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Abstract
Purpose of Review  This review examines the diverse functional relationships that exist between the peripheral nervous 
system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries 
for skeletal repair.
Recent Findings  The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Con-
sistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate 
the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an 
orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting nega-
tive consequences such as pain.
Summary  An improved understanding of the functional bidirectional pathways linking the PNS and bone has important 
implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous 
identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse 
states of health and disease.

Keywords  Bone regeneration · Peripheral nerve · NGF/TrkA · Skeletal development · Denervation · Fracture healing

Introduction

The skeleton and the peripheral nervous system (PNS) are 
not independent. Instead, there is a continuous bidirectional 
relationship across both that facilitates optimal function 
[1]. This can include direct, local actions of nerves on bone 
cells or delivery of circulating neurotransmitters through the 
bloodstream (Fig. 1(A), (B)). Conversely, secreted factors 
from skeletal cells and biomechanical signals can modulate 
bone-to-brain interoceptive pathways and global peripheral 
nerve function. Beyond this, there are many layers of pos-
sible regulation. For example, neural signals in distant organ 
systems such as the gut, pancreas, or liver can regulate the 
bone through the modulation of circulating and humoral 
factors [2]. PNS function can also modify the immune 
response. In addition, changes in peripheral nerve function 
can alter muscle, behavior, and movement, resulting in local 
adaptation of the bone due to altered biomechanical load-
ing [3]. Though complex, these broad potential relationships 
between the PNS and bone present a unique opportunity for 
discovery. Indeed, it has become increasingly clear that an 
improved understanding of neural signaling pathways has 
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important implications for skeletal development and regen-
eration. In this review, we will first provide an overview of 
the peripheral innervation of the bone during development 
and repair. Next, we will comprehensively summarize the 
outcomes from denervation experiments performed since the 
1900s that inform our understanding of the in vivo relation-
ships between the PNS and bone. Last, we will discuss the 
developing clinical implications and applications for PNS 
pathways in skeletal regeneration.

Innervation of the Bone from Development 
to Regeneration

Coordinated Neural Infiltration Occurs During 
Skeletal Development

The bone contains a widely distributed neurovascular 
system that includes both sensory and sympathetic nerve 
fibers [4•, 5, 6, 7•, 8, 9••, 10••] (Fig. 1). By contrast, 

Fig. 1   Innervation and regulation of the bone by the peripheral 
nervous system (PNS). (A) Three pathways of regulation of the 
bone by the PNS: (1) network effects, where all four divisions of 
the PNS indirectly influence the bone via their actions on diverse 
organ systems (represented by a liver icon) and downstream cir-
culating factors (blood vessel icon); (2) indirect effects via cir-
culation, where the sensory, parasympathetic, and sympathetic 
divisions of the PNS influence the bone by secreting neurotrans-
mitters into the bloodstream; and (3) direct innervation of the 
bone, where only the sensory and sympathetic divisions directly 
release signals into the local bone microenvironment. Solid lines 
represent direct innervation, and dotted lines represent subse-

quent indirect effects mediated by circulating factors. (B) Direct 
innervation of bone structures by the sensory and sympathetic 
divisions of the PNS. The colored lines originating from (A) 
continue into this figure as nerve fibers from the sensory (pink) 
and sympathetic (green) divisions. This figure provides a decon-
structed view of a bone, with the periosteum being pulled away 
from the surface and the bone sliced to expose the marrow and 
vessels within. Multiple call-out boxes elucidate the interac-
tions of these nerve fibers with various bone structures. The 
colored circles near the nerve endings represent neurotransmit-
ters secreted by these nerve fibers in response to local molecular, 
chemical (e.g., H +), and mechanical signals
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the bone is not directly innervated by the motor or para-
sympathetic divisions of the PNS (reviewed in [11]). This 
well-defined pattern of skeletal innervation is established 
during development and is highly conserved between ver-
tebrate species [8, 12, 13]. Axons extend from the central 
nervous system (CNS) to peripheral targets during gesta-
tion (day 9 to day 13 in mouse) [14]. Consistent with this, 
in rats, the first signs of sensory innervation of the limb 
skeleton have been detected in the perichondrial tissue at 
gestational day 15 and within the bone organ at neonatal 
day 4 [8, 12]. This matches the infiltration of tropomyo-
sin receptor kinase A (TrkA) expressing sensory nerves at 
the primary ossification centers at gestational day 14.5 in 
mice primarily in response to nerve growth factor (NGF) 
expression by the perichondrial cells [13]. Overall, nerves 
and blood vessels infiltrate simultaneously in areas with 
high osteogenic and chondrogenic activities close to the 
growth plate, with sensory nerves infiltrating during gesta-
tion, approximately 10 days before the postnatal recruit-
ment of sympathetic autonomic axons [8]. This neuronal 
temporal delay is synchronized with the mineralization of 
the primary ossification centers [8, 12]. The early presence 
of sensory and sympathetic nerve fibers is similarly seen 
during intramembranous bone development in neonatal 
periods [15, 16].

After development, the innervation of the mature skeleton 
takes on several key features. First, the highest innervation 
density is in the periosteum, followed by the bone marrow 
and cortical bone [4•, 5, 6, 7•, 9••] (Fig. 1). While sensory 
nerves predominate in the periosteum, this is reversed to 
favor sympathetic axons within the bone marrow. There is 
also evidence of regional variation, for example, with the 
thoracic vertebra having higher levels of sensory innerva-
tion than the neurocranium [7•]. Second, consistent with 
their vasoregulatory role, most nerves in and on the bone 
are closely associated with the arteriolar vascular network 
(> 95% in the bone/marrow; ~ 80% in periosteum) [4•, 6, 
11]. In humans, this means that nerve fibers are widely 
distributed with arterioles throughout the Haversian canal 
system, and in smaller species such as rodents, nerves run 
with nutrient arteries through transcortical canals to enter 
the bone marrow. By contrast, venous sinusoids in the bone 
and elsewhere throughout the body are not innervated. There 
are also many regions of the bone and bone marrow that 
are relatively or completely aneural. The endosteum, for 
example, is essentially devoid of innervation [4•, 6]. Third, 
there are no nerve cell bodies or true synapses in the bone. 
Nerve cell bodies are located in the ganglia at the level of 
the spinal cord (or corresponding craniofacial ganglia) [11]. 
Sensory and sympathetic nerves then target the bone through 
unipolar axonal extensions, referred to as free nerve endings 
because they do not synapse with other cells. Instead, they 
exist locally within the environment and, depending on the 

nerve type, relay information to the CNS based on local 
changes in pressure, ions, metabolites, and/or soluble factors 
[11, 17, 18]. Conversely, axons in bone signal to surrounding 
cells through the bulk release of neurotransmitters and neu-
ropeptides. Additional information about neuronal subtypes, 
targeting, and function is beyond the scope of this review but 
has been discussed elsewhere [11, 17–20].

The Skeletal Neural Network Undergoes Active 
Remodeling During Bone Regeneration and Repair

Neural infiltration following skeletal injury is a well-
described phenomenon that contributes to pain [21–23] but 
may also be important for adequate healing. Secreted nerve 
recruitment factors termed neurotrophins are found through-
out regions of bone regeneration with expression from 
diverse neural and non-neural cell types, including osteoline-
age cells, chondrocytes, macrophages, osteoclasts, and vas-
cular cells [13, 24, 25, 26•, 27, 28]. Neurotrophins promote 
axonal growth into the injured site and, in some cases, may 
also act directly on local skeletal or endothelial cells to pro-
mote osteogenesis and angiogenesis, respectively [28–30]. 
Expression of the neurotrophin NGF, a TrkA receptor ago-
nist, is driven by inflammatory signals such as interleukin-1 
beta (IL-1β) and tumor necrosis factor-alpha (TNFα) that 
rapidly upregulate its local expression, which peaks approxi-
mately 3 days after acute bone injury [26•, 27, 28]. Recent 
studies also convincingly demonstrate that NGF binding to 
neural TrkA is the main stimulus for nerve ingrowth dur-
ing skeletal regeneration [24, 26•, 27]. This is consistent 
with the expression of TrkA on ~ 80% of sensory and ~ 100% 
of sympathetic nerves in the bone [5]. Expression of the 
TrkC agonist, neurotrophin-3 (NT-3), follows a similar pat-
tern after fracture, while the TrkB agonist, brain-derived 
neurotrophic factor (BDNF), remains elevated throughout 
healing [28]. In distraction osteogenesis, which provides a 
model to explore both endochondral and intramembranous 
ossification, NGF and TrkA are expressed highly during the 
distraction phase, while BDNF, NT-3, TrkB, and TrkC are 
upregulated during the consolidation phase. Chemoattract-
ants and chemorepellants also direct the projections taken 
by the axonal growth cones, in addition to acting locally 
to regulate skeletal cells. This includes galanin, netrins, 
semaphorins, neuropilins, and ephrins, many of which have 
emerging roles in bone homeostasis and repair [31–34]. 
Many neuroregulatory factors can also directly stimulate 
angiogenesis, reinforcing the close coupling between nerve 
recruitment, vascularization, and healing [30, 35, 36].

Local nerve sprouting after injury expands the web of 
axons in the bone without changing the overall number 
of neurons in the CNS. This may have functional conse-
quences for the interpolation of nearby signals through 
central relays and can also substantially modify the local 



506	 Current Osteoporosis Reports (2023) 21:503–518

1 3

release of neurotransmitters. After a fracture, sensory 
axons rapidly infiltrate the callus and periosteum with 
maximal innervation reported between days 1 and 7 after 
injury, prior to gradual regression during consolidation 
and healing [21, 27, 37–40]. Infiltration of nerves occurs 
even prior to blood vessels in some circumstances [27, 39]. 
Recruitment of sympathetic nerves after injury coincides 
with sensory peptidergic axons, likely due to the shared 
expression of TrkA and response to NGF by both axon 
subtypes [27, 38, 41]. In angular fractures, a unique tibial 
fracture model with site-specific changes in bone heal-
ing, sensory and sympathetic axon density is significantly 
higher along the concave side of the fracture site rather 
than the convex side, coinciding with regions of higher 
bone formation [37, 38]. This suggests that early neural 
(and perhaps combined neurovascular) infiltration may be 
vital to promote adequate bone formation. By contrast, in 
non-healing fractures, one study in humans found a lack 

of innervation, while another study identified neuroma-like 
structures in mice [42, 43]. Persistent innervation likely 
contributes to sustained pain responses [21, 22, 43]. How-
ever, it is unclear whether nerves that are generally sus-
pected to play a positive role in early regeneration may also 
function to inhibit healing when they persist.

Neural Contributions to Bone Homeostasis 
and Regeneration—Positive, Negative, 
Neutral, or All of the Above?

Since the 1800s, there have been nearly 100 studies that 
have used denervation approaches to isolate the effects of 
the different branches of the PNS on bone development, 
homeostasis, and repair (Fig. 2). These results are summa-
rized below, and 65 key experiments across 51 manuscripts 
from 1900–2023 are presented in Table 1.

Fig. 2   Effects of peripheral denervation on bone development, home-
ostasis, and repair. This figure illustrates the key methods and out-
comes of 65 denervation experiments from 1900–2023, as detailed 
in Table 1. The schematic features a section of the spinal cord with 
sensory (pink), sympathetic (green), and motor (yellow) nerve fibers 
extending to a long bone, with accompanying muscle and vascula-
ture. Seven boxes, each color-coded to the relevant nerve type, detail 
specific types of interventions and their collective outcomes. Icons 
within the boxes represent the method of denervation: a scalpel for 

surgical cuts, forceps for the removal of nervous tissue, and syringes 
for chemical/genetic denervation. The outcomes of these interven-
tions are summarized by colored gradient bars (green for positive 
effects on the bone, yellow for neutral, and red for negative), reflect-
ing the proportion of experimental studies yielding the indicated 
results. Additional icons highlight specific outcomes: artery with an 
upward arrow indicates increased blood flow, cracked bone signifies 
poor fracture healing, bone with a downward arrow represents bone 
loss, and muscle with a downward arrow indicates muscle loss
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Mixed Denervation Approaches Reinforce the Link 
Between the Muscle and Bone and Provide New 
Clues About Neural Coordination of Soft and Hard 
Tissue Healing

Sir D’Arcy Thompson in 1917 said, “Between muscle and 
bone there can be no change in the one but it is correlated with 
changes in the other” [44]. The same remains true within the 
context of the neural regulation of the bone. Specifically, any 
reduction of the motor innervation of muscle will subsequently 
lead to progressive skeletal atrophy due to loss of muscle mass. 
This is most clearly shown after the transection of the ventral 
motor roots of the spinal cord to induce selective motor den-
ervation of the limb [45, 46•] and has since been repeated 
many times in studies of peripheral nerve resection. This most 
commonly includes the brachial plexus (upper limb), sciatic 
and femoral nerves (lower limb), and inferior alveolar nerve 
(mandible) that contain mixed populations of motor, sensory, 
and sympathetic axons [47–59]. In 12/14 studies in Table 1, 
when mixed surgical denervation was paired with models of 
bone injury, denervation had a negative impact on soft tissue 
closure, fracture repair, or osseous defect healing.

Mixed peripheral nerve function has also been studied 
within the context of axolotl limb regeneration. Axolotls 
are capable of full limb re-growth when amputation is per-
formed proximal to the elbow joint. Local expression of neu-
regulin-1 and its receptor, ErbB2, are decreased with limb 
denervation [60]. In addition, denervation delays regenera-
tion, while supplementation of neuregulin-1 rescues regen-
eration in denervated limbs. The closest analog to this in 
mammals is the regeneration of the terminal portion of the 
digit tip. Sensory and sympathetic nerves are found in the 
digit tip prior to and during regeneration [61••]. However, 
despite work suggesting that nerves are required for com-
plete renewal [62], a recent study found that nerves are 
exclusively required for soft tissue wound closure rather than 
bone regeneration. Thus, when open wounds were treated 
with Dermabond to stimulate closure, regenerated digits 
with denervation were morphologically similar to controls 
[63]. Overall, mixed denervation approaches demonstrate 
that an intact PNS supports optimal regeneration when pre-
sent. In addition to maintaining muscle mass, this work also 
hints at mechanisms that may include the neural regulation 
of both hard and soft tissue healing.

Studies of Surgical, but Not Chemical, Denervation 
Show that Depletion of Sympathetic Nerves May 
Promote Bone Accrual and Repair by Increasing 
Blood Flow

In the early 1900s, an extensive series of experiments were 
undertaken to understand the impact of surgical sympa-
thetic denervation on bone development and fracture healing 

(Fig. 2, Table 1). The rationale was the finding that sym-
pathetic denervation could promote local vascularization 
and blood flow. The first surgical method consisted of the 
removal of the sympathetic ganglia (e.g., unilateral lumbar 
gangliotomy to denervate the lower limb). This results in 
permanent and selective removal of the sympathetic nerves 
in a small body region. Fracture or bone defect healing 
with sympathetic gangliotomy showed either no change 
[64–68] or increased healing on the sympathectomized side 
[67, 69–71]. Unilateral lumbar sympathectomy was also 
performed in 46 children with leg paralysis and unilateral 
shortening due to poliomyelitis, to increase the growth of 
the affected limb [72]. Despite failed experiments in kit-
tens, puppies, and lambs that showed no difference in limb 
growth, there was an acceleration or maintenance of the rate 
of growth of the paralyzed leg on the sympathectomized side 
in 63% of cases. The second approach, termed periarterial 
sympathectomy, consisted of the removal of the sympathetic 
nerve axon-containing adventitia from the vessel wall (e.g., 
the femoral artery for the lower limb). This causes sympa-
thetic denervation of the vessel itself and any downstream 
site that was originally targeted by this vascular network. 
Overall, periarterial sympathectomy resulted in increased 
blood flow with more rapid callus formation, ossification, 
and healing on the sympathectomized side in dogs, rabbits, 
and humans [71, 73, 74]. However, despite some apparent 
clinical success, these procedures received substantial push-
back from other members of the medical community that did 
not find them to be advantageous, and surgical sympathec-
tomy has since been discontinued for growth- or fracture-
related outcomes.

In contrast to the generally positive results of surgical 
sympathectomy, chemical sympathectomy often leads to 
bone loss, impaired bone strength, and impaired bone heal-
ing (Fig. 2, Table 1) [75–81]. The discrepancy between the 
surgical and chemical denervation models may be due to 
the whole-body suppression of sympathetic adrenergic sys-
tems by chemical treatment, resulting in substantial global 
alterations in mouse health that are not present after regional 
surgical denervation.

Sensory Nerves are Required to Ensure Optimal 
Skeletal Loading and May Augment Bone Formation 
and Repair in Settings of Development and Injury

Surgical studies have also been performed to selectively 
disrupt the sensory innervation of the bone (Table  1). 
Interpretation is challenging because sensory denervation 
causes improper limb use and joint trauma due to altered 
position sense. However, when isolated from changes in 
biomechanics and loading, surgical sensory denervation 
generally does not alter bone mass or strength over long 
periods of time (up to 3 years in one study) [45, 46•, 66, 
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82–84]. In the 1930s, this led to the conclusion that skeletal 
sensory innervation is not necessary for the maintenance of 
bone. However, more recently, sensory nerves have gained 
renewed attention based on their extensive pattern of infil-
tration following bone injury. Though some studies have 
shown neutral effects, chemical and genetic denervation 
studies have generally found that local sensory denerva-
tion during bone healing impairs implant osseointegra-
tion, alters fracture callus size, and decreases bone repair 
[23, 85–87]. Whole-body chemical and genetic methods 
of sensory denervation also lead to generalized bone loss 
in the absence of injury [85, 88–91]. As with chemical 
sympathetic denervation, differences between surgical and 
genetic/chemical approaches may be due to the impact of 
global sensory denervation on peripheral systems (sight, 
smell, gait, etc.), in addition to any local effects. In addi-
tion, any benefits of sensory nerve recruitment for fracture 
repair must be balanced with clinical needs. Management 
of fractures is challenging, particularly in patients with 
multiple co-morbidities, limited mobility, and pain. Cur-
rently, local sensory neurolysis is a clinically approved 
adjunct to manage pain for inoperable hip fractures [92•, 
93]. Neurolysis substantially improves mobility and qual-
ity of life, which can also independently promote positive 
clinical outcomes for these patients.

Clinical Adaptation of Peripheral Neural 
Pathways for Skeletal Regeneration

The PNS mediates a multitude of critical functions through-
out the body, and denervation studies over the last century 
show that gross modification to the PNS is generally not 
warranted to promote bone repair. However, the isolation 
of novel molecular mechanisms linking the PNS and bone 
has also led to the identification of several high-yield path-
ways that inform targeted strategies to support skeletal 
regeneration.

Methods to Enhance Nerve Infiltration Are 
Associated with Increased Bone Healing

With sensory denervation often resulting in impaired bone 
healing after injury (Table 1), therapeutic studies have 
aimed to promote neural ingrowth and, by proxy, encour-
age bone formation. Nerves and vessels infiltrate within the 
first week following a fracture. Thus, therapeutic methods 
aim to improve neurovascular infiltration early in the heal-
ing process. One study utilized MMP-degradable tissue-
engineered periosteum (MMP-TEP)-coated allografts to 
improve scaffold integration with the native tissue since 
periosteum can help direct neurovascular infiltration [94]. 
The MMP-TEP allograft group demonstrated early-stage 

neurovascularization and improved both mineralization and 
mechanical properties of femoral defects as compared to 
hydrogel-TEP allografts and allografts alone. An additional 
group of studies has aimed to encourage bone formation 
by redirecting the entire nerve bundles to the injury region 
to improve neural infiltration and neuropeptide release 
during healing. Positioning the cut end of the peripheral 
nerve trunk into tissue-engineered bone grafts (TEBGs) 
improved callus and bone formation compared to TEBG-
only samples [95–98]. In addition, nerve bundle TEBGs 
increased the expression of neuropeptides and their recep-
tors and improved vascularization in the defect region. The 
mechanisms involved in this model were not explored in 
depth; however, the implanted nerve bundles may either 
be supporting innervation/neuropeptide production or per-
haps serving as a reservoir of pro-regenerative signals from 
nerve-associated cells.

Sensory Neurotransmitter Calcitonin Gene–Related 
Peptide (CGRP) Can Enhance Bone Repair

One possible osteoanabolic factor is the sensory neuro-
transmitter CGRP. In addition to being a potent vasodila-
tor, in vivo and in vitro studies report that CGRP promotes 
osteoblast differentiation and inhibits bone resorption [99]. 
CGRP receptor deletion in osteoprogenitors during fracture 
healing decreases callus and cartilage area as well as cell 
proliferation, resulting in an overall impairment to fracture 
healing [100]. Conversely, methods that increase the con-
centration of CGRP within skeletal defects can enhance the 
rate of bone formation and repair [99, 101]. For example, 
atypical femoral fractures, which exhibit delayed healing 
and can occur following bisphosphonate treatment, demon-
strate lower CGRP expression, reduced bony bridging, and 
increased fibrous tissue formation. Local injection of CGRP 
(100 nM) for 14 days after injury helped to restore healing 
in these fractures [102••].

While exogenous neuropeptide delivery can enhance 
regeneration, high levels are often required. To avoid this, 
other therapeutic approaches aim to stimulate endogenous 
release by exploiting materials or systems that encourage 
neuronal signaling or neuropeptide expression. For example, 
biomaterials containing divalent metal cations such as mag-
nesium induce local CGRP release and stimulate robust per-
iosteum-derived stem cell osteogenic differentiation [102••, 
103, 104••]. Direct stimulation of sensory nerve cell bodies 
in the dorsal root ganglia with an implanted microelectrical 
stimulation system (IMESS) also enhances CGRP produc-
tion and drives spinal fusion only in IMESS-targeted areas. 
Similarly, in osteoporotic femoral fracture healing, IMESS 
at the dorsal root ganglia (20 min/day for 2 weeks) improves 
vascularization and fracture healing in a CGRP-dependent 
manner without increasing pain-like responses [105••]. 
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Conversely, the intraperitoneal injection of CGRP inhibitors 
in rats negatively affected fracture healing, demonstrating 
a significant decrease in the formation of the mineralized 
callus [106]. Balancing the osteoanabolic effects of sensory 
neurotransmitters such as CGRP with pain outcomes is cru-
cial since these factors can also enhance nociception [107]. 
Adding to the complexity, CGRP inhibitors such as atoge-
pant and erenumab are used clinically for the treatment of 
migraine [108]. Development of pro-regenerative paradigms 
will require careful consideration of current therapeutics and 
the actions of target neurotransmitters across systems.

Schwann Cell–Secreted Factors Signal 
Bone‑Forming Cells to Activate Repair Responses

Peripheral nerve axons are wrapped by a protective sheath 
of myelinating or non-myelinating Schwann cells. After 
an injury, certain populations of Schwann cells can disas-
sociate from damaged axons to expand at the site of injury. 
Schwann cells primarily modulate bone regeneration 
through secreted factors that signal bone-forming cells. 
In mouse digit tip regeneration, denervation inhibited 
Schwann cell infiltration, depleting Schwann cell–secreted 
factors, including OSM and PDGF-AA, and inhibiting 
regeneration [109]. Transplantation of additional Schwann 
cells or local injection of OSM and PDGF-AA was able to 
rescue the impaired healing [109]. Schwann cell–derived 
exosomes were also shown to enhance osteogenic dif-
ferentiation in vitro and improve bone formation in vivo 
when included in a titanium alloy scaffold [110]. Simi-
larly, when Schwann cells were included in scaffolds along 
with osteoblasts and endothelial cells, angiogenesis and 
vascularization were enhanced in vivo [111]. Mechanisti-
cally, in vitro studies suggest that Schwann cell–derived 
factors increase the proliferation of skeletal stem cells and 
endothelial cells while signaling through the VEGF, ERK/
MAPK, and PI3k-Akt pathways [112].

β‑Blockers Increase BMD, Reduce Fracture Risk, 
and Promote Healing

Surgical denervation studies pinpoint the sympathetic 
nervous system as a negative regulator of bone (Fig. 2, 
Table 1). Consistent with this, norepinephrine, the primary 
neurotransmitter of sympathetic adrenergic axons, can act 
on skeletal β-adrenergic receptors to suppress bone forma-
tion and increase osteoclast function, leading to decreased 
bone mass [113–115]. This informs studies on the effects 
of β-blockers, a group of common antihypertensive medi-
cations, on bone homeostasis and repair. β-blockers inhibit 
the diverse effects of the neural- and adrenal-derived cat-
echolamines, including norepinephrine. Clinical use of 
β-blockers is associated with reduced risk of fracture and 

increased bone mineral density [116–118]. Treatment with 
β-blockers in mouse models increases bone mass due to 
enhanced bone formation and decreased bone resorption 
[114]. The β-blocker propranolol can also promote mineral 
apposition, callus formation, and strength in rodent femoral 
defects [119]. Though it is unclear if the benefits to the 
bone are due to direct actions on bone cells (vs. vasoregula-
tory or other effects), β-blockers remain a promising thera-
peutic strategy for managing osteoporosis and enhancing 
bone healing. In addition, recent studies have identified 
alternate pathways that converge on the regulation of sym-
pathetic tone to modulate bone mass. For example, genetic 
downregulation of PGE2 signaling by advillin-expressing 
sympathetic and sensory nerves or introducing divalent cat-
ions such as magnesium can suppress sympathetic activity, 
promoting osteoblast formation and increases in the bone 
[85, 91, 104••, 120]. Increased sympathetic tone has also 
been proposed as a putative mechanism underlying bone 
loss and fragility in diseases including chronic heart failure 
[78] and impaired fracture repair with the use of medica-
tions such as SSRIs [121], providing targeted opportunities 
for future intervention.

Activation of NGF/TrkA Signaling Can Augment 
Bone Healing but Needs to be Balanced with Pain 
and Tumor‑Promoting Responses

Therapeutic approaches using growth factors are popular 
for targeting known regeneration pathways, as they involve 
simple strategies to stimulate the host microenvironment. 
Consistent with this, local application of the neurotro-
phin NGF activates neuronal signaling, vascularization, 
and other bone resident cells that stimulate bone forma-
tion [30, 41, 122–126]. Genetic targeting approaches have 
shown that the bone anabolic effects are largely mediated 
by the activation of TrkA, the high-affinity receptor of NGF 
[26•, 27], with the potential for additional pro-regener-
ative actions of the low-affinity NGF receptor p75-NTR 
[127]. Specifically, when paired with rodent models of 
long bone fracture or calvarial defect, global inhibition of 
TrkA signaling reduces vascularization, osteoblastic activ-
ity, and ossification rate [26•, 27]. Conversely, treatment 
with synthetic TrkA agonist gambogic amide can promote 
angiogenesis and bone repair [128]. The mechanism under-
lying this effect remains to be clarified and may involve the 
activation of TrkA on neural, vascular, and/or local skeletal 
cells [30, 128]. Beyond this, targeted inhibition of p75-
NTR in osteoblast precursors can restrict osteoprogenitor 
migration into the repair site [127]. Other nerve regula-
tory factors and neuropeptides such as BDNF, substance 
P, Sema3A, vasoactive intestinal peptide, and galanin have 
also been used to trigger bone healing and demonstrated 
similar results [70, 129–136].
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NGF/TrkA signaling is also a major regulator of 
peripheral pain. Given this, clinical anti-NGF therapies 
to treat musculoskeletal pain are currently under devel-
opment, and inhibition of NGF/TrkA signaling to treat 
fracture pain has been tested in rodents. In this case, anti-
NGF and anti-TrkA antibodies successfully reduced pain 
behaviors without affecting fracture repair [137, 138]. 
In addition, NGF may also be relevant to tumorigenesis 
[139]. Many studies highlight the increase of NGF secre-
tion and its receptors in the microenvironment of differ-
ent cancer types [140]. For this reason, increasing atten-
tion is directed toward NGF and/or TrkA as a therapeutic 
target for effectively controlling tumor progression. Most 
recently, this includes the clinical use of an emerging 
class of TRK inhibitors to treat TRK fusion–positive can-
cers [141]. While TRK inhibitors have favorable overall 
safety, off-target adverse events, including weight gain, 
dizziness/ataxia, paraesthesias, and bone fracture, are 
occasionally observed [141, 142]. Future studies will be 
essential to understand the impact of the clinical modu-
lation of TRK signaling on the bone microenvironment 
during the maintenance and healing phases.

Conclusions

Studies on the relationships between the PNS and bone 
initially peaked in the early 1900s. Over 100 years later, 
we have now uncovered diverse links between the PNS 
and the skeleton that occur during bone homeostasis, 
development, and repair. Overall, a common theme of 
balance emerges whereby an orchestration of both local 
and systemic neural functions must align to promote 
optimal repair while limiting negative consequences 
such as pain. Advances over the next century will neces-
sitate a rigorous identification of the mechanisms under-
lying these effects that is cautious not to oversimplify 
the in vivo condition. Clinical use of sensory neuroly-
sis, CGRP inhibitors, and TRK-targeting therapies will 
undoubtedly inform our understanding of their necessity 
for bone health and the potential to leverage the ana-
bolic components of these pathways to promote regenera-
tion. In addition, β-blockers and PNS-targeting bioactive 
implant materials represent emerging strategies to sup-
port repair.
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