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Abstract
Purpose of Review The traditionally understated role of neural regulation in fracture healing is gaining prominence, as 
recent findings underscore the peripheral nervous system’s critical contribution to bone repair. Indeed, it is becoming more 
evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and 
eventual remodeling.
Recent Findings Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related 
peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and 
mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympa-
thectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic 
activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, 
marking an important area for further investigation.
Summary The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving 
outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility 
of using artificial intelligence for writing scientific reviews.

Keywords Fracture healing · Neural regulation · Neuropeptides · Neurotrophins · Sympathetic nervous system · AI · 
Artificial intelligence · ChatGPT

Introduction

This is one of many articles evaluating the utility of using AI 
to write scientific review articles on musculoskeletal topics 
[1]. The first draft of this review was written by ChatGPT 4.0 
but was edited and carefully checked for accuracy resulting 
in a final manuscript which was significantly different from 
the original draft. Refer to this edition’s Comment paper for 
more information [2]. The process of fracture healing, recog-
nized for its exceptional complexity, demands a sophisticated 
interplay among diverse cell types, signaling molecules, and 
tissue types [3]. Historically, the role of the nervous system in 
this dynamic biological concert has been undervalued. How-
ever, recent research trends have highlighted its crucial role 
in fracture healing [4]. As an entity known for its extensive 
reach and varied influence, the nervous system is now seen 
as a cardinal regulator that modulates each stage of healing, 
from the onset of inflammation to the final remodeling phase 
[5–7]. The necessity for a more profound understanding of 
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this regulatory interplay is highlighted by continued chal-
lenges encountered in the clinical setting. Despite consid-
erable advances in orthopedic care, complications such as 
fracture nonunion continue to impact a substantial number 
of patients [8]. Additionally, the escalating incidence of frac-
tures, due to heightened activity levels in an aging population 
and an increase in osteoporosis-related fractures, underscores 
the need for the development of more efficacious therapeutic 
strategies [9, 10].

In this review, we aim to shed light on the diverse ways 
the nervous system influences fracture healing. We will 
provide a comprehensive analysis of the stages of healing, 
focusing on molecular and cellular mechanisms and high-
lighting the role of the nervous system at each step. The 
interplay of neuropeptides, the influences of the peripheral 
and sympathetic nervous system, and the intriguing role 
of neural regulation of stem cell function during fracture 
healing will be discussed. Moreover, we will investigate the 
therapeutic potential of targeting aspects of the nervous sys-
tem to enhance fracture healing. This approach represents 
a promising frontier for improving patient outcomes and 
advancing fracture management strategies.

The Neurobiology of Fracture Healing

Bone fractures, which may arise from a plethora of situations 
including trauma, osteoporotic pathologies, or high-impact 
activities, initiate a complex cascade of healing events 
within the human body [9, 11]. As our understanding of this 
process evolves, it is clear that the human body’s capacity to 
mend bone tissue and reinstate its function is nothing short 
of extraordinary. Healing after a fracture proceeds through 
three distinct yet interconnected stages, namely, the reac-
tive phase, the reparative phase, and the remodeling phase 
[11–13]. These sequential stages are intricately guided by 
the nervous system [14].

The initial reactive phase serves as the body’s immediate 
reaction to a fracture [13]. The disruption of blood vessels 
within the periosteum and bone marrow results in the for-
mation of a hematoma, inciting an inflammatory response 
[15]. This response is marked by the mobilization of immune 
cells and the secretion of growth factors such as platelet-
derived growth factor (PDGF) and transforming growth fac-
tor-beta (TGF-β), which are instrumental in the early heal-
ing response [16]. The nervous system exerts a significant 
influence during this phase, modulating the inflammatory 
response by releasing neurotransmitters and neuropeptides 
[17–20]. These substances harmonize the recruitment of 
immune cells, promote angiogenesis, and regulate blood 
flow to the fracture site [21–23].

The subsequent reparative phase emerges post-inflam-
mation, marked by the formation of a soft callus chiefly 

constituted by cartilage and immature bone [12]. Here too, 
the nervous system’s influence remains paramount: it facili-
tates the differentiation of mesenchymal stem cells (MSCs) 
into osteoblasts and chondrocytes, cells that lay the founda-
tion for new bone matrix formation [11]. Neuropeptides, 
such as substance P (SP) and calcitonin gene-related peptide 
(CGRP), govern the differentiation and proliferation of these 
bone-forming cells, enabling the transition from soft to hard 
callus [7, 24, 25].

The final remodeling phase signifies the conversion of 
woven bone into lamellar bone, reestablishing the original 
bone architecture [11]. The influence of the nervous system 
persists, primarily through its regulation of osteoclast activ-
ity and, thereby, bone resorption [26–28]. The transforma-
tion of the callus into mature bone is additionally modulated 
by neuropeptides, including CGRP, which encourage bone 
formation, ensuring a balance between osteoblastic and oste-
oclastic activity and allowing for lamellar bone deposition 
alongside callus resorption [25, 29].

Taken together, the neurobiology of fracture healing 
emphasizes a sophisticated dynamic between the nervous 
system and bone repair mechanisms. This critical contribu-
tion of the nervous system to successful bone regeneration 
sets the stage for our subsequent in-depth exploration of the 
role of individual neuropeptides and neurotrophins in the 
healing process.

The Functions of Neuropeptides 
and Neurotrophins in Fracture Healing

Fracture healing is a complex process steered by a myriad of 
signaling molecules, including but not limited to neuropep-
tides [30]. Neuropeptides, small protein-like molecules, are 
essential communication tools for neurons in both the central 
and peripheral nervous systems [31, 32]. They have a vital 
role in modulating the course of fracture healing, orchestrat-
ing functions such as inflammation, angiogenesis, and cellu-
lar differentiation [33]. Neurotrophins, another class of small 
peptide molecules, also play an important role following 
fractures by influencing bone formation, promoting axonal 
regrowth and guidance, and by enhancing pain sensitivity 
during the healing process [18, 34•]. This section further 
explores their specific roles, starting with an overview of 
the contributions of the peripheral nervous system (PNS) 
to fracture healing.

The Role of the Peripheral Nervous System 
in Fracture Healing

A vast network of nerves innervates all aspects of bone, 
including the bone marrow, trabecular bone, cortical bone, 
and the periosteum [35. 36•, 37]. Resection of the sciatic 
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nerve, which contains sensory, sympathetic, and motor fib-
ers, has historically been a model used to investigate the 
overall impacts of the PNS on fracture healing [38–42]. In a 
string of experiments, sciatic denervation led to more rapid 
callus bridging and the formation of larger calluses for tibial 
fractures [38–40, 42]. However, this larger callus was not 
mechanically stronger, with researchers suggesting that a 
lack of guidance from the PNS during the healing process 
led to defective callus organization [39, 42]. An important 
caveat to these findings is that resection of the sciatic nerve 
has been shown to be insufficient in producing a completely 
denervated fracture as researchers have found nerve fibers 
regenerating in the bone marrow, callus, and periosteum fol-
lowing sciatic nerve resection [40, 42]. Nonetheless, these 
experiments did show a relationship between the PNS and 
fracture healing, which set the stage for future experiments 
that more clearly delineated the impact of individual nerve 
types on fracture healing.

Additional research has elucidated the fact that neurons 
play a decisive role in fracture healing by releasing an array 
of neuropeptides and neurotrophins that regulate numerous 
aspects of the healing process, including inflammation, pain, 
and the stimulation of bone cell proliferation and differentia-
tion [6, 17, 24, 43–46]. In addition to the release of these 
small molecules, nerve axons also undergo a noticeable, 
controlled sprouting at the fracture site to better support the 
healing process such that normal function and sensation of 
the affected part of the body can be restored [47–50]. As 
healing concludes, these nerve axons are pruned back. In 
the case of fracture nonunion though, researchers have dem-
onstrated a much more prolific growth of both sensory and 
sympathetic nerve axons at the fracture site, with significant 
associated pain behaviors observed in the affected mice [50].

Schwann cells, the predominant glial cells of the PNS, 
also have an intriguing role in the fracture healing process 
as a component of the microenvironment that promotes the 
transformation of osteoprogenitor cells into osteoblasts fol-
lowing bone trauma [51–53]. In addition, Schwann cells 
secrete vascular endothelial growth factor (VEGF), a potent 
promoter of angiogenesis, during bone healing [51, 53].

Neuropeptide: Substance P

SP, a neuropeptide primarily released by the distal axons 
of primary afferent sensory neurons and inflammatory cells 
including macrophages and lymphocytes, demonstrates a 
diverse and integral role in fracture healing, encompass-
ing functions such as promoting inflammation, modulating 
osteoclast and osteoblast activity, and transmitting pain [24, 
43, 54–59]. Although many of the studies implicating SP’s 
involvement in fracture healing have been performed in ani-
mals, plasma levels of SP have been found to be elevated for 
up to 48 h in humans following femoral neck fractures [60].

During the reactive phase of fracture healing, SP acts as a 
potent catalyst of neurogenic inflammation, a physiological 
response typified by vasodilation, increased vascular perme-
ability, and chemotaxis of monocytes [54, 56, 59, 61, 62]. 
Evidence for SP’s vasodilatory effects comes from applica-
tion of SP to arteries isolated from the cancellous bone of 
pigs, which elicited a transient relaxation of the arteries [21]. 
SP also fosters the mobilization of stromal cells from con-
nective tissues, likely including bone marrow, to the site of 
injury [43]. This idea is supported by experiments in which 
SP was intravenously administered to uninjured mice, result-
ing in the mobilization of CD29 + stromal cells, including 
bone marrow stromal cells, to the peripheral blood [43].

SP also has important effects on osteoclastogenesis 
and osteoclastic activity. NK-1 receptors that bind SP are 
expressed by osteoclasts (as well as osteoblasts and bone 
marrow stem cells), and SP addition to a culture of osteo-
clast progenitor cells has been shown to increase osteoclas-
togenesis via activation of NF-κB [27, 63–65]. In addition, 
administration of SP to cultured osteoclasts led to increased 
bone resorption activity by the osteoclasts, while administra-
tion of an SP antagonist inhibited this bone resorption [28].

Furthermore, SP has been shown to stimulate the prolif-
eration of osteoblasts and differentiation of chondrocytes, 
the primary cell types involved in callus formation during 
the reparative phase of fracture healing [7, 24, 54]. In an 
in vitro study of rat calvarial osteoblastic cells, an observable 
increase in the size of the mineralized nodules produced was 
observed when the cells were exposed to SP [24]. Further, 
a decreased number of osteoblasts and chondrocytes were 
detected in the fracture callus of SP-deficient mice, high-
lighting the neuropeptide’s influence on cellular prolifera-
tion [7].

Other studies have begun to clarify SP’s seemingly con-
tradictory involvement in both bone formation and bone 
resorption during fracture healing [19]. Specifically, in an 
angulated fracture model, SP + peripheral nerve fibers were 
found in high concentrations on the concave loaded side of 
the fracture during bone regeneration, with the peak con-
centration of SP + nerve fibers corresponding to the areas 
of greatest bone formation. Later in the process of healing, 
during the remodeling phase, SP + nerve fibers were found 
on the convex unloaded side of the fracture where bone 
resorption was occurring. Thus, this experiment suggests 
a time-dependent role of SP during fracture healing, with 
the neuropeptide first stimulating bone formation during the 
reparative phase and then impacting bone resorption during 
the remodeling phase.

Finally, a complex role of SP is seen in the arena of pain 
transmission linked with bone fractures [66, 67]. Released 
by primary afferent sensory neurons in reaction to injurious 
stimuli, SP influences pain by binding to its receptor, neu-
rokinin-1, present in both the central and peripheral nervous 
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systems [33]. In mice deficient in SP, decreased nociceptive 
responses to moderate and severe noxious stimuli, including 
tail clipping and capsaicin injection, have been observed 
[66]. Notably, in orthopedic indications, such as hip osteo-
arthritis (OA), patients who are in pain have an increased 
density of nerve fibers containing substance P in the hip joint 
capsule and acetabular fossa, while non-OA controls (femo-
ral head fracture) who experience no pain lacked local nerve 
fibers containing substance P [67]. Taken together, these 
findings underscore the intricate involvement of substance 
P in the sensory, inflammatory, and reparative elements of 
musculoskeletal regeneration.

Neuropeptide: CGRP

CGRP, another pivotal neuropeptide, exhibits considerable 
influence on the process of fracture healing, a claim sub-
stantiated by numerous studies [47, 68••, 69, 70]. Similar 
to SP, elevated plasma levels of CGRP have been found in 
humans following femoral neck fractures [60]. Moreover, 
administration of gelatin microspheres containing CGRP 
improved the healing of a bone defect, with noted increased 
bone volume density, in an osteoporosis model [71]. Further, 
application of a CGRP-supplemented fibrin sealant during 
a partial patellectomy led to increased bone mineral com-
position during the healing process. The ultimate strength, 
stiffness, and failure load in the affected limb were all 
enhanced in these mice [72]. Conversely, mice deficient in 
CGRP have impaired fracture healing, as indicated by high 
rates of incomplete callus bridging, reduced callus volumes, 
decreased bone mass with a corresponding reduced num-
ber of osteoblasts, and decreased bone strength [68••, 73].  
Additionally, injection of a CGRP inhibitor has been shown 
to impair fracture healing [74].

CGRP’s contribution to bone formation has been affirmed 
through its enhancement of osteoblast differentiation and 
inhibition of osteoclast activity [25, 73, 75, 76]. Treatment 
of bone marrow stromal cells in vitro with CGRP led to 
cellular proliferation, increased expression of osteoblastic 
genes including Runx2, and ultimately increased osteoblas-
tic differentiation [29, 68••, 77]. Also, the administration 
of higher concentrations of CGRP to cultures of rat bone 
marrow cells led to the formation of larger numbers of bone 
colonies in a dose-dependent manner [25]. Further evidence 
for the role of CGRP in stimulating osteogenesis comes from 
studies showing a positive correlation between the areas of 
greatest bone formation during fracture healing and CGRP 
levels in the area [19].

In addition to its promotion of bone formation, CGRP 
also acts directly on osteoclasts to inhibit osteoclast-driven 
bone resorption [29, 78]. CGRP application has been shown 
to downregulate osteoclastic genes, including TRAP and 
cathepsin K, and CGRP also decreases the bone resorption 

activity of RANKL-induced bone marrow macrophages 
[29]. When examined alongside its promotion of osteoblastic 
differentiation and activity, these functions point to CGRP’s 
role in maintaining and increasing bone mass, which is 
important for successful fracture healing.

Furthermore, CGRP has been strongly implicated in pain 
regulation, particularly in increasing nociceptive transmis-
sion in both the peripheral and central nervous systems fol-
lowing injury [67, 79]. Experiments involving rats demon-
strated an increased pain response, as measured through paw 
withdrawal threshold testing when CGRP was intrathecally 
administered, thereby establishing its integral role in nocic-
eption [80]. Further, von Frey tactile testing has illustrated 
that CGRP antagonists reverse the mechanical allodynia that 
is observed in mice following fracture [81]. Since hyperal-
gesia is also diminished by the simultaneous administration 
of CGRP with a PKA or PKC inhibitor, researchers have 
suggested CGRP nociceptive signaling is mediated via the 
PKA and PKC second messenger pathways [80]. Addition-
ally, it has been demonstrated that administration of an IL-1 
receptor antagonist alongside CGRP prevented mechanical 
allodynia in mice [82]. When considered alongside the fact 
that keratinocyte expression of IL-1 is normally upregulated 
following CGRP administration in a dose-dependent man-
ner, these researchers suggested that CGRP induces hyper-
algesia via enhancement of IL-1 expression. Overall, the 
wide-ranging impact of CGRP underscores its paramount 
significance in the neural regulation of the fracture healing 
process, reflecting its influences on cell differentiation and 
pain regulation.

Neuropeptide: Neuropeptide Y

Neuropeptide Y (NPY), another crucial neuropeptide 
present in both sympathetic and primary afferent sensory 
neurons, has become a focal point of research into fracture 
healing due to its burgeoning role in the process [20, 48, 
83]. Interestingly, though, studies of the impact of NPY on 
bone homeostasis have shown that NPY has an anti-anabolic 
effect on bone mass. NPY interacts directly with osteoblasts 
via the Y1 and Y2 receptors, and deletion of either of these 
receptors in mice led to an increase in osteoblastic activity 
with a corresponding increase in bone formation and bone 
mass [84]. Similarly, when osteoblasts were cultured with 
NPY, they exhibited decreases in markers of differentia-
tion and in the extent of mineralization [85]. Additionally, 
a decrease in osteoid width and osteoblastic activity was 
observed upon NPY injection in mice [86]. Considered 
together, these findings suggest that NPY has a negative 
influence on bone homeostasis via its inhibition of osteo-
blastic activity.

However, in contrast to its role in bone homeostasis, NPY 
has a positive effect on bone healing following fracture. 
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NPY’s significance has been demonstrated through studies 
that used NPY-deficient mice as models. Specifically, these 
studies revealed impairments in the earlier stages of fracture 
healing, as evidenced by decreased callus size, decreased 
callus strength, and delayed callus bridging, in mice with 
germline deletion of NPY [20]. Moreover, a study of humans 
experiencing craniocerebral injuries determined that ele-
vated serum levels of NPY were associated with acceler-
ated fracture repair times [83]. Further evidence comes from 
immunohistochemical analysis of angular fractures in rats, 
which found an increased concentration of NPY + fibers on 
the concave side of the fracture during the reactive phase 
[48]. In addition, a high concentration of NPY + nerve fib-
ers was found on the convex side of the fracture between 21 
and 56 days. Since this time period is correlated with that in 
which the convex side of the fracture callus was decreasing 
in size, this suggests that NPY has a hand in the remodeling 
phase of fracture healing in addition to its role during earlier 
phases [48].

Moreover, NPY plays a role in pain modulation, a crucial 
aspect of the body’s response to fractures. NPY’s effect on 
pain differs based on which of its receptors it binds, with 
activation of Y1 inhibiting pain and Y2 agonism potentially 
promoting pain [87]. Evidence for this has been documented 
in studies involving Y1 receptor knockout mice, in which the 
animals showed an escalated pain response and exhibited 
mechanical hypersensitivity [88]. Additionally, exogenous 
NPY administration increased latency to paw withdrawal 
from a heat source and reduced molecular markers of inflam-
matory pain, while administration of a Y1 antagonist inhib-
ited these results [89–91]. Further, addition of either a Y1 
agonist or synthetic NPY to slices of rat spinal cord dorsal 
horn inhibited the exocytosis of the nociceptive CGRP from 
capsaicin-sensitive centrally-projecting terminals in the dor-
sal horn, suggesting a possible mechanism through which 
NPY inhibits nociception [92]. These experiments suggest 
NPY’s potential in inhibiting pain transmission within the 
central nervous system via Y1 receptors.

In contrast to the relatively well-defined role of Y1 recep-
tors, the impact of NPY on Y2 receptors in regard to pain 
is more controversial. Specifically, it was found that admin-
istration of a Y2 agonist increased CGRP release from rat 
trigeminal ganglia, suggesting that activation of Y2 recep-
tors may lead to increased pain [87]. This idea is supported 
by the finding that Y2 antagonist administration inhibited 
NPY-induced mechanical allodynia [93]. However, other 
researchers have instead found that Y2 antagonists, like Y1 
antagonists, inhibit the analgesic effect of NPY [90]. Addi-
tional studies are needed to better differentiate the scenarios 
in which NPY causes or relieves pain. In summary, the ver-
satile role of NPY demonstrates its importance in the intri-
cate neurobiological regulation of fracture healing, spanning 
from its influence on osteoblast activity to pain modulation.

Neurotrophins

Neurotrophins comprise a class of proteins, including but 
not limited to nerve growth factor (NGF) and brain-derived 
neurotrophic factor (BDNF), which play a pivotal part in the 
healing process [18]. Studies using animal models lacking 
these factors have revealed impaired sensation and increased 
neurodegeneration, showcasing their crucial roles in nerve 
regeneration and neuronal survival [94, 95]. In addition to 
their impact on nerve regeneration, both NGF and BDNF 
have been found within fracture tissues, suggesting these 
neurotrophins also play important roles in bone regenera-
tion and fracture healing [18, 96, 97]. Specifically, while 
expression of NGF is limited to the periosteum under nor-
mal conditions, following fracture, it is found around the 
fracture callus in marrow stromal cells, osteoprogenitor 
cells, osteoblasts, and osteocytes, with NGF mRNA levels 
reaching a peak 2 days after the fracture [18, 97]. Addi-
tionally, NGF has been shown to contribute to sensory and 
sympathetic nerve axon sprouting following peripheral nerve 
injury, and there is some evidence that NGF contributes to 
nerve sprouting following fracture as well [46, 98]. BDNF 
has been localized to osteoblastic and endothelial cells dur-
ing the reactive and early reparative phases, suggesting a 
primary role in the earlier stages of fracture healing [18, 96].

A variety of experiments have implicated both BDNF and 
NGF in various aspects of bone formation and resorption 
during fracture healing. Indeed, BDNF and NGF are both 
known to stimulate osteoblast proliferation and differentia-
tion [99]. BDNF has also been shown to increase release of 
RANKL from bone marrow stromal cells and thus have a 
role in osteoclastogenesis [100]. Also, increased cartilage 
differentiation and increased formation of osteoclasts were 
observed in NGF transgenic mice with induced tibial frac-
tures [101].

Neurotrophic factors also influence MSCs during bone 
healing. NGF and BDNF promote MSC survival and dif-
ferentiation, steering them toward becoming osteoblasts 
and chondrocytes, the bedrock units of bone and cartilage, 
respectively [102–104]. It is possible that these factors are 
also involved in guiding MSCs to fracture sites, a critical 
precursor step to callus formation [102]. Furthermore, these 
factors are a pro-survival factor in the balance between MSC 
proliferation and apoptosis—a delicate equilibrium vital for 
maintaining tissue homeostasis throughout the healing pro-
cess [105].

Finally, neurotrophins have significant implications for 
pain modulation and sensitization. Studies have demon-
strated that a decrease in NGF signaling due to application 
of anti-NGF antibodies following fracture correlates with 
reduced pain-related behaviors [106, 107]. Further, mice 
treated with anti-NGF therapy demonstrated increased activ-
ity following fracture, with the researchers suggesting that 
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this finding was due to a decreased experience of pain in the 
treated mice [108].

In summary, neuropeptides and neurotrophins play 
important and often synergistic roles in fracture healing. For 
example, SP and CGRP are frequently colocalized within 
the same primary afferent sensory neurons, and it has been 
hypothesized that they are released together following injury 
[33]. Further, NGF likely plays a role in the recruitment 
of the nerve axons containing these neuropeptides and can 
function to upregulate the expression of both SP and CGRP 
[46, 109, 110]. Once released, both SP and CGRP play a role 
in bone formation by increasing osteoblast activity. Another 
interaction between neuropeptides occurs in the area of pain 
transmission, where NPY inhibits the release of CGRP from 
the spinal cord dorsal horn and thus diminishes nociception 
[92]. Ultimately, all of the small molecules discussed in this 
section, including SP, CGRP, NPY, NGF, and BDNF, work 
in concert to promote fracture healing and to impact pain 
transmission. The intricacies of their functions emphasize 
the complexity of the healing process and pave the way for 
the subsequent discussion of the sympathetic nervous sys-
tem’s role in fracture healing.

The Role of the Sympathetic Nervous System 
in Fracture Healing

Impact of the Sympathetic Nervous System 
on Fracture Healing

Studies have reliably demonstrated that the sympathetic 
nervous system (SNS) innervates bone and that adrenergic 
receptors are present on both osteoblasts and osteoclasts 
[111–113]. Although additional research is still needed, the 
aggregate of the findings so far suggests that while local 
sympathetic denervation improves fracture healing, com-
plete knockout of the SNS impairs fracture healing.

Experiments dating back to the mid-twentieth century 
have supported the idea that local sympathectomy increases 
blood flow to damaged tissues, potentially resulting in an 
increase in bone growth and an acceleration of fracture 
healing [114, 115]. For example, when these experiment-
ers fractured the hind legs of 12 dogs after performing a 
lumbosacral sympathectomy on them, they determined that 
there was a marked enhancement of the healing in 11 of the 
cases [115]. More recent experiments have provided sup-
port for this idea. When the mandible of rats was fractured 
and a bone-borne distractor implanted to induce distraction 
osteogenesis (DO), rats who had simultaneously experienced 
a cervical sympathetic trunk transection exhibited increased 
bone mineral density and more continuous bone formation 
at 14 days when compared to those rats with intact cervical 
sympathetic trunks [116].

Building on this experiment, researchers again used a 
rat model of mandibular DO with a simultaneous cervi-
cal sympathetic trunk transection to better understand the 
influence of the SNS on mesenchymal stem cells (MSCs) 
[117]. Immunohistochemical staining for nestin, a marker 
for MSCs, demonstrated an increased number of MSCs in 
bone-forming areas in the sympathetically denervated rats 
when compared with controls whose MSCs largely remained 
within their perivascular stem cell niche. It was also shown 
that norepinephrine, the primary neurotransmitter released 
by the SNS, prevented the osteogenic differentiation of 
MSCs, while downregulation of the β3-adrenergic receptor 
(ardb3) mitigated this norepinephrine-dependent inhibition 
of differentiation [117]. Taken together, these results show 
that the SNS decreases the migration and differentiation of 
MSCs, suggesting again that the intact SNS may exert an 
inhibitory control on bone growth and healing.

Additional support for the idea that inhibition of the 
SNS improves fracture healing comes from studies that 
manipulated the interaction between sensory and sympa-
thetic nerves. Prostaglandin E2, a known mediator of pain, 
is secreted by osteoblasts when bone density decreases 
[118••]. Evidence suggests that this substance acts on EP4 
receptors present on primary afferent sensory nerve fibers to 
inhibit sympathetic tone and via this pathway stimulate an 
increase in bone density. Likely due to the inhibitory effect 
of sympathetic signaling on MSC activity, EP4 receptor 
knockout mice displayed decreased MSC differentiation to 
osteoblasts and diminished osteogenesis [119].

On the other hand, there is a growing amount of research 
insinuating that total elimination of the SNS diminishes 
aspects of fracture healing. Our understanding of the effects 
of total sympathectomy has been greatly enhanced through 
the strategic use of neurotoxins like 6-hydroxydopamine 
(6-OHDA) [17, 120]. This potent compound is known for 
its deleterious impact on peripheral sympathetic nerve fib-
ers, culminating in the interrupted production of norepi-
nephrine [17, 120]. For example, upon injecting 6-OHDA 
into a mouse model, the measured amount of mineralized 
bone was decreased and the structural integrity of bones 
was compromised in the time period following femoral 
fractures, thereby underlining the crucial role of the SNS 
in optimal bone recovery post-trauma [120]. Further, in a 
second study that examined the femoral fracture healing 
trajectory in mice devoid of sympathetic innervation due to 
6-OHDA application, mice displayed decreased bone sta-
bility and a pronounced delay in bony callus development 
[17]. This provides additional evidence for the integral role 
of the SNS during bone repair. However, it is important to 
note that pharmacological drugs, like 6-OHDA, that were 
used in these studies may have poorly characterized impacts 
on the bone microenvironment that could also impact these 
results [121].
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Finally, the SNS’s function may extend to pain modula-
tion during fracture healing [7]. Following a fracture, sev-
eral neurotransmitters, cytokines, and growth factors are 
released which cause the proliferation of new sympathetic 
fibers that augment the perception of pain during the heal-
ing trajectory [50, 122]. However, while some experiments 
have found evidence for a heightened threshold for touch 
sensitivity after fracture in completely sympathectomized 
mice, another experiment concluded that mice treated with 
6-OHDA displayed no difference in withdrawal thresholds 
[7, 17, 123]. In light of these research findings, the role of 
the SNS in fracture healing is revealed as profoundly com-
plex, encompassing not only the physical repair process but 
also potentially the modulation of pain perception.

The Impact of Stress and Sympathetic Nervous 
System Activation on Fracture Healing

Chronic stress and its resultant chronic activation of the SNS 
are recognized as potential hindrances to the healing pro-
cess [124, 125, 126••, 127]. Through the continuous release 
of norepinephrine, chronic stress induces a dysregulation 
of immune responses that can deleteriously affect fracture 
healing [126••, 128, 129]. Chronic stress can be induced 
in mice via the chronic subordinate colony housing para-
digm, in which male mice are continuously exposed to a 
dominant male aggressor. In mice with fractures who are 
experiencing chronic stress, researchers have demonstrated 
reduced neoangiogenesis at the fracture site, decreased rates 
of chondrocyte-to-osteoblast transdifferentiation, and poor 
functional fracture healing outcomes when compared to con-
trols [126••]. Additional evidence exists for the idea that 
chronic stress impairs endochondral ossification [127]. Fur-
ther, an imbalanced immune response to fractures, character-
ized by increased neutrophils and decreased lymphocytes at 
the fracture site, was shown to be mediated by adrenergic 
signaling in chronically stressed mice [126••].

Chronic stress is also known to influence pain perception 
and may theoretically exacerbate pain experiences associated 
with fractures [130–132]. This has significant implications for 
patient comfort and recovery, particularly in instances of com-
plex or slow-healing fractures. In the case of complex regional 
pain syndrome, lumbar sympathetic blocks have beneficial 
impacts on pain and functionality, suggesting a potential area 
for investigation for the treatment of chronic stress-induced 
pain in fracture patients [133, 134]. Further research is neces-
sary to elucidate the relationship between the SNS, chronic 
stress, and fracture healing more comprehensively, particu-
larly with regard to how chronic stress affects the nervous 
system’s involvement in the various stages of fracture healing. 
Understanding these interactions may lead to the development 
of more effective therapeutic strategies for fracture healing, 
potentially by targeting the SNS or stress response directly.

Therapeutic Potential of Targeting Neural 
Pathways in Fracture Healing

Increasing our understanding of the neurobiology of fracture 
healing has opened up new avenues for potential therapeutic 
interventions focusing on the aspects of the nervous system 
involved in the healing process. One compelling approach 
involves modulating the activity of neurokinin-1 receptors 
(NK1; SP receptors). As mentioned above, poor fracture heal-
ing, as suggested by a smaller callus volume, decreased biome-
chanical strength of healing bone, and decreased angiogenesis, 
has been correlated with lower levels of SP in mice [57]. Con-
versely, evidence suggests that deliberate activation of NK1 
expedites bone repair in a dose-dependent manner, potentially 
through positive effects on the inflammatory response and 
promotion of osteoblast proliferation [24, 71, 135]. Thus, SP 
agonists could be used to enhance fracture healing. One theo-
retical drawback to the use of SP agonists is the fact that there 
is evidence that SP has a positive modulatory effect on pain 

Fig. 1  Nervous system regulation of fracture healing. This figure 
summarizes the contributions of the various aspects of the nerv-
ous system to fracture healing that were emphasized in this review. 
Growth factors and neuropeptides, including substance P (SP), cal-
citonin gene-related peptide (CGRP), and neuropeptide Y (NPY), 
all exert positive influences on fracture healing. The sympathetic 
nervous system, which releases norepinephrine (NE), can positively 
or negatively impact fracture healing depending on the degree of its 
involvement; local sympathectomies may improve fracture healing, 
while total systemic sympathetic denervation impairs fracture heal-
ing. Created with BioRender.com
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[66]. However, although behavioral evidence in animals sug-
gests that NK1 antagonists decrease pain, studies in humans 
have found no analgesic effects of NK1 antagonists [136, 137]. 
Although data does not exist on the effects of NK1 agonists 
on pain in humans, the lack of impact of NK1 antagonism on 
pain decreases the concern for hyperalgesia from SP agonists. 
However, there are some additional drawbacks to use of SP, 
due to its link to neurogenic inflammation in animal models as 
well as the fact that its intradermal injection produces a wheal 
and pruritis in humans [138, 139].

Another tactic to accelerate fracture healing could involve 
modifying the levels of neurotrophic factors such as NGF and 
BDNF. Studies have demonstrated that strengthening BDNF 
signaling via administration of R13, a small molecule that 
interacts with BDNF’s receptor TrkB, results in improved bone 
repair in mice [140]. Moreover, applying a BDNF-containing 
paste to fill the gap created while inducing a femoral fracture 
increased bone formation and promoted fracture healing [141]. 
Additionally, administration of gambogic amide, an agonist 
of TrkA (NGF receptors), led to increased biomechanical 
strength as well as calluses with increased fractional bone 
volume 21 days after fracture [142•]. It is conceivable that the 
targeted manipulation of neurotrophic factors could optimize 
MSC recruitment and differentiation, enhancing fracture heal-
ing and tissue regeneration.

Due to the important role that NGF plays in the genera-
tion and maintenance of nociceptive pain, it is not surprising 
that experiments in mice demonstrated that administration of 
an anti-NGF monoclonal antibody diminished pain-related 
behaviors following fracture without negatively impacting 
callus bridging or the biomechanical strength of the heal-
ing femur [106, 107, 143]. A key concern with the use of 
these drugs in humans, though, has been reports of oste-
onecrosis, extensive bone damage, and rapidly progressing 
joint destruction leading to the necessity for joint replace-
ment [144, 145]. These reports led to the US Food and Drug 
Administration [145] to vote decisively against approving 
tanezumab, an anti-NGF drug for osteoarthritis pain [146].

As the case of anti-NGF therapy has demonstrated, these 
promising neural targets come with inherent complexities. A 
primary concern is the interconnected nature of the peripheral 
nervous system and the risk for other physiological systems 
to be impacted when targeting aspects of the nervous system 
[147, 148]. Despite this challenge, the therapeutic potential of 
targeting neural pathways in fracture healing offers promising 
pathways for advancing bone repair and regeneration strategies.

Conclusion

The peripheral nervous system, as recent research has high-
lighted, plays a fundamental role in the physiological pro-
cess of fracture healing, actively influencing a wide range of 

cellular and molecular events (Fig. 1). The impetus for deepen-
ing this understanding is twofold: scientific and clinical. The 
development of novel drugs targeting aspects of the nervous 
system could potentially enhance the speed and quality of frac-
ture healing, alleviate complications associated with fractures 
such as pain, and decrease the burden on healthcare systems.
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