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Abstract
Purpose of Review  Summarize the recent literature that investigates how advanced medical imaging has contributed to our 
understanding of skeletal phenotypes and fracture risk across the lifespan.
Recent Findings  Characterization of bone phenotypes on the macro-scale using advanced imaging has shown that while wide 
bones are generally stronger than narrow bones, they may be more susceptible to age-related declines in bone strength. On the 
micro-scale, HR-pQCT has been used to identify bone microarchitecture phenotypes that improve stratification of fracture risk 
based on phenotype-specific risk factors. Adolescence is a key phase for bone development, with distinct sex-specific growth 
patterns and significant within-sex bone property variability. However, longitudinal studies are needed to evaluate how early 
skeletal growth impacts adult bone phenotypes and fracture risk. Metabolic and rare bone diseases amplify fracture risk, but 
the interplay between bone phenotypes and disease remains unclear. Although bone phenotyping is a promising approach 
to improve fracture risk assessment, the clinical availability of advanced imaging is still limited. Consequently, alternative 
strategies for assessing and managing fracture risk include vertebral fracture assessment from clinically available medical 
imaging modalities/techniques or from fracture risk assessment tools based on clinical risk factors.
Summary  Bone fragility is not solely determined by its density but by a combination of bone geometry, distribution of 
bone mass, microarchitecture, and the intrinsic material properties of bone tissue. As such, different individuals can exhibit 
distinct bone phenotypes, which may predispose them to be more vulnerable or resilient to certain perturbations that influ-
ence bone strength.

Keywords  Bone phenotype · Medical imaging · Fracture risk · Osteoporosis · Bone mineral density · Bone 
microarchitecture
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Introduction

The mechanisms that lead to bone fragility and subse-
quent fracture risk are multifaceted. Yet, the current clini-
cal gold standard for diagnosing osteoporosis is centered 
on one measured bone trait: areal bone mineral density 
(aBMD) captured with dual-energy X-ray absorptiometry 
(DXA) [1]. Although aBMD provides insight into bone 
mass, it does not provide context about the distribution 
of mass across the bone nor information regarding bone 
microarchitecture [2]. Consequently, stratification of the 
population based on aBMD alone fails to identify most 
individuals who go on to have a fragility fracture [3, 4]. 
Three-dimensional (3D) medical imaging technologies 
have made it possible to assess many of the determinants 
of bone fragility in vivo, improving our understanding 
of the characteristics that underpin fracture risk beyond 
aBMD [5, 6]. This includes insight into how whole bone 
structure and density distribution impact bone strength 
using computed tomography (CT) [7, 8], alongside an 
improved understanding of how bone microarchitecture 
influences bone strength, as measured by high-resolution 
peripheral quantitative CT (HR-pQCT) [9, 10]. How-
ever, even when incorporating this wealth of information 
about bone structure and volumetric bone mineral density 
(BMD), the improvement in assessing fracture risk in the 
general population beyond aBMD has only been incremen-
tal [9, 11]. The plateau in improvement may in part be due 
to the “one-size-fits-all” approach to characterizing bone 
fragility across the population, rather than recognizing 
that individuals likely experience different mechanisms 
of bone loss.

Advanced medical imaging has increased our recog-
nition that there is substantial variability in bone traits 
across the population. However, there remains the con-
tinued practice of treating cohorts as homogeneous when 
identifying traits that are indicative of bone fragility [12]. 
Although it is reasonable to presume that common traits 
exist across individuals who have a fragility fracture, the 
interindividual variability can overshadow differences 
reported between fracture and non-fracture cohorts [13]. 
As such, there is not necessarily a single combination of 
optimal skeletal traits, but instead, there may be different 
combinations of these traits, termed bone phenotypes, that 
can achieve similar functional needs. Recent studies lever-
aging medical imaging have begun to identify prominent 
bone phenotypes and stratify individuals based on pheno-
type to determine whether this approach can help elucidate 
the different mechanisms that lead to bone fragility [14, 15

In this review, we summarize the latest literature imple-
menting advanced medical imaging to investigate bone 
phenotypes across the lifespan. We highlight the potential 

implications a phenotypic approach has for improving 
fracture risk assessment across the lifespan, particularly 
focusing on aging and growth, the critical transitionary 
life stages for skeletal health. Furthermore, we explore 
the potential benefits of taking a phenotypic approach 
when assessing metabolic and rare bone diseases to better 
understand the disease-phenotype interaction. Finally, we 
provide clinical context into the assessment of skeletal 
phenotypes, highlighting current imaging strategies that 
are available in a clinical setting to assess fracture risk 
using advanced imaging.

Bone Phenotypes and Their Role in Fracture 
Risk Assessment

Bone is a complex adaptive system where multi-scale traits 
(material properties, microarchitecture, geometry) collec-
tively determine a bone’s mechanical properties and resist-
ance to fracture. These traits adapt in a coordinated manner 
to meet the daily functional needs of an individual, within 
genetically and physiologically viable constraints [13, 16]. 
For instance, if one trait is inhibited (e.g., external bone 
size), it is possible for other traits to adapt (e.g., cortical 
thickness), to ensure sufficient mechanical function is main-
tained. Consequently, there is natural variability across the 
population, where different bone phenotypes meet functional 
needs. However, when bone homeostasis is disrupted or 
becomes imbalanced, bone traits may not be able to compen-
sate for each other’s deficits, leading to compromised bone 
strength and increased fracture risk. Thus, to appropriately 
determine an individual’s fracture risk, it is insufficient to 
evaluate bone traits independently; instead, they should be 
considered in the context of the whole mechanical system 
[12]. The conceptual framework of bone phenotypes seeks to 
explore which combinations of bone traits arise more often 
and to determine how resistant these phenotypes are to short- 
and long-term fracture risk due to age-related bone loss or 
to perturbations in bone homeostasis that can be caused 
by disease or pharmacological therapies. In this section, 
we discuss current findings regarding bone phenotypes on 
the macro- and micro-scale that have been identified using 
advanced imaging and their implications for fracture risk.

Narrow Versus Wide Bone Phenotypes

Whole bone shape and mineral organization play a crucial 
role in bone strength and consequently in fracture risk. 
Characteristics that are typically assessed include cross-
sectional area, cortical thickness, and density, either as 
areal or BMD [17]. When describing the attributes of 
bone structure and density that are considered favorable 
for overall bone strength, a generalized characterization 
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is conventionally provided, whereby larger, thicker, and 
denser bones are seen as advantageous [2, 18, 19]. This 
is because bone strength in bending is directly propor-
tional to the distribution of mass about the neutral bend-
ing axis, while compressive strength also increases with a 
larger cross-sectional area [20]. Thus, even small increases 
in the external diameter of a long bone (increased bone 
size) will improve a bone’s ability to resist loading and 
meet functional needs [21, 22]. Although characterizing a 
larger cross-sectional area as a preferred trait is a reason-
able approach when considering immediate or short-term 
bone strength, it does not necessarily take into considera-
tion how the bone will adapt over time, particularly during 
aging [18, 23].

Several recent studies have demonstrated how exter-
nal bone size influences the temporal changes in bone 
strength throughout adulthood. A 14-year longitudinal 
DXA-based study found that females with narrow versus 
wide femoral necks had different rates of change in bone 
mineral content and area during the menopause transition 
[24]. Specifically, females with narrow femoral necks had 
smaller losses in bone mineral content (BMC) and greater 
increases in bone area relative to females with wide femo-
ral necks who faced notable BMC losses without com-
pensatory bone area growth. Furthermore, aBMD before 
menopause did not predict changes in structure or mass 
[24]. Another study stratifying females based on wide ver-
sus narrow femoral necks identified that there are likely 
differentiating risk factors for wide versus narrow bone 
phenotypes [25•]. In females with narrow bones, 80% of 
the variation in strength was explained by age, weight, 
and aBMD, while these same risk factors only accounted 
for half of the variation in strength in females with wide 
bones [25•]. These findings suggest that the variability in 

age- or menopause-related trajectories in bone traits can 
in part be explained by structural bone phenotypes, in this 
case, external bone size.

Similar findings have been found in males between the 
ages of 18 and 89 years, where cadaveric radii were assessed 
using peripheral quantitative CT (pQCT) and mechanical 
testing [26]. When the samples were divided into narrow 
versus wide bones, young adult males (< 40 years) with wide 
bones were 54% stronger compared to young adult males 
with narrow bones, but strength did not differ between older 
adult males with wide versus narrow phenotypes. In males 
with wide radii, there was a significant negative correlation 
between strength and age, while there was no such relation-
ship between strength and age for narrow radii (Fig. 1A) 
[26]. Comparable findings were identified at the femur, 
where males with wide bones had age-related declines in 
whole bone strength, while those with narrow femora had no 
significant age-related decline in strength [15••]. In both the 
radius and the femur, this divergent aging process between 
wide and narrow bones was in part explained by wide bones 
experiencing a more damaging effect of increasing corti-
cal porosity, due to pore size and spatial location, alongside 
hindered periosteal expansion. In contrast, narrow bones 
maintained steady periosteal expansion throughout aging 
alongside a reduced impact of cortical porosity on bone 
strength [15, 26].

Combined, these studies highlight evidence that phe-
notypic subsets of bone structure exist within sexes, par-
ticularly that narrow versus wide bones do not share the 
same age-related trajectories in overall bone strength. When 
extending the assessment across sexes, phenotypic varia-
tion becomes more pronounced, where female bones are 
not simply a proportionally smaller version of male bones. 
Rather, females typically have less bone mass and strength 

Fig. 1   A Association between age and bone strength (represented as bending moment) for male radii when grouped according to height-adjusted 
bone width [26]. B Schematic illustrating the structural changes due to aging in wide versus narrow bone phenotypes (adapted from [26])
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than males, after adjustment for body size, and this is driven 
primarily by a smaller relative cortical area [27, 28]. These 
insights have implications for assessing short- and long-term 
fracture risk, as in combination with sexual dysmorphism 
of the skeleton, wider bones are mechanically stronger at 
younger ages but experience greater age-related declines 
in strength when compared to narrow bones (Fig.  1B). 
Although further investigation is needed to understand the 
mechanisms driving phenotypic differences in structure and 
subsequent strength-decline trajectories, accounting for bone 
size could benefit the assessment of short- and long-term 
fragility fracture risk.

Microarchitectural Bone Phenotypes

The advent of HR-pQCT has enabled extensive investiga-
tion into the role of bone microarchitecture on fracture risk 
[29, 30]. Microarchitectural deterioration that underpins 
increased fracture risk is conventionally characterized by 
declining BMD, cortical thinning through endocortical 
resorption, increasing cortical porosity, and deteriorating 
trabecular microarchitecture [9, 10]. Although these attrib-
utes have been consistently linked with heightened fragility 
fracture risk [11, 31, 32], the approach often implies that 
these mechanisms of bone loss occur homogeneously across 
individuals. However, a recent population-based study using 
HR-pQCT demonstrated the lack of association between cor-
tical bone deterioration (i.e., cortical thinning and increased 
porosity) and trabecular bone deterioration, in the form of 
bone void spaces, across the adult lifespan [33]. In fact, sev-
eral cohort studies have demonstrated using cluster analysis 
that an elevated fracture risk can arise through deterioration 
of either cortical or trabecular compartments independently, 
in both males and females, highlighting that there is not a 
single microarchitectural phenotype of fragility [34–36].

Building on these insights, the Bone Microarchitecture 
International Consortium (BoMIC) leveraged fuzzy clus-
tering, a machine learning technique, to determine whether 
distinct phenotypes of bone microarchitecture could be iden-
tified in a large international HR-pQCT cohort of male and 
female adults (n = 6836) [14••]. Three prominent pheno-
types were identified in the older adult population, described 
as low-density, low-volume, and healthy bone phenotypes, 
based on their defining characteristics in terms of BMD and 
microarchitecture (Fig. 2) [14••]. Prospective fracture infor-
mation indicated that each phenotype had differing risks of 
fragility fracture, where the low-density phenotype had the 
highest fracture risk overall, and that within each phenotype 
a unique set of bone imaging biomarkers predicted fracture 
risk [14••]. This study suggests that certain mechanisms 
of microarchitectural deterioration (e.g., cortical versus tra-
becular deterioration) may be more detrimental for a specific 
phenotype, as they may not be able to compensate mechani-
cally through adaptation of other traits. A retrospective study 
of hip fracture patients further verified a strong relationship 
between fractures at the hip, a major osteoporotic fracture 
site, and the low-density phenotype, but highlighted sex-
specific differences in terms of distribution between male 
and female hip fracture patients across the microarchitectural 
phenotypes [37•].

Investigation into microarchitectural bone phenotypes 
aligned with macro-scale observations of wide versus nar-
row bone phenotypes, particularly the premise that external 
bone size plays a notable role in the progression of age-
related bone fragility [15, 24, 26]. Specifically, the low-
density phenotype, which has a larger total cross-sectional 
area and thinned cortex, had a higher fracture risk compared 
to the low-volume phenotype, which has a smaller cross-
sectional area and a thicker cortex. However, even within 
similar bone sizes, microarchitectural variations exist, as 
seen between the low-density and healthy bone phenotypes 

Fig. 2   Three-dimensional reconstruction of HR-pQCT scans at the distal tibia depicting bone microarchitecture in the healthy, low density, and 
low volume phenotypes identified in the Bone Microarchitecture International Consortium (BoMIC) cohort (adapted from [14••])
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which have comparable bone size in terms of total cross-
sectional area, but exhibit different microarchitectural 
arrangement [14••]. Given bone deterioration can manifest 
independently through different mechanisms (e.g., cortical 
versus trabecular bone loss), fracture risk likely depends on 
the ability of a bone phenotype to compensate for that form 
of structural deterioration [38]. However, current phenotypic 
characterization of bone microarchitecture has been limited 
to cross-sectional data, and thus longitudinal changes in rela-
tion to an individual’s phenotype have yet to be explored. In 
this sense, it is unknown whether certain microarchitectural 
phenotypes are more likely to experience a specific form of 
bone loss, and to what extent the phenotypes identified thus 
far manifest through aging or disease-related processes.

Implications of Growth on Bone Phenotypes

Adolescence is a critical period for skeletal development, 
as 30–50% of peak bone mass, the maximum amount of 
bone attained in an individual’s life, is accrued during this 
time [39, 40]. Alongside accumulation of sheer bone mass, 
adolescent growth is a period when bone shape and micro-
architectural characteristics are established. In fact, as much 
as 60% of the risk of developing osteoporosis later in life can 
be explained by the peak bone mass an individual attains 
after adolescent growth has ceased [41–43]. Consequently, 
adolescence is a critical transitionary stage for bone growth 
and lifelong fracture risk. In this section, we highlight the 
insights gained from advanced imaging into the potential 
impact bone growth has on bone phenotypes identified later 
in life and consider the short-term consequences of bone 
growth on fracture risk during adolescence.

Emergence of Lifelong Bone Phenotypes During 
Growth

Recent studies implementing HR-pQCT and pQCT to study 
skeletal development across adolescence have clearly estab-
lished distinct sex-specific trajectories in bone size, micro-
architecture, density, and strength [44, 45]. Many inter-sex 
phenotypic variations seen in adulthood, such as a propor-
tionally lower cortical area in females [27], originate dur-
ing adolescent growth. For instance, at 10 years of age, the 
median difference in failure load at the tibia between White 
males and females is only 9%; however, after growth has 
slowed (age 21 years), males have a 31% advantage over 
females (Fig. 3A) [45]. This difference arises because males 
experience prolonged childhood growth and a greater mag-
nitude of pubertal growth when compared with females 
[43]. The temporal difference in onset and rate of pubertal 
growth usually results in greater gains for males in terms of 
periosteal and longitudinal bone formation, resulting in a 
phenotype with larger cross-sectional bone area and greater 
estimated bone strength at diaphyseal sites [46, 47].

Beyond established sex-specific growth trajectories, 
recent adolescent centile curves developed from a large 
cohort of adolescent males and females (n = 1071) show a 
pronounced increase in within-sex variability of bone prop-
erties on the macro- and micro-scale from the time before the 
pubertal growth spurt to young adulthood [45]. This surge in 
variability across the population is in addition to the rapid 
gains in bone accrual due to growth. For instance, between 
the ages of 10 and 21 years, the variability (interquartile 
range) of cortical thickness at the distal tibia increases by 
66% in males and 60% in females [45]. Concurrently, the 
variability in trabecular number increases by 48% in males 

Fig. 3   A Deviation in median failure load at the distal tibia measured 
by HR-pQCT between White males and females during growth. B 
Percentile curves of distal tibia failure load in White males during the 

same time frame, with the increase in variation of bone strength high-
lighted. Graphs adapted from [45, 48]
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and 42% females, ultimately resulting in a large variability in 
bone strength by early adulthood (Fig. 3B) [45]. In contrast, 
within-sex variability in height does not change to the same 
extent; between the ages of 10 and 20 years, there is a 9% 
increase in interquartile range in males and a 4% decrease 
in variability in females [49]. This discrepancy in the devel-
opment of skeletal traits (e.g., cortical thickness, trabecular 
number, height) highlights how structural reorganization 
during bone growth occurs through different mechanisms, 
likely establishing the basis of bone phenotypes that are 
observed later in life.

Despite advances in high-resolution imaging over the 
past decades, few longitudinal studies have examined how 
bone microarchitecture, density, and strength adapt during 
childhood and adolescence, let alone applied a phenotypic 
approach. Long-term prospective studies are needed to clar-
ify how early skeletal development relates to phenotypes that 
have been observed later in life, and to what extent intrinsic 
(e.g., genetics, timing of pubertal onset) and extrinsic (e.g., 
physical activity, nutrition) factors influence these pheno-
typic trajectories.

Dynamic Bone Phenotypes During Growth

During periods of rapid bone growth, more young bone 
matrix with lower mineralization is present compared with 
older, denser bone matrix [50]. Adolescence is marked by 
a transient decrease in cortical BMD during mid-puberty, 
followed by significant increases, cumulating in an overall 
rise in BMD of approximately 35–55% [44, 51, 52]. The 
transient decreases in cortical BMD mid-puberty are under-
pinned by decreases in cortical thickness and increases in 
cortical porosity, that then reverse during later adolescence 
[44, 51]. The trabecular bone compartment also experiences 
enhancements as a result of growth, in order to more effi-
ciently transfer compressive loads, thereby increasing the 
mechanical competence of bone [53]. Mixed-longitudinal 
studies employing HR-pQCT have shown that there is con-
sistently high variability across the adolescent population in 
trabecular microarchitecture properties (number, thickness, 
separation) during growth, but the coordinated developmen-
tal adaptation of trabecular microarchitecture, alongside 
cortical traits, leads to a distinct increase in overall load-to-
strength ratio [44]. However, similar to cortical bone struc-
ture, there are sex-specific differences in microarchitectural 
changes, especially at the radius [44, 54].

During the pubertal growth spurt, rapid growth can 
outpace the consolidation of cortical and trabecular bone, 
resulting in a window of time where the bone is mechani-
cally compromised, temporarily elevating fracture risk [55]. 
However, prospective studies have struggled to consistently 
link microarchitecture deficits in adolescents to forearm 
fractures [56, 57]. It is possible that fracture risk could be 

influenced by the bone phenotype an individual establishes 
during this dynamic period of bone growth, particularly if 
the emerging phenotype further hinders bone’s ability to 
compensate for the temporary mechanical instability expe-
rienced during the pubertal growth spurt. For instance, a 
cross-sectional study using HR-pQCT showed that females 
and males (n = 115) between the ages 8 and 15 years with a 
recent low-energy forearm fracture had thinner cortices and 
lower cortical area at peripheral sites than those without a 
fracture [56, 58]. Prospective studies further suggest that 
females who fracture their forearms have significantly lower 
trabecular BMD that persists for at least several years fol-
lowing fracture [56, 59]. In contrast, prospective and follow-
up assessment of cortical and trabecular properties are not 
consistent in adolescent males [56, 57], suggesting sex dif-
ferences in prevalent phenotypes that are at risk of fracture 
during bone growth [56, 57].

Overall, there is broad consensus that bone growth during 
adolescence is important for establishing long-term skeletal 
health, and recent population-based studies have provided 
valuable insight into bone development on the micro-scale. 
However, long-term prospective studies are needed to clarify 
skeletal phenotypes associated with fractures in males and 
females during adolescent growth.

Metabolic and Rare Bone Diseases 
in the Context of Bone Phenotypes

Assessment of metabolic and rare bone diseases using 
advanced medical imaging has been of increasing interest, 
as these diseases alter bone characteristics through specific 
mechanisms, leading to increased fracture risk. In theory, 
gauging fracture risk within a specific disease should be 
more precise than in the broader population, given it is 
driven by a specific pathology. Yet, in many cases, bone 
traits among individuals within a disease are as highly vari-
able as in healthy cohorts, confounding our ability to assess 
who is at risk of fracture and limiting the ability to develop 
tailored interventions [60–62]. The heterogeneity in bone 
traits within a disease may in part be attributed to the inter-
play between the disease and an individual’s bone pheno-
type, termed the “disease-phenotype” interaction. In this 
context, an individual may be more or less resilient to the 
degenerative effects of a disease, depending on the bone phe-
notype prior to disease onset. Should this be the case for cer-
tain diseases, an understanding of disease-phenotype inter-
actions could help elucidate who will be the most adversely 
impacted as a disease progresses, enabling interventions to 
be targeted towards these individuals. Although conceptu-
ally compelling, the interplay between bone phenotypes and 
bone diseases has not yet been explored, and it does not 
necessarily apply to all diseases. The following section will 
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discuss a few metabolic and rare bone diseases that have 
been studied extensively in recent years with advanced medi-
cal imaging, summarize the insights gained, and highlight 
how a phenotypic approach may enhance the understanding 
of fracture risk in these populations.

Metabolic Bone Diseases

Diabetes mellitus, categorized primarily as type 1 (T1D) 
and type 2 (T2D) based on pathophysiology, is among the 
most common diseases affecting bone metabolism. Both 
T1D and T2D are associated with increased fracture risk 
due to a combination of different cellular and molecular 
mechanisms that can lead to alterations at the cellular, 
matrix, and structural level [63]. Given the complexity of 
these mechanisms acting on bone, it is not surprising that 
aBMD alone does not fully explain the increased fracture 
risk in patients with diabetes [64]. A recent meta-analysis 

of HR-pQCT studies found that T1D (4 studies) was asso-
ciated with significant trabecular deterioration at the distal 
radius, evident by lower trabecular BMD and number and 
increased inhomogeneity [65•]. In contrast, T2D (12 stud-
ies) was linked to intra-cortical deterioration at the radius, 
identified by a higher cortical porosity (Fig. 4A) [65•]. 
Interestingly, structural degeneration was not detected at 
the tibia, suggesting that mechanical loading may coun-
teract diabetes-induced bone deterioration. Despite these 
insights, establishing a distinct bone phenotype for T1D 
and T2D remains challenging [60]. The meta-analysis 
highlighted variability in findings across populations, 
further emphasized by a recent study that found contra-
dictory results in a large cohort of participants with T1D 
[66]. Reasons for the lack of consensus likely stem from 
the broad range of pre-existing bone phenotypes among 
individuals who develop diabetes, underscored by the het-
erogeneity in age, ethnicity, and sex of studied populations 

Fig. 4   A Three-dimensional HR-pQCT reconstructions of distal 
radius scans showing examples of bone phenotypes identified through 
the meta-analysis [65•] in older adult females, aged 79–80, without 
diabetes, type 1 diabetes (trabecular deterioration), and type 2 diabe-
tes (cortical porosity). The left figure of each example depicts trabec-
ular (green) and cortical (grey) microarchitecture and the right figures 

of each example depict porosity (red) in the cortical compartment 
(transparent grey). Examples are from population-based cohorts cour-
tesy of the Bone Imaging Lab, Calgary, Canada [37, 48]. B Three-
dimensional HR-pQCT reconstructions of distal tibia scans showing 
examples of the variability of bone phenotypes in females with type I 
osteogenesis imperfecta [67]
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[29, 63]. Thus, the impact of diabetes on an individual’s 
bone strength, and consequently fracture risk, may depend 
on their pre-existing bone phenotype and its adaptive abil-
ity to compensate mechanically for disease-driven bone 
degeneration. For example, as mentioned above, wider 
bones exhibit greater strength-decline trajectories dur-
ing aging due to increasing cortical porosity and hindered 
periosteal expansion than narrow bones [26]. Thus, an 
individual with a wide bone phenotype may potentially 
be more severely afflicted by the additive effects of T2D 
on pore expansion than an individual with a narrow bone 
phenotype, leading to an increase in fracture risk in a wide 
bone phenotype. Conversely, a narrow bone that maintains 
periosteal expansion throughout aging may be more capa-
ble of compensating structurally for T2D-induced cortical 
porosity. However, future research, particularly longitu-
dinal studies, are necessary to understand the potential 
for disease-phenotype interactions and implications on 
diabetic fracture risk.

Chronic kidney disease (CKD) and glucocorticoid-
induced osteoporosis (GIOP) are both metabolic bone 
diseases that can cause severe bone deterioration, albeit 
through different mechanisms. CKD is a multifaceted 
condition, of which increased fracture risk constitutes 
just one part of the systemic effects of the disease [68, 
69]. Deterioration of bone microarchitecture measured by 
HR-pQCT is already observed in the early stages of CKD 
[70], with more pronounced alterations in patients at more 
advanced stages [71]. Nevertheless, the specific nature of 
CKD-related bone loss (trabecular versus cortical) varies 
across studies using QCT and HR-pQCT [72•], and conse-
quently, the sensitivity of DXA-based aBMD in assessing 
fracture risk is limited [61]. In contrast, GIOP is a direct 
consequence of glucocorticoid treatment, often prescribed 
for conditions such as rheumatological conditions [73] or 
lung diseases [74]. Reduced BMD, microarchitecture, and 
strength have been reported in postmenopausal females 
on glucocorticoid treatment when compared to healthy 
controls [73, 74]. Several studies have shown that BMD, 
bone microarchitecture, and strength from QCT and HR-
pQCT can discriminate vertebral fractures in glucocorti-
coid-treated adults [75, 76]. While GIOP severity often 
correlates with treatment dose and duration [77], still 
some patients on a low glucocorticoid dose can have a 
higher rate of bone loss than patients on a higher dose 
[78]. Although the cellular and molecular pathophysiology 
of GIOP have been extensively studied, the variation in 
bone response to glucocorticoid treatment remains poorly 
understood [78]. For both CKD and GIOP, the mechanisms 
of bone loss might differentially impact the mechanical 
integrity of the bone phenotypes discussed throughout this 
review. Enhancing our grasp on how disease-driven bone 
degeneration affects specific phenotypes may help pinpoint 

those at the highest risk of rapid strength decline, guiding 
targeted interventions for both conditions.

Rare Bone Diseases

Osteogenesis imperfecta (OI) is a rare bone condition with 
unique bone phenotypes stemming from a genetic collagen 
deficiency. The skeletal phenotypes among individuals with 
OI are heterogenous, reflective of the genetic variability of 
the condition (Fig. 4B). Several studies have used pQCT, 
and more recently HR-pQCT, to characterize bone pheno-
types in OI. Imaging with pQCT has found that bone area 
and BMD can be low, normal, or high relative to healthy 
controls, dependent on the skeletal site [79–81]. More 
recently, HR-pQCT has consistently shown deterioration 
in the trabecular microarchitecture of patients with OI [67, 
82–84]. Generally, bone characteristics vary between OI 
subtypes and genetic mutations. A recent large cohort study 
employed HR-pQCT to assess bone microarchitecture and 
strength relative to age- and gender-matched references and 
showed considerable interindividual heterogeneity, suggest-
ing that existing OI classifications might not capture the full 
range of skeletal diversity [67]. It remains unknown whether 
subgroups based on bone phenotype may exist in OI and to 
what extent medical imaging can capture phenotypic vari-
ability, given the genetic impairment of this condition acts 
on the material properties of the bone [85].

Other rare conditions with notable interindividual bone 
phenotype variability include pregnancy- and lactation-
induced osteoporosis [86], and inborn errors of metabolism 
that affect bone such as hypophosphatasia and X-linked 
hypophosphatasia, Gaucher disease, and Pompe disease [29, 
87, 88]. However, advanced imaging data is limited in these 
populations.

Clinical Implications of Skeletal Phenotypes

Fractures occur when the load on bone exceeds its capac-
ity to resist fracture and are the result of the presence of 
bone- and extra-skeletal fracture risk factors. In this con-
text, around 30 years ago, the bone-related phenotype was 
described in general terms as osteoporosis and defined 
broadly as “a disease characterized by low bone mass and 
microarchitectural deterioration of bone tissue, leading to 
enhanced bone fragility and a consequent increase in frac-
ture risk” [89, 90]. Despite the availability of guidelines on 
medications and lifestyle for fracture prevention, still many 
individuals worldwide suffer a fragility fracture [91].

In the context of assessing osteoporotic fracture risk, an 
individual’s bone phenotype is reduced to a singular trait: 
aBMD measured by DXA. Areal BMD has a high speci-
ficity to predict fractures, meaning that individuals with 
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exceptionally low bone mass (i.e., a T-score ≤  − 2.5) are 
identified to have an osteoporotic phenotype and thus have 
a high risk of fractures [92, 93]. In contrast, aBMD has a 
low sensitivity, meaning that most patients who fracture do 
not have an osteoporotic phenotype according to the aBMD 
diagnostic threshold. Consequently, when only aBMD is 
used to phenotype bone and the basis for intervention thresh-
olds, individuals with the osteoporotic phenotype will be 
treated, regardless of fracture status, while most individuals 
who will go on to fracture will not receive treatment [92]. 
This raises the question as to how to improve osteoporosis 
screening and what other relevant risk factors can be clini-
cally identified.

The Clinical Implications of Macro‑ 
and Microarchitectural Phenotypes

Fracture risk depends on the combined structural and mate-
rial properties of bone that are not fully captured by aBMD. 
For example, patients with a fracture have some form of 
deteriorated microarchitecture (the second part of the WHO 
definition of osteoporosis), which worsens with age [10]. 
Prospective studies have shown that combined assessment of 
cortical and trabecular bone microarchitecture by HR-pQCT 
improves overall fracture prediction beyond aBMD [9, 94, 
95]. Furthermore, the differentiation of patients with severe 
microstructural deterioration could have important implica-
tions for the decision on therapeutical interventions regard-
ing the use of bone-preserving antiresorptive and bone-
forming anabolic drugs at any level of aBMD, such as those 
with wide versus narrow bones. However, the availability of 
HR-pQCT for clinical application is still limited worldwide, 
and the clinically available CT systems cannot yet resolve 
cortical and trabecular microarchitecture to the same level 
as HR-pQCT [29]. Consequently, alternative strategies need 
to be employed clinically to assess and manage fracture risk.

Using Fracture Events to Broaden the Osteoporotic 
Phenotype

The WHO definition of osteoporosis also includes the pres-
ence of a fragility fracture as a sign of osteoporosis. In this 
context, a history of fragility fracture, regardless of fracture 
location is an indicator of bone failing to meet its day-to-day 
functional needs, and thus what can be considered a clinical 
phenotype of fragility [96–99]. Vertebral fractures (VF) are 
the most frequent osteoporotic fractures [100•] and consid-
ered a hallmark of decreased bone quality [101]. This is 
perhaps because most VFs arise from daily activities that 
overload the vertebrae rather than from a fall-induced frac-
ture [102]. As they occur most often (in two-thirds of cases) 
subclinical, imaging of the spine is the only way to have 
a full VF history [103]. Vertebral Fractures Assessment 

(VFA) has been shown to enhance fracture prediction 
beyond aBMD [104] and beyond FRAX [105], indicating 
that vulnerability to having a VF is likely a consequence 
of combined structural and density traits that make a up an 
individual's bone phenotype. Opportunistic identification of 
VFs from CT scans performed for other medical reasons 
is one of the emerging developments for assessing fracture 
risk and is a promising means to identify definite cases of 
bone fragility in the population [106]. Conventional compu-
tational methods and machine learning-based algorithms are 
being developed to facilitate (semi)automatic identification 
of VFs, through a combination of measuring aBMD, volu-
metric BMD, and biomechanical properties estimated from 
finite element analysis [107]. These new CT-based algo-
rithms still need to be integrated into the clinical workflow 
and further validated with respect to patient management 
[108, 109], but once implemented have potential to broaden 
identification of individuals with advanced fragility so that 
the mechanisms leading to VF can be better understood.

Fracture Risk Phenotypes

Patients with a recent fracture have a wide array of bone- and 
fall-related risks beyond aBMD that can be used as an indi-
rect means to establish bone fragility phenotypes [110–112]. 
Risk factors besides fracture history that are associated with 
short- and long-term fracture risk include various comorbid-
ities, fall history, diseases, and medications [111, 113–118]. 
Up to 26 risk factors have been included in fracture risk 
algorithms such as FRAX, Garvan, and QFracture, to stratify 
the population into what can be considered “fracture risk 
phenotypes.” However, the intervention threshold for FRAX 
(when aBMD is included) is defined based on the mean 
10-year risk of subjects with a fracture, implying that half 
of patients with a recent fracture will not meet the interven-
tion threshold based on FRAX phenotyping. FRAX can be 
adapted further for other risk factors, but the accuracy of 
multiple adjustments is unclear [119]. Although fracture risk 
assessment tools provide a readily available approach for 
stratifying the population to assess fracture risk, they cannot 
provide interpretation into the mechanisms leading to bone 
fragility. Consequently, the approach is limited to phenotyp-
ing fracture risk, and not phenotyping bone in a manner that 
could offer insight into targeted strategies for treatment.

Conclusion

The idea that different combinations of structural traits 
can lead to bone fragility is not a new notion, but recent 
advancements in medical imaging have rejuvenated interest 
and enhanced our ability to explore in greater detail the dif-
fering mechanisms leading to fracture [25, 120–122]. Bone 
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fragility is not solely determined by density but by a combi-
nation of bone geometry, distribution of bone mass, micro-
architecture, and the intrinsic material properties of bone 
tissue. Each of these traits can be influenced by a myriad 
of genetic, hormonal, nutritional, and mechanical stimuli 
throughout an individual’s life. As such, different individuals 
may exhibit distinct bone phenotypes that predispose them to 
be more vulnerable or resilient to certain perturbations that 
influence bone strength. In this sense, skeletal phenotypes 
are not necessarily groups of traits that define “healthy” ver-
sus “fragile” bone but rather seek to identify the combina-
tions of bone properties that arise more frequently together. 
With this approach, a more targeted strategy can be taken 
to understand how each individual would respond to per-
turbations that may disrupt the skeletal system’s ability to 
maintain a system-level homeostasis [13].

Overall, understanding these bone phenotypes is crucial, 
not just for predicting fracture risk, but also for effectively 
tailoring therapeutic and lifestyle interventions to individu-
als. While aBMD remains a cornerstone for osteoporosis 
diagnosis, it is clear that a more comprehensive understand-
ing of bone health requires a deeper assessment of bone phe-
notypes that arise across the population and throughout the 
lifespan. Advanced medical imaging, combined with emerg-
ing data-driven computational techniques, offers a promising 
path forward in this endeavor, with the potential to transform 
our approach to bone health and fracture prevention.
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