acetylation, 
phosphorylation, and ubiquitination [17]. When tau protein 
becomes hyperphosphorylated, it begins to aggregate and 
loses its specificity for microtubules, impairing axonal func-
tion and causing neurodegeneration. The observed cerebral 
atrophy of negative lesions in AD is due to the loss of neurons 
and synapses throughout the brain, which may be more pro-
nounced in the hippocampus and amygdala [8].

Despite the increasing prevalence of the disease, there is no 
cure for AD. Although the few drugs that have been approved by 
the FDA for AD are useful in temporarily alleviating symptoms, 
there has been little success in slowing or halting the progression 
of AD [17]. In July 2023, a new FDA-approved drug, lecanemab, 
showed a modest slowing of AD progression and reduced Aβ; 
however, debate is ongoing over the benefits in light of the unde-
sirable side effects such as infusion-related reactions [18•].

Background on Osteoporosis

Osteoporosis is a prevalent skeletal condition associated 
with bone fragility due to low bone mass and compro-
mised bone structure. It is estimated that there are over 
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10 million individuals living with osteoporosis in the 
USA [19]. The disruption of bone architecture seen in 
osteoporosis is a result of greater rates of bone loss than 
bone formation, which reduces bone strength and leads 
to an increased risk of fractures [20]. Bone remodeling 
is a continuous process of replacing older bone material 
with new bone material, helping to repair microfractures 
and preventing the onset of macrofractures. However, this 
process becomes impaired with aging-induced increases 
in bone resorption and reductions in bone formation. With 
this impaired balance, the architectural structure of bone 
becomes weakened due, in part, to a significantly reduced 
mass combined with deleterious changes in bone structure 
such as cortical thinning, leading to an increased incidence 
of fractures and subsequent decline in daily functioning.

Osteoporosis typically goes undiagnosed until a frac-
ture occurs. A fracture of the hip or vertebrae without any 
severe trauma is diagnostic of the disease. Osteoporosis 
can also be diagnosed using a metric known as the T-score. 
This scoring involves measuring the patient’s bone mineral 
density (BMD) with a dual X-ray absorptiometry (DXA) 
scan and comparing this measurement to the mean BMD 
of young healthy people aged 20–29. BMD accounts for 
70% of bone strength, with an additional 20% coming from 
bone quality, which is currently unmeasurable [20].

Overview of Alzheimer’s and Osteoporosis

While AD and osteoporosis seemingly affect very differ-
ent organ systems, there are many commonalities between 
them. In fact, multiple AD mouse models have been shown 
to express an osteoporotic phenotype [21••]. In the cur-
rent section, we will look at the underlying risk factors 
and pathways shared by AD and osteoporosis. It has been 
observed that osteoporosis and bone fracture occur at 
roughly twice the rate in AD patients compared to non-AD 
patients of comparable age [22]. Indeed, a previous cross-
sectional study reported that individuals with AD were 
more likely to have sustained a hip fracture during their 
lifetime, have concurrent osteoporosis, and have fallen, 
as compared to individuals with no diagnosis of AD [23]. 
The risk factors between AD and osteoporosis that are 
shared include advanced age of the patients, poor nutri-
tion, poor gait, impaired metabolism due to underlying 
co-morbidities, and sex-based differences in physiology.

Aβ has been implicated in the damage of bone tissue, as 
it has been shown that Aβ directly interacts with bone cells 
to increase bone resorption by osteoclasts and inhibit differ-
entiation of osteoblasts, thus compromising bone architec-
ture. APP, a transmembrane protein mentioned earlier as a 
precursor to amyloid plaques in the brain, is also expressed 

in osteoblasts and osteoclasts, two cell types important for 
bone remodeling. When certain mutations in APP occur, 
osteoblast differentiation is suppressed, preventing new bone 
growth and laying the foundation for osteoporosis [13].

Many pathways have been identified as having common-
alities in both AD and osteoporosis. Studies have shown that 
patients with osteoporosis have an increased risk of develop-
ing AD compared to those without osteoporosis [24]. Fur-
thermore, osteoporosis typically precedes a diagnosis of AD. 
This could indicate a pathophysiological link, which is not 
yet well understood.

While many observational studies have established an 
association between AD and osteoporosis, a recent two-
sample Mendelian randomization study found that there was 
no distinct causal genetic link between the two conditions 
[25]. These researchers isolated potentially pleiotropic single 
nucleotide polymorphisms and found that the removal of 
such genes did not confer the development of osteoporosis 
or AD directly. It is worth mentioning that in addition to 
genetic links, environmental and physiological causes can 
be determinants of diseases, especially diseases associated 
with aging. As mentioned earlier and discussed in detail in 
the sections to follow, AD and osteoporosis share similar 
pathways and pathogenesis, which continue to require fur-
ther investigation.

Shared Pathways Between Alzheimer’s 
Disease and Osteoporosis

The Wnt/β-catenin signal transduction pathway regulates 
many cellular processes in the body, including cell survival 
[26]. In the brain, this pathway works to increase neuronal 
survival, promote neurogenesis, and regulate synaptic plas-
ticity [26]. The Wnt/β-catenin signaling pathway has been 
linked to AD, as its normal activation serves to inhibit Aβ 
production and tau phosphorylation (p-tau) in the brain. In 
aging brains, Wnt/β-catenin signaling is downregulated, and 
this suppression is even greater in AD brains [27]. Loss of 
function of the Wnt co-receptor LRP6 has been shown to 
downregulate the Wnt/β-catenin signaling pathway and is 
associated with an increased risk of developing AD [28, 29] 
while contributing to the synaptic dysfunction and Aβ accu-
mulation seen in AD [30].

The Wnt/β-catenin signaling pathway is also a critical 
player in the facilitation of bone formation. The loss of Wnt/
β-catenin signaling in osteocytes, specifically β-catenin gene 
deletion, causes an elevation of both the number and activity 
of osteoclasts, leading to substantial bone loss [31]. Further-
more, osteoclasts stimulate osteoblast differentiation through 
the secretion of Wnt ligands and chemoattractants to aid in 
skeletal remodeling [32]. Osteoblastic cells in turn impact 
osteoclastogenesis through the expression of RANKL and 
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OPG, which work to differentiate osteoclasts [33, 34]. 
Thus, the interplay between bone regeneration and remod-
eling involves cytokine signaling, including Wnt/β-catenin, 
RANKL, and OPG which at least the former has also been 
implicated in AD as described in more detail below.

Studies using mouse models of AD, rat neurons in vitro 
cultures, and samples from human Alzheimer’s patients have 
identified deficits in the Wnt/β-catenin signaling pathway that 
accounts for both the Aβ and tau pathogenesis seen in AD, as 
well as the characteristic bone loss of osteoporosis. The Wnt/β-
catenin signaling pathway has been shown to facilitate bone 
formation and promote synapse formation in the brain [22], 
and the disruption of this pathway has been implicated in both 
the onset of osteoporosis and AD. In relation to AD, the inhi-
bition of the pathway allows for the unregulated production of 
p-tau and Aβ, leading to the accumulation and deposition of 
these proteins [22, 35]. Upon accumulation of p-tau and Aβ, 
inflammatory pathways are activated, further inhibiting the 
Wnt/β-catenin signaling pathway and contributing to a vicious 
cycle of p-tau and Aβ deposition. Disruptions in Wnt/β-catenin 
signaling are typically seen prior to the onset of AD [22, 36]. 
Dengler-Crish and Elefteriou in 2019 hypothesized that a dis-
ruption in the Wnt/β-catenin signaling pathway causes periph-
eral accumulation of Aβ initially and that the positive-feedback 
loop of further accumulation leads to deposition in the central 
nervous system, contributing to the pathogenesis of AD [22].

Angiogenesis

Angiogenesis is the process of forming new blood vessels 
from existing vasculature [37]. Angiogenesis is vital for 
proper bone repair, as it is involved in the development of 
new bone tissue and bone remodeling [38–41]. Angiogenesis 
is also a highly relevant process in AD, as the accumulation 
of amyloid plaques damages the cerebrovasculature.

A study using a transgenic mouse model (Tg APPsw) 
of amyloidosis found that the overexpression of APP may 
oppose angiogenesis, leading to decreased functional vas-
culature in the brain [14]. The impaired angiogenesis seen 
in AD patients leads to decreased capillary diameter, thin-
ning of the capillary basement membrane, and atrophy of the 
cerebrovascular smooth muscle [14, 42–44]. Furthermore, 
Aβ peptides are also powerful inhibitors of angiogenesis, 
in both in vitro and in vivo studies [45]. The capillary net-
work in cerebral cortices has demonstrated severe amyloid 
plaque accumulation and deposition, compromising the 
cerebrovasculature with a loss of small cortical arterioles 
and capillaries [14, 46]. Previous studies have shown that 
AD patients have increased levels of VEGF in the brain, a 
potent angiogenic factor necessary for the growth of vascular 
endothelial cells. This increase of VEGF suggests a compen-
satory mechanism in response to damaged cerebral structure, 

even though this mechanism ultimately fails to yield proper 
angiogenesis [14, 47, 48].

Bone repair following fracture constitutes an interplay 
between angiogenic and osteogenic pathways. Angiogenesis is 
necessary for fracture healing to occur and to prevent the onset 
of osteoporosis. Angiogenesis in actively regenerating calluses 
supplies the nutrients, oxygen, cytokines, and growth factors 
necessary for the formation of osteoblasts and osteoclasts, ulti-
mately leading to bone formation [49]. Studies have shown that 
disruption in angiogenesis precedes the onset of osteoporosis, 
as inadequate blood flow is linked to impaired bone remodeling 
and subsequent low bone mass [40]. By a similar mechanism, 
angiogenesis also precedes osteogenesis. The endothelial cells 
are arguably the most important components of the vasculature, 
as they maintain a permeable barrier and allow for the recruit-
ment of hematopoietic cells to the bone site to maintain bone 
homeostasis and facilitate fracture repair [40, 50–52].

Bone Mineral Density (BMD)

Lower BMD is associated with an increased risk of devel-
oping AD [53]. On the other hand, studies have shown that 
AD patients have reduced hip BMD and are at twice the 
risk of developing hip fractures [54, 55]. Large prospective 
studies have demonstrated an association between reduced 
BMD and an increased incidence of AD in the elderly [5, 53, 
56–58]. Supporting this idea, a recent meta-analysis of three 
longitudinal studies found that a higher baseline BMD has 
a significant protective association with incident dementia 
(new cases of dementia); however, prior bone loss was not 
found to be associated with incident dementia [59].

A study in a Chinese population examined the potential role 
of low BMD on the transition from mild cognitive impairment 
to AD and found a positive relationship between osteoporosis 
and the decline in cognitive function observed in AD. Sub-
jects in the lowest quartile for BMD were at twice the risk 
for AD compared to controls. Furthermore, the study revealed 
that individuals who were identified to have mild cognitive 
impairment at study onset were more likely to develop AD 
if they had a low baseline BMD. The study also showed that 
severe low BMD at baseline was associated with an increased 
risk of developing AD; this association was seen in both men 
and women [57]. Together, these studies imply a link between 
bone density loss and Alzheimer’s that requires exploration of 
common risk factors to identify a potential root cause.

The Protective Effect of Estrogen

Dementias have a variety of risk factors, including sex. 
Depending on the type of dementia, the epidemiology of 
male-to-female prevalence varies. AD is the most common 
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form of dementia, with females constituting roughly 2/3 of 
all affected individuals [60]. The increased prevalence of AD 
in females as compared to men is likely due to the loss of 
the protective effect of estrogen in females with menopause. 
Indeed, in the normal brain, estrogen works in the nucleus 
basalis of Meynert to maintain normal cognitive function 
[61]. Furthermore, a cross-sectional study conducted in the 
Netherlands reported that women in the highest quintile of 
estradiol or estrone were 40% less likely to experience cog-
nitive impairment compared to those in the lowest quintile 
[62], suggesting a protective effect of estrogen. Studies indi-
cate that estrogen deprivation plays a vital role in the onset 
of cognitive decline and increased risk for AD in both men 
and women [61].

A study by Hoskin et al. found that levels of sex hor-
mone–binding globulin (SHBG) were 20% higher in AD 
patients and that levels of estradiol were significantly 
reduced, compared to controls [63]. An estimated 37% of 
estradiol in elderly women circulates in the body bound 
to SHBG, the form that is postulated to be unable to cross 
the blood–brain barrier and thus cannot exert effects on the 
CNS. In other words, roughly 37% of elderly women’s estra-
diol is unable to be used for the protective effect of estrogen 
on the brain. Similarly, several observational studies have 
found an association between increased levels of SHBG and 
AD [61, 64, 65].

While these studies are promising for elucidating the 
negative effects of low estrogen levels on increased risk of 
developing AD in elderly women, there are conflicting stud-
ies that suggest a lack of association. The Rancho Bernardo 
study did not find a significant effect on cognitive test out-
come due to bioavailable estradiol [66], and the Rotterdam 
study found that women with greater bioavailable estradiol 
levels demonstrated significantly poorer cognitive function 
[67]. However, these conflicting results may be due to vari-
ations in hormone measurement procedures [61].

Estrogen receptors are heavily expressed in osteoblasts, 
osteoclasts, and osteocytes, making their interaction with 
estrogen an important factor in the success of bone remod-
eling throughout the lifetime. Osteoporosis in post-meno-
pausal women is directly related to estrogen deficiency. A 
deficiency in estrogen leads to increased bone resorption 
and a negative balance between bone resorption and for-
mation [68]. Estrogen binds to estrogen receptors to inhibit 
osteoclast formation via the expression of osteoprotegerin. 
Estrogen can also activate the Wnt/β-catenin signaling 
pathway to increase osteogenesis. Thus, a lack of estrogen 
will alter the expression of target genes such as interleu-
kin-1 (IL-1), IL-6, tumor necrosis factor alpha (TNFα), 
insulin-like growth factor (IGF), and transforming growth 
factor beta (TGFβ), decreasing osteogenesis. In females, 
the primary treatment for estrogen deficiency–related 

osteoporosis is estrogen supplements [68], primarily in 
the form of transdermal estradiol [69].

When estrogen binds to its receptors, it can also regu-
late the expression of gene-encoding proteins such as IL-1, 
IGF, and TGFβ [70]. Estrogen works to upregulate bone 
morphogenetic protein (BMP) signaling, which promotes 
mesenchymal stem cell differentiation from pre-osteoblasts 
to osteoblasts, enhancing bone formation in the remod-
eling process [68]. Estrogen also suppresses the action of 
receptor activator of nuclear factor kβ ligand (RANKL) to 
inhibit osteoclast activity. RANK is expressed on osteo-
clast precursors, and binding by RANKL promotes osteo-
clast formation and subsequent resorption. When estrogen 
binds to osteoclast-expressed estrogen receptors, RANK 
activity is suppressed [71]. Furthermore, estrogen inhibits 
the differentiation of osteoclasts and promotes osteoclast 
apoptosis through the increase of TGFβ production. Thus, 
estrogen serves to regulate the bone resorption rate.

Osteocytes are the foundational bone material and serve 
to control bone remodeling and mineralization [68]. The 
decline in estrogen levels in menopausal women has been 
associated with bone loss [72, 73] characterized by an 
increase in both osteoblasts and osteoclasts [74]. In men, 
low androgen levels result in bone loss and increased bone 
remodeling [75, 76], in part due to lower levels of estro-
gen [77]. A study found that in the absence of estrogen 
receptors, osteocytes were not able to provide an adequate 
response to received mechanical strain, thus representing 
a deficiency of osteocyte mechanosensory ability in the 
absence of estrogen [78].

Estrogen deficiency has major contributions to the 
pathophysiology of both AD and osteoporosis, affecting 
both the risk and progression of both diseases. While there 
has been some conflicting evidence about the role of estro-
gen in AD, it is reasonable to identify the deficiency of 
this hormone as a common risk factor between the two 
conditions, and estrogen may play a role in a shared dis-
ease mechanism. Identifying and unraveling the complex 
relationship between sex hormones and AD progression 
as well as the shared commonalities of pathways in bone 
disorders may help in developing potential therapies to 
improve bone mass while slowing the progression of AD, 
especially in post-menopausal women.

Benefits of FSH Blockade

Follicle-stimulating hormone (FSH) is an important regu-
lator in the reproductive systems of men and women, and 
its blockade is shown to have beneficial effects on inhibit-
ing the hallmarks of AD such as Aβ deposition and p-tau 
[79••]. Previous studies in mice have shown that FSH 
works to increase bone mass and enhance thermogenesis, 
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two factors which are dysregulated in AD [80–82]. A 
study by Xiong et al. demonstrates that FSH accelerates 
Aβ and tau deposition in the hippocampus and cortical 
neurons, thus impairing cognition in 3xTg-AD mice. The 
study shows that blocking the action of FSH in 3xTg-AD 
mice inhibits the formation of plaque and neurofibrillary 
tangles, thus alleviating these adverse cognitive symptoms 
[79••]. Furthermore, recent results indicate that anti-FSH 
antibody is useful in increasing the bone formation of the 
femur and spine in mice [83•].

Neuroinflammation

Current evidence suggests that the progression and sever-
ity of AD can be attributed to the immunological mecha-
nisms that occur in the brain [84]. For example, expres-
sion of immune receptors, such as triggering receptor 
expressed on myeloid cells 2 (TREM2) [85] and CD33 
[86, 87], has been found to be associated with AD, sug-
gesting that neuroinflammation contributes to the onset 
and progression of AD [84]. TREM2 is expressed in the 
microglia of the brain, and the variant R47H has been 
found to present a significantly higher risk of late-onset 
AD development [88]. Furthermore, the TREM2 variant 
Y38C in the brain disrupts the normal functionality of 
TREM2, causing changes in the microglia morphology 
and impairing the synaptic plasticity in the hippocampus. 
The downstream effects of the dysfunction of TREM2 
provide an explanation of the events leading to AD and 
dementia [88]. These downstream effects are discussed 
in detail by Lee-Gosselin et al., who found in the brains 
of  TREM2−/− mice injected with human tau extract that 
there was a significant decrease in microglial density 
compared to controls, as well as diminished tau pathol-
ogy. This suggests that the experimental mice may not 
demonstrate a sufficient activated inflammatory response 
in the presence of tau pathologies, such as aggregation 
[89]. The observations from Lee-Gosselin et al. suggest 
that deletion of TREM2 may be beneficial in improving 
certain hallmarks of AD.

Additionally, it is hypothesized that the formation of 
neurofibrillary tangles is due to the neurotoxicity seen in 
neuroinflammation [16]. Furthermore, activated microglia 
and astrocytes seen in the inflammatory process surround 
the amyloid plaque depositions, resulting in higher lev-
els of inflammatory mediators than observed in non-AD 
brains [90]. Reactive astrogliosis has been shown to occur 
in many neurodegenerative tauopathies, such as AD [91]. 
Taken together, these observations implicate neuroinflam-
mation and the glial response as contributors to the dam-
age of neurons and ultimately AD [92, 93].

Limited work has been conducted looking at the link 
between neuroinflammation and bone. TREM2 is expressed 
on osteoclasts, regulating the rate of osteoclastogenesis, and 
a study by Otero et al. reports that  TREM2−/− mice exhibit 
osteopenic phenotype resembling the Nasu-Hakola disease 
[94, 95]. Furthermore, the TREM2 R47H variant has been 
implicated in low bone mass and skeletal muscle strength 
seen in  TREM2R47H/+ mutant female mice, independent of 
central nervous system pathology [96].

Oxidative Stress

Reactive oxygen species (ROS) are free radicals that 
regulate cellular homeostasis and can be formed from 
both endogenous and exogenous sources. Endogenous 
sources of ROS include the mitochondrial respiratory 
chain and various enzymatic reactions, while exogenous 
sources are various stressors such as ionizing radiation 
and oxidizing chemicals [97]. Normally, ROS are impor-
tant messengers in cell signaling, but at high concentra-
tions, they can cause damage to cells leading to necrosis 
and apoptosis [97].

Oxidative stress is a major contributor to the progression 
of AD [97], with ROS being a critical player in the pathol-
ogy of AD [98]. Oxidative stress has been shown to expedite 
aging and accelerate the onset of AD. The progressive cell 
loss due to oxidative stress can lead to the onset of neurode-
generative diseases; in AD, this causes abnormal aggrega-
tion of amyloid proteins [97]. In patients with AD, there is 
significant oxidative damage to brain tissue [99, 100], which 
leads to the upregulation of Aβ and p-tau formation [97, 
99]. Double bond peroxidation in polyunsaturated neuronal 
lipid products forms molecules that stimulate p-tau [98, 
101–105].

Oxidative stress has also been implicated as a causative 
factor in the diminished BMD in osteoporosis [106]. Kim-
ball et al. cite four avenues through which oxidative stress 
affects the pathway of bone metabolism: (1) upregulation of 
osteoclastogenesis, (2) decreased osteoprogenitor differen-
tiation, (3) decreased osteoblast activity, and (4) increased 
osteoblast and osteocyte apoptosis [106]. Oxidative stress 
causes increased osteoclastogenesis through the upregula-
tion of RANKL and downregulation of osteoprotegerin; 
these two factors are an osteoclast activator and inhibitor, 
respectively [107–109], and occur via the Wnt/β-catenin 
pathway [107]. A study has shown that hydrogen perox-
ide–induced oxidative stress decreases osteoblast differ-
entiation, thus inhibiting the formation of new bone [110]. 
Decreased osteoblast differentiation leads to decreased oste-
oblast activity and thus decreased osteoprotegrin production 
[106], ultimately ceasing regulation of osteoclast activity. 
Osteoblast and osteocyte apoptosis increase with oxidative 
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stress, further inhibiting osteogenesis [106], while stimulat-
ing osteoclastogenesis via decreased osteoblastic cytokine 
activity [33, 111–115].

Therapies

There are currently three classes of FDA-approved drugs to 
treat AD: cholinesterase inhibitors, NMDA antagonists [8], 
and monoclonal antibodies. Acetylcholinesterase inhibitors 
function to block the breakdown of acetylcholine, thereby 
increasing the levels of acetylcholine in the synaptic cleft 
[116–118]. This medication helps to reduce the effects of 
the reduced cholinergic transmission throughout the brain 
due to the destruction of acetylcholine-producing cells in 
AD [8]. NMDA antagonists work to prevent cell death and 
synaptic dysfunction caused by excitotoxic overactivation 
of the NMDA receptor and subsequent increased levels of 
calcium [119, 120]. These two drugs are effective in manag-
ing the symptoms of AD but do not cure the disease [8, 17]. 
Due to the lack of disease-modifying therapies, research has 
focused on prevention or risk reduction of AD [121]. Stud-
ies have shown that lifestyle modifications such as physical 
activity, diet, and cognitive training can increase or maintain 
cognitive function and reduce new cases of AD in the elderly 
[8, 122]. Monoclonal antibodies have shown some promise 
in slowing the progression of AD. Trials using the mono-
clonal antibody aducanumab reported that high doses of the 
drug had the potential to slow the cognitive decline seen 
in AD, and the drug was given conditional FDA approval 
in 2022 [123]. Lecanemab, a humanized IgG1 monoclonal 
antibody [18•] which received FDA approval in July 2023, 
was found to reduce the markers of amyloid plaques in early-
onset AD and led to less cognitive decline after 18 months 
of use, when compared to placebo. While this is the first 
drug that demonstrates slowing of AD progression to receive 
full FDA approval, ongoing studies are being conducted to 
determine the overall safety of the drug [18•].

In contrast, lifestyle modifications are the first-line treat-
ment for the prevention or treatment of osteoporosis [124]. 
These modifications include eating a healthy and varied diet 
with calcium-rich and vitamin-rich foods [125], as well as 
reducing alcohol consumption and avoiding smoking [126]. 
However, these lifestyle modifications may not be enough 
for some patients, and thus, there are a variety of pharma-
ceutical options. There are two main treatment categories: 
anabolic treatments, which activate osteoblasts [127], and 
inhibitors of catabolism, which inhibit osteoclast-mediated 
resorption [128]. The most commonly prescribed anabolic 
treatments are parathyroid hormone (PTH) derivatives 
[124], although few patients receive full-length PTH and 
administration of PTH derivatives is given intermittently. 
PTH is a hormone known to promote bone resorption when 

administered continuously and promote bone regeneration 
when administered intermittently, regulating endochon-
dral bone development [124], while maintaining higher 
BMD [129]. The most prescribed anti-catabolic treatments 
for osteoporosis are bisphosphonates. Bisphosphonates 
inhibit osteoclast activity and induce osteoclast apoptosis, 
thereby blocking bone resorption and stopping bone loss 
[124]. Thus, these two treatment categories serve to target 
osteoporotic pathologies at the mechanistic level to slow 
progression.

Increased Risk of Fractures Following 
Alzheimer’s Disease Diagnosis

It is well known that fracture is the most common sequela of 
osteoporosis, but it has been found to be a complication in 
AD as well. Research has shown that individuals with AD 
are more than twice as likely to sustain fractures at disease 
onset, despite having comparable risk to controls prior to the 
onset of AD symptoms [130•]. This increased risk occurs 
as soon as the first year of disease onset [131, 132]. The 
main risk factors for the increased incidence of hip frac-
tures in AD patients are low BMD [4, 133], low concentra-
tions of serum ionized calcium, and low concentrations of 
25-hydroxyvitamin with compensatory hyperparathyroidism 
[134, 135]. Following a hip fracture, functional recovery is 
poor in AD patients [134, 136, 137], with individuals hav-
ing a significantly lower ambulatory level [138] and greater 
risk of immobilization [139] compared to controls. Fur-
thermore, AD patients have a higher risk of post-fracture 
mortality [140]. Another study found that individuals with 
dementia were at an even higher risk of developing a hip 
fracture if they also had diagnosed osteoporosis [54]. This 
idea is supported by the fact that individuals with AD have 
an increased risk of falling and subsequent fracture, with co-
occurring osteoporosis being one of the strongest predictors 
of hip fractures [4, 54, 141, 142].

Increased Risk of Developing Dementia/AD 
Following Fracture Incidence

A 2020 observational study found that an incidence of 
distal radius, hip, and spine fractures increased the risk of 
developing dementia in individuals greater than 60 years of 
age [143]. A retrospective study found that, after a 12-year 
follow-up period, the overall incidence rate of dementia fol-
lowing fracture was 41% higher than in individuals who did 
not experience a fracture incidence [3]. Interestingly, the 
degree of increased risk varies depending on the fracture 
site, with hip fractures being the greatest at 60% higher risk 
of developing dementia. Comparatively, those with vertebral 
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fractures had a 47% higher risk, those with thigh/leg/ankle 
fractures had a 35% higher risk, and those with an upper 
limb fracture exhibited a 29% increased risk [3].

There are several factors, both during the fracture inci-
dence and healing process, that have been proposed to pre-
dispose or increase the risk of one developing dementia. It 
is hypothesized that fractures can predispose individuals to 
developing dementia due to the inflammatory process and 
reactive oxidative stress associated with fracture healing 
[143], as well as impaired balance [144–146] and vestibular 
asymmetry [147–149]. Following a fracture incidence, the 
inflammatory cytokines TNFα and IL-6 are elevated [150] 
in both the cerebrospinal fluid and peripheral blood [151, 
152], and these two factors have been implicated in demen-
tia [153]. Furthermore, ROS levels increase during fracture 
healing [154], which may lead to oxidative brain injury, thus 
increasing the risk of dementia [155].

Following a fracture, the complications of recovery may 
increase the risk of dementia via decreased physical activ-
ity and postoperative delirium [143]. Observed functional 
mobility declined in patients following a fracture [156], and 
a retrospective study found that roughly 32% of hip fracture 
patients who experienced postoperative delirium were later 
diagnosed with dementia [157].

Even though there are some observational clinical stud-
ies showing an association between the incidence of frac-
tures and an increased risk of AD, to date, no studies exist 
in either humans or animal models of AD showing a link 
between fractures and AD progression. Due to a lack of 
these studies, it is imperative that this less understood link 
be explored further to uncover the intertwined pathways 
between fractures, bone health, inflammation, and AD.

Conclusion

As illustrated in Fig. 1, Alzheimer’s disease and osteoporosis 
share many of the same disease mechanisms, such as altered 
angiogenesis, low BMD, a decrease in estrogen levels, neu-
roinflammation, and increased oxidative stress. The diseases 
both involve some of the same signaling pathways, and some 
of the characteristic molecular hallmarks of AD, such as Aβ 
and APP, have been shown to play a role in osteoporosis 
as well. One disease often predisposes an individual to the 
other, and many elderly patients concurrently have both AD 
and osteoporosis. The co-occurrence of these two degen-
erative diseases provides a great negative impact on the 
individual, namely, an increase in fractures and subsequent 
decreased mobility. Fractures have been shown to occur at 
greater rates in AD and osteoporosis patients compared to 
controls, largely due to the low BMD seen in both diseases. 
Interestingly, recent evidence suggests that an incidence of 
fracture also predisposes one to developing dementia, sug-
gesting further commonalities between these two common 
geriatric diseases. Further exploration on fracture incidence 
causing AD onset is warranted, as this could uncover addi-
tional mechanistic commonalities and provide more insight 
into the pathogenesis of AD. Osteoporosis, AD, and fracture 
are debilitating ailments with recently uncovered similari-
ties in pathophysiology. It is important to note that mouse 
models exploring such links have a variety of limitations, 
largely due to incomplete replication of the remodeling pat-
terns seen in humans. As a result, there is a need for more 
human studies. That said, a limitation of human studies is 
the difficulty of drawing inferences related to pathways and 
mechanisms involved. Thus, both preclinical and clinical 
studies are essential to tackle these debilitating diseases. 
Finally, understanding the complex relationship between 
osteoporosis, AD, and fracture healing will be crucial to 
the development of therapies to improve the lives of people 
everywhere, especially the elderly.
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