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Abstract

Purpose of Review This review examines the diverse functional relationships that exist between the peripheral nervous
system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries
for skeletal repair.

Recent Findings The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Con-
sistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate
the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an
orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting nega-
tive consequences such as pain.

Summary An improved understanding of the functional bidirectional pathways linking the PNS and bone has important
implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous
identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse
states of health and disease.
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Introduction
Mohamed G. Hassan and Allison L. Horenberg contributed equally

to this work. )
The skeleton and the peripheral nervous system (PNS) are

not independent. Instead, there is a continuous bidirectional
relationship across both that facilitates optimal function
[1]. This can include direct, local actions of nerves on bone
cells or delivery of circulating neurotransmitters through the
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bloodstream (Fig. 1(A), (B)). Conversely, secreted factors
from skeletal cells and biomechanical signals can modulate
bone-to-brain interoceptive pathways and global peripheral
nerve function. Beyond this, there are many layers of pos-
sible regulation. For example, neural signals in distant organ
systems such as the gut, pancreas, or liver can regulate the
bone through the modulation of circulating and humoral
factors [2]. PNS function can also modify the immune
response. In addition, changes in peripheral nerve function
can alter muscle, behavior, and movement, resulting in local
adaptation of the bone due to altered biomechanical load-
ing [3]. Though complex, these broad potential relationships
between the PNS and bone present a unique opportunity for
discovery. Indeed, it has become increasingly clear that an
improved understanding of neural signaling pathways has
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Fig. 1 Innervation and regulation of the bone by the peripheral
nervous system (PNS). (A) Three pathways of regulation of the
bone by the PNS: (1) network effects, where all four divisions of
the PNS indirectly influence the bone via their actions on diverse
organ systems (represented by a liver icon) and downstream cir-
culating factors (blood vessel icon); (2) indirect effects via cir-
culation, where the sensory, parasympathetic, and sympathetic
divisions of the PNS influence the bone by secreting neurotrans-
mitters into the bloodstream; and (3) direct innervation of the
bone, where only the sensory and sympathetic divisions directly
release signals into the local bone microenvironment. Solid lines
represent direct innervation, and dotted lines represent subse-

important implications for skeletal development and regen-
eration. In this review, we will first provide an overview of
the peripheral innervation of the bone during development
and repair. Next, we will comprehensively summarize the
outcomes from denervation experiments performed since the
1900s that inform our understanding of the in vivo relation-
ships between the PNS and bone. Last, we will discuss the
developing clinical implications and applications for PNS
pathways in skeletal regeneration.

@ Springer

Sinusoids are
not innervated.

quent indirect effects mediated by circulating factors. (B) Direct
innervation of bone structures by the sensory and sympathetic
divisions of the PNS. The colored lines originating from (A)
continue into this figure as nerve fibers from the sensory (pink)
and sympathetic (green) divisions. This figure provides a decon-
structed view of a bone, with the periosteum being pulled away
from the surface and the bone sliced to expose the marrow and
vessels within. Multiple call-out boxes elucidate the interac-
tions of these nerve fibers with various bone structures. The
colored circles near the nerve endings represent neurotransmit-
ters secreted by these nerve fibers in response to local molecular,
chemical (e.g., H+), and mechanical signals

Innervation of the Bone from Development
to Regeneration

Coordinated Neural Infiltration Occurs During
Skeletal Development

The bone contains a widely distributed neurovascular
system that includes both sensory and sympathetic nerve
fibers [4e, 5, 6, 7, §, Oee_ 10ee] (Fig. 1). By contrast,
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the bone is not directly innervated by the motor or para-
sympathetic divisions of the PNS (reviewed in [11]). This
well-defined pattern of skeletal innervation is established
during development and is highly conserved between ver-
tebrate species [8, 12, 13]. Axons extend from the central
nervous system (CNS) to peripheral targets during gesta-
tion (day 9 to day 13 in mouse) [14]. Consistent with this,
in rats, the first signs of sensory innervation of the limb
skeleton have been detected in the perichondrial tissue at
gestational day 15 and within the bone organ at neonatal
day 4 [8, 12]. This matches the infiltration of tropomyo-
sin receptor kinase A (TrkA) expressing sensory nerves at
the primary ossification centers at gestational day 14.5 in
mice primarily in response to nerve growth factor (NGF)
expression by the perichondrial cells [13]. Overall, nerves
and blood vessels infiltrate simultaneously in areas with
high osteogenic and chondrogenic activities close to the
growth plate, with sensory nerves infiltrating during gesta-
tion, approximately 10 days before the postnatal recruit-
ment of sympathetic autonomic axons [8]. This neuronal
temporal delay is synchronized with the mineralization of
the primary ossification centers [8, 12]. The early presence
of sensory and sympathetic nerve fibers is similarly seen
during intramembranous bone development in neonatal
periods [15, 16].

After development, the innervation of the mature skeleton
takes on several key features. First, the highest innervation
density is in the periosteum, followed by the bone marrow
and cortical bone [4e, 5, 6, 7e, 9ee] (Fig. 1). While sensory
nerves predominate in the periosteum, this is reversed to
favor sympathetic axons within the bone marrow. There is
also evidence of regional variation, for example, with the
thoracic vertebra having higher levels of sensory innerva-
tion than the neurocranium [7e]. Second, consistent with
their vasoregulatory role, most nerves in and on the bone
are closely associated with the arteriolar vascular network
(>95% in the bone/marrow; ~80% in periosteum) [4e, 6,
11]. In humans, this means that nerve fibers are widely
distributed with arterioles throughout the Haversian canal
system, and in smaller species such as rodents, nerves run
with nutrient arteries through transcortical canals to enter
the bone marrow. By contrast, venous sinusoids in the bone
and elsewhere throughout the body are not innervated. There
are also many regions of the bone and bone marrow that
are relatively or completely aneural. The endosteum, for
example, is essentially devoid of innervation [4e, 6]. Third,
there are no nerve cell bodies or true synapses in the bone.
Nerve cell bodies are located in the ganglia at the level of
the spinal cord (or corresponding craniofacial ganglia) [11].
Sensory and sympathetic nerves then target the bone through
unipolar axonal extensions, referred to as free nerve endings
because they do not synapse with other cells. Instead, they
exist locally within the environment and, depending on the

nerve type, relay information to the CNS based on local
changes in pressure, ions, metabolites, and/or soluble factors
[11, 17, 18]. Conversely, axons in bone signal to surrounding
cells through the bulk release of neurotransmitters and neu-
ropeptides. Additional information about neuronal subtypes,
targeting, and function is beyond the scope of this review but
has been discussed elsewhere [11, 17-20].

The Skeletal Neural Network Undergoes Active
Remodeling During Bone Regeneration and Repair

Neural infiltration following skeletal injury is a well-
described phenomenon that contributes to pain [21-23] but
may also be important for adequate healing. Secreted nerve
recruitment factors termed neurotrophins are found through-
out regions of bone regeneration with expression from
diverse neural and non-neural cell types, including osteoline-
age cells, chondrocytes, macrophages, osteoclasts, and vas-
cular cells [13, 24, 25, 269, 27, 28]. Neurotrophins promote
axonal growth into the injured site and, in some cases, may
also act directly on local skeletal or endothelial cells to pro-
mote osteogenesis and angiogenesis, respectively [28-30].
Expression of the neurotrophin NGF, a TrkA receptor ago-
nist, is driven by inflammatory signals such as interleukin-1
beta (IL-1p) and tumor necrosis factor-alpha (TNFa) that
rapidly upregulate its local expression, which peaks approxi-
mately 3 days after acute bone injury [26e, 27, 28]. Recent
studies also convincingly demonstrate that NGF binding to
neural TrkA is the main stimulus for nerve ingrowth dur-
ing skeletal regeneration [24, 26, 27]. This is consistent
with the expression of TrkA on ~80% of sensory and ~ 100%
of sympathetic nerves in the bone [5]. Expression of the
TrkC agonist, neurotrophin-3 (NT-3), follows a similar pat-
tern after fracture, while the TrkB agonist, brain-derived
neurotrophic factor (BDNF), remains elevated throughout
healing [28]. In distraction osteogenesis, which provides a
model to explore both endochondral and intramembranous
ossification, NGF and TrkA are expressed highly during the
distraction phase, while BDNF, NT-3, TrkB, and TrkC are
upregulated during the consolidation phase. Chemoattract-
ants and chemorepellants also direct the projections taken
by the axonal growth cones, in addition to acting locally
to regulate skeletal cells. This includes galanin, netrins,
semaphorins, neuropilins, and ephrins, many of which have
emerging roles in bone homeostasis and repair [31-34].
Many neuroregulatory factors can also directly stimulate
angiogenesis, reinforcing the close coupling between nerve
recruitment, vascularization, and healing [30, 35, 36].
Local nerve sprouting after injury expands the web of
axons in the bone without changing the overall number
of neurons in the CNS. This may have functional conse-
quences for the interpolation of nearby signals through
central relays and can also substantially modify the local
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release of neurotransmitters. After a fracture, sensory
axons rapidly infiltrate the callus and periosteum with
maximal innervation reported between days 1 and 7 after
injury, prior to gradual regression during consolidation
and healing [21, 27, 37-40]. Infiltration of nerves occurs
even prior to blood vessels in some circumstances [27, 39].
Recruitment of sympathetic nerves after injury coincides
with sensory peptidergic axons, likely due to the shared
expression of TrkA and response to NGF by both axon
subtypes [27, 38, 41]. In angular fractures, a unique tibial
fracture model with site-specific changes in bone heal-
ing, sensory and sympathetic axon density is significantly
higher along the concave side of the fracture site rather
than the convex side, coinciding with regions of higher
bone formation [37, 38]. This suggests that early neural
(and perhaps combined neurovascular) infiltration may be
vital to promote adequate bone formation. By contrast, in
non-healing fractures, one study in humans found a lack

Surgical Sensory Denervation
via Dorsal Root Cut

\

Surgical Sympathetic Denervation
via Gangliotomy

of innervation, while another study identified neuroma-like
structures in mice [42, 43]. Persistent innervation likely
contributes to sustained pain responses [21, 22, 43]. How-
ever, it is unclear whether nerves that are generally sus-
pected to play a positive role in early regeneration may also
function to inhibit healing when they persist.

Neural Contributions to Bone Homeostasis
and Regeneration—Positive, Negative,
Neutral, or All of the Above?

Since the 1800s, there have been nearly 100 studies that
have used denervation approaches to isolate the effects of
the different branches of the PNS on bone development,
homeostasis, and repair (Fig. 2). These results are summa-
rized below, and 65 key experiments across 51 manuscripts
from 1900-2023 are presented in Table 1.
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via Periarterial Sympathectomy {
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Y41l
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Fig.2 Effects of peripheral denervation on bone development, home-
ostasis, and repair. This figure illustrates the key methods and out-
comes of 65 denervation experiments from 1900-2023, as detailed
in Table 1. The schematic features a section of the spinal cord with
sensory (pink), sympathetic (green), and motor (yellow) nerve fibers
extending to a long bone, with accompanying muscle and vascula-
ture. Seven boxes, each color-coded to the relevant nerve type, detail
specific types of interventions and their collective outcomes. Icons
within the boxes represent the method of denervation: a scalpel for
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Denervation
via Ventral Root Cut

Surgical Mixed
Denervation
via Peripheral Nerve
Resection
e.g. Sciatic Nerve Cut

\

surgical cuts, forceps for the removal of nervous tissue, and syringes
for chemical/genetic denervation. The outcomes of these interven-
tions are summarized by colored gradient bars (green for positive
effects on the bone, yellow for neutral, and red for negative), reflect-
ing the proportion of experimental studies yielding the indicated
results. Additional icons highlight specific outcomes: artery with an
upward arrow indicates increased blood flow, cracked bone signifies
poor fracture healing, bone with a downward arrow represents bone
loss, and muscle with a downward arrow indicates muscle loss



507

Current Osteoporosis Reports (2023) 21:503-518

UONBIYISSO SNY[ed Ul AFueyd ou Inq ‘o3e|
-1}TED JO UOTJBULIO] 19)SEJ YIIM QUUI POYRAIOUAp UT

pider azow uorun drydesSorpel pue UONLWIOJ SN[[B)  [BINSU/AANISO] (Ind 9AIOU JNBIDS [BIAJR[IUN) [BIISING Imoel 1’y G861 01y
puOqeWId( INOYIIM
QINSO[O PUNOM 2nssT) 1Jos parredull uoneAIULq
*9)1s pareIndwe Ay} [B9S 0) PIsn Sem puoOqeuLId uonesd
J1 uonjeroudgar dn 113rp aredwir Jou pIp uoneAIaULJ [ennaN (Ind oAIou [BNSIp [BIAYR[IUN) [RIISING  -ua3ar dn NSIg  Osno 7202 ‘Te 19 uejoq
S)o9Mm § Je d3urYd OU ‘uor (o
-BAIOUAP IQ}JE SY99M § O} 7 J& SSBl 9U0Qq PaseaIdd JAIQU JR[OQA[E JOLIQJUI [eIJeIUN) [Bo13INg SISBISOOWOH ey 910T ‘T8 32 N\
syurod awm e
Je AJISUSp [BIQUIWT QUOQ UT SOOUAIJJIP ON ‘A103Ins
-3s0d s)eam § 18 a3urYd OU Inq ‘SYM { 0] | I (no
OPIS PAILAIQUIP YY) UO UOHBULIOJ UOQ MU PIsLINdJ JAIQU JR[OQA[E JOLIQJUI [eI)RIUN) [BII3ING 199Jod ey 120C ‘Te 19 BN
Quoq Y} ur dFueYd $0I3 OU (%8 01 ) —) (no
S1S8[q09150 Aq oyeidn ourford-H¢ ur suoronpar JYSI[S [eNNAU/ANESON  9AIOU JB[OA[E JOLIQJUI [RId)R[IUN) [BIISING SISBJSOQWOH  9SNOJA 1861 Y3uIS pue o3a1y)
Kinfur 9AIoU 9Y) Y)Im OPIS oY} UO (Am(ur SISQUQ309)S0
UONJBUWLIOJ 9UOQ PUE ‘SSOUMNDIY] [BO1I0D ‘A [/AF Tomo] 9AJOU IR[OIA[R IOLIdJUI [eIYeIUn) Arnfug uonoensiq uewny €207 'Te 12 uIjAd],
QPIS PAZIWOIIINAU I} UO UOIUN
omyder3orper Jo anjrej pue uonewLoy snjjed parreduy (3nd snxord [eryoelq [ereje[iun) [eo13Ing AIjoesy 3oq 9661 'Te 10 AqIeH-1V
(%0 01 O — ~) 9PIS PARAIUID (o SISQUQ309)S0
9} UO AUOQ M3U B JO UONJBULIOJ PUB AJISUIP JOMO] JAJOU JR[OIA[E JOLIQJUI [RI9JR[IUN) [BIISING uonoensiq  1qqey 610T Te 19 08D
Surpeoy ur
SIOURIAYIP 10J SUI[[ONUOD JSJJB UIAD IND JAIDU YIIM S1SOU9309150
UONBZI[EIAUIW JOMO[S PUE UOTJBULIOJ UOQ PAseaIod( (Ind 9AIQU J1IRIOS [BIAJR[IUN) [BIISING uonoensiq  1qqey 10T ‘T 10 Suosg
a3 Jo syjuow ] pue ‘g ‘g Je opIs
PAIBAIQUAP 9Y) UO YIFUAIS SUO] UT ISBAIIAP %0E—(T (3nd snxapd [emyoeiq [ereleiun) [eo13Ing juowdoparag 1’y 610T 'Te 19 selen|n
dnoi3 pajearouap
9y} Ul SuI[eay PIseaIddp pue ZIS SNJ[ed I[eWS (IND 9AISU O1EIOS [RI)R[IUN) [BIISING aImoel ey 6002 ‘Te 10 Sueyz
1S B )M SUIpeoy 10J SuI[jonuod
19]J€ UAD ‘UOTIBAIOUOP I3}Je ISUANS PISEIIIIP pue (3nd oA1OU
9ZIS SN[[BD PISBAIOU] ‘IND dAIU Jd)ye Aydone [osnjy [eIOWd) pUB JNEBIOS [BIA)R[IUN) [BIISING aImoel LY | 8661 ‘T& 19 UaspeIy
apIs (Sur
PAJBAISUIP AU} UO UONRIAUIFAI PUB A J/AH PISLAIN -de1os oa1ou [easoriad [e1oye[iun) [eOISING 109Jo  9SNON €207 ‘Te 10 emeSe)N)
9JBI UONBULIOJ QUOQ PISBAIIAP PUB (Bur
Joquinu Ie[nodqen) pue A I/Ag Te[noaqen) paseardoq -de1os oa1ou [ed)sorrad [erdre[iun) eOI3ING SISBJSOQWOH ~ 9SNOJA €20T 'Te 10 emegeln)
(mo SISOUa309)S0
9PIS PAJLAIIUIP Y} UO UOHBULIOJ U0 PISBAINRJ QAJOU IRJOIA[R JOLIQJUI [RID)R[IUN) [BIISING uonoensiq  ASNOJN €207 'Te 10 UIjAd],
asuodsal sunuiwl PAIA[Y 1908 (o
uonoeRIX9 Ay} ul Jredar pue UONBWLIO) QUOQ PASLAIdA( 9AE3ON  9AIQU JB[OOA[E JOLIQJUI [RIOJRIUN) [BOISING  UONORNXD JB[OJA  OSNOJA 6107 Te 10 X nX
POXIW :SIQY AIOU PJA3Ie],
AIewwuns awIod)no duog  AWO0JINO dUog (ampaooid) anbruyos) uonearousqg [opow ouog  [9POA (reak ‘zoyne) Apms

SOIPN}S UOTJBAIQUAP [BIQ[S | 3|qel

pringer

a's



Current Osteoporosis Reports (2023) 21:503-518

508

SISB[009)S0 UT 95ULYD ON "UOIIBULIO]
QUOQ PISLAIIIP ‘SISL[qOA)SO PISBIIIIP ‘SSO[ duog

JorAeyeq ured ur uononpay ‘uorun/3ut
-3p1iq 0) awn) Ul 3UBYD OU PUB JZIS SN[ PISLAIOU]

ewner) o) A1epuodds Iseasip

JUTO[ "UOTIBAISUP KIOSUas J19)ye AydoIe snoasso

ou ‘auoq 9y} Jo uonisodwod [eIIWAYD IO YYFUINS

SurApopun oy} ur a3ueyd ON ‘QUI| PIIBAIUP A}
UT UOTJESUDS PUB ‘9SUas UONISOd ‘SaXa[joI JO SSOT
Ke1-x Aq ouoq 9y ur o5ueyd oN

3SUoms JO SSeW QUOq AONPAIX

jou pIp uroresded YIIm UONIBAIOUIP KIOSUIS ‘UOIS
-uadsns quuipury yim Surpeo J0j SUI[JOIUOD UM

uorner3oyuroasso parredur
pue jue[dwI oY) puNoIe dUOq Je[Ndaqe} PAseardd

)Suans pue SSEW dUOq PISLAINd(]

dnoi13 pajearousp oy ur Y3uams sn|

-[9 PISBAIOAP PUR BAIR [BUOIIIIS-SSOIO SN[[BD J9ZIe]
asop uroresded Jsay3Iy Je

ISUOMS PASLIIOIP PUB SIONIBW ISB[O0I)SO PISLAIoU]

SISB[O0Q)SO PASLAIOUI PUE SSO[ UOQ SNO[[IOUR))
dnoi3 pojearsuasp oy

ur )3uans auoq pue ‘QuN[oA Auoq ‘NG Pasea1doo
Joaouin)
pue y33uans suoq Je[ruis ng ‘1) Aq aInjonns

Qu0q JB[NO9qeI) Ul S9SLIIOP JUBOYIUSIS Ing [[BWS
Qo1wr pajean-uroresded

ur Jredar 2InjoeIj pue UOHBWLIOJ AUOQ MAU PIsBAINdJ
o1

parean-uroresded Ul UONBULIOJ SUOQ MAU PIsBAINdJ
901w pajean-uroresded ur ssau

o1y} JB[NJ9QEI) PUEB UOIIOBI] SWIN[OA UO] PIsEaINd

QInyoeIj pue uon
-BAIQUIP SUIMO[[O] SABP ()7—G] UONBAIUIP ONRIJS
I0)Je ISuans snj[ed pue Jurfeay 2amoely pasoiduy

QATIETON

[eINnau/AANISO

[ennaN

[ennau/oaneSoN

QATIESON

ATISOq

(urxo) erroqiydIp + S[[20 + 21)-UT[[IApE
ur uorssaxdxa Y1) dO1euas [eo1way)

(€= skep
rerewsod je uroresdes 3y/3w ()G) [BOTWAYD

(3N 1001 [eSIOP AIOSUIS [BIdJR[IUN) [BIISING

(3N 1001 [eSIOP AIOSUIS [BIdJR[IUN) [BIISING

(syyoom 7 K19A9 pajeadar
¢ X ¢ uroresded 3y/3w ()G—Gg) [eorwuay)

(uoneArauap
[e00] “Inwaj ay jo 103dse Jordysod pue
Jordue ay) Suofe uroresded 9, 1) [ed1WLAYD)

(syyoom 7 K19A9 pajeadar
¢ X ¢ uroresded §y/Sw )G—G7) [eOTWAYD)

(uoneAIsuUap
[e20] “Inwoj ay) jo joadse Jor1aisod pue
Jordue ay) Suofe uroresded 1) [eIIWRAYD)

(uroresdeo Syy/Sur OGT 10 “G/ ‘G"LE) TedTUIAYD)
(3nd 1001 TesIOp AIOSUSS [eISR[IUN) [BOISING

(S)9om 7 19A0
uroresdes Kep/3y/3w ()G 03 G7) [eoTWAYD)

(seyeuoau ur uroresdes Sy/Sw ()G) [eOTWIAYD)
(Syoom
7 oy uroresded Aep/3y/3w (¢) [eOTWOYD

(eam
1 Joy uroresdes Aep/3y/3w (¢) [eOTWAYD

(poam
1 Ioy uroresdes Aep/3y/3wr (¢) TeOTWIOYD

(JN0 9AISU OTJIOS [RIB[IUN) [RIISING

SISBISOWOH

aInjoelq

SISB)SOOWOH

SISB)SOOWOH

uorsuad
-Sns quI[pury

uoneI3a)
-u109sso juerduy

SISBISOWOH

aInjoelq

juowdofara(

SISB)SOOWOH

SISBISOWOH

juowdofara(g

amyoes]

19950

SISB)SOWOH

2Injoelq

ISNON

ey

119

3oQq

ey

ey

'y

ey

°y
°y

ey

9SNOIN

9SNOIN

Yy

610C T8 12 uayd

onoyjedwAs + A10SUIS :SI9qY 9AIIU PIJATIR],

600€ 'T& 19 opeIpuy-Zauawif

L1161 13SSa01H

GI61 11eD) pue Ko1n)

L10T ‘Te 10 Sueyz

610C 'Te 30 Sueny

L10T 'Te 30 Sueyz

6002 ‘Te 1 [ody

010T Te ¥ Suiq
TT0T T8 W Suex

S00¢ 'Te 1 £oP0

¥10¢ T8 19 IoujjoH

0c0¢ 'Te 1w ny

020¢ 'Te 1P ny

020¢ 'Te 1w nH

KIOSUQS :SI9QY AIU PIJATIR],

LL6T 2dog pue 1akowk1y

Areurwins QWOIINO uoyg

QWOIINO uoyg

(ampaooid) onbruyos) uonealousqg

[opow suog

[9POIN

(Teak ‘r0UINE) ApMIS

(ponunuoo) | sjqey

pringer

Qs



509

Current Osteoporosis Reports (2023) 21:503-518

Awoy (AwojorjSued
-ooyjedwAs 1936 Y)SUI[ JO YIMOIT Qu0q Ul 93ULYD ON oneyjedwiAs Jequiny [e1dje[Iun) [BOI13ING juowdofoaeg  quue] 9€61 P[BUOPIIA pPue SLLIBH
(Awojorj3uel
AwojoayjedwAs YIrm JuI[eay ur 20UAIIP NI onoyledwiAs Jequiny [eIde[IUN) [BIISING QImoel 3o 0£61 UOMIOJA pUe 9sIedq
Awo) (Awojorj3ued
-ooyjedwAs 1916 YISUS[ IO YIMOIT Qu0q UT 93URYD ON oneyledwiAs requiny [eIojR[IUN) [BOISING juowidoporeq  Addng 9€61 PTRUOPOIA PuE SLITRH
ssewt (AwojorjSued onoyedwAs
Juoq 10 ‘A30[0IS1Y ‘AeI-¥ AQ QU0q ) UI dFULYD ON Tequin [eI9¥e[Iq JO [BISJe[IUN) [BIISING SISBISOQWOH o) 6€61 UIqI0D)
SOpIS 10BJUT JO paziwoldayredwks ay) (Awojorj3ue3 199Jop
uom19q SuI[eay 109Jop JO QINJOBIJ UI AOUISHIP ON onayjedwiAs orovIoy) [RIOIR[IUN) [BIISING 29 2INJoRL] i) €€61 QI00A pue Aoy
Awoy (AwoyorjSued
-ooyedwAs 1916 YISUS[ IO YIMOIT 2u0q UT 93ULYD ON oneyjedwiAs requiny [eIoje[IUN) [BIISING juowdo[ore  uaNIy 9€61 P[RUOPOJA pPuE SLIIRH
sdnoi3 uoamieq Jurfo (Awojorj3ued
-pOWaI pue ‘UOIUN ‘UOTBULIOJ QUO] UT SOUIJJIP ON onayredwAs 91e[[a)s [eIdjR[IUN) [BIISING amyoer ey 0202 ‘T 19 Aepizry
uonoeIXe
10} JUSWIINIOA JSB[D0)SO PIseaIoul Ing ‘eIqr) Ay} (YpI1q 191J6 oM T ‘SYoom
ur 9Jel UONBULIOJ 9UO0q JO SSBW u0q UT 93UBYd ON € J0J auIpryyouens Aep/3y/3w ()G) [eOTWAYD SISBISOQUWIO] L 1661 ‘T8 3 [I'H
aredar snpeo (901W X AQ UI UOTIBAISUIP
Surmnp uonewio) suoq pue d3e[1nIed ur 95uLYd ON [ennoN  oneyiedwiAs pajerpawl VQHO-9) [eo1wey) aIjoeL] ISNON 00T ‘T& 19 JTeuLIOPaIN
s1qqel pazrwoydayjedwAs (uonjealouap
ur p3uamns SN[[BO PaONpPal Inq 9ZIS SN[BI PISLAIOU] onayedwAs pajerpawl YAHO-9) [BOTWSYD) ampeL] 11qqey 661 [PUIUIRIS
AwoyoayredwAs YAHO-9 (uonyeAIaUAp
J19]j€ UOTJBULIOJ 9UOQ PUB UONEBIdUATAI PaseaIdd( onayedwAs pajerpow YAHO-9) [BOIWAYD) 109Jo  9SNON 20T ‘Te 10 1ouSep
(uoneArduap
ySueIs sn[[ed pue uoreurIof auoq pairedwy onayredwAs pajerpow YAHO-9) [BO1IWYD aImoeL] JSNON 120C ‘T8 1@ 1IyS
y)SuaI)s duoq JO SSO[ pue (%)L —) ssew (uonjeAlouap
JU0Q SNOJ[9OUBD PUE [BOII0D Ul SASLAIOIP JULOYIUTIS aanedaN  oneyedwiks pajerpawt VQHO-9) BTy SISBISOQWOY ~ 9SNOJA 1202 T8 12 1IyS
oneyredwAs :S19qY 9AIOU pajadie],
jutodpus mun Furuury) auoq dAIssarsord
)IM UOTIBAIOUSD J9)Je soam 7 Aq Aydone ouog (JND 1001 [BIUSA JOJOW [BIA)R[IUN) [BIISING SISBISOQWOY  1Iqqey G161 118D pue Aoin)
SISB[O0Q]SO PASEAIOUI PUE SSO[ SUOQ SNO[[SOUR)) oAneSoN  (3INDJOOI [BIJUSA JOJOW [eIJe[Iun) [eo1Sing SISBISOOWOH ey 20T ‘Te 10 Suex
+I0JOW :SIOQY 9AIOU pajeSie],
BUWINEI) POJRIOOSSE-)USWdAOW Sul
)Ty I9)Je sadueyod jurof ou pue ssew auoq Io ‘K30 (Awoyorj3ues onaypedwks — /+Ino
-[03S1Y ‘AelI-X AQ SQUOQ PAIBAISUIP YY) UI FULYD ON JOOI [BSIOp AIOSUQS [eIje[Iun) [ed13ing SISBISOQWOH ®) 6£61 UIqI0D)
9seasIp jurof pue UOTSOIS 93B[NILd IR[NOTIE (AwojorjSued onoypedwiks — /+Ino
0) PO[ BWNRI], "SOU0Q PIJBAIIUIP Y} UI dFuBYd ON [ennaN JOOI [BSIOp AIOSUQS [elojeIun) [eo1Sing SISBISOOWOH 1’ £€61 U1qI0D)
93 JO s)eaMm 7] Je UoeULIO} (S[1e9+91D
PUE SSBW QUOQ PISBAIII(] "SYOM 1 J& 95UBYd ON [BINOU/OATIRSON -UI[[IAPE UI JNOXO0UY Y1],) O1ouan) SISBISOQWOY ~ 9SNOJA 610C ‘Te 10 uayd
AIewwuns aWIOdINO QUOY  SWOJINO U0 (ampaooid) anbruyos) uonealsuaq [opow auog  [9POA (1eak “10UINe) APMIS

(ponunuoo) | sjqey

pringer

A's



Current Osteoporosis Reports (2023) 21:503-518

510

JI9SIT 9UOq 3} AJBAIUAP JOU Kew

nq SU0q Ay} 0} YOUEI] JE[NOSLA UTEW 3Y) JO BNUIAPE AU} SIIBAISUSD AW0J03Y1edWAS [BLIONIRLIS] 44 "S[OSNU SUIPUNOLINS Y} SOUINPUT ULD INq APOAIIP SUOQ Y} SJBAISUUL JOU OP SIAISU JOJOI,

(%€ ur JuawdAoIdwI Ou ‘Sased JO % €9 Ul APIS
pazrwojoayjedwAs oy uo 397 S, PIIYD Y} JO YIMOIT

(Awojorj3ue3

JO 9Je1 Y} JO QOUBUUILW JO UOTIRIS[IIE) QANISO] onoyjedwAs requn eraye[run) [eorsing juowdo[oae@ uewny 9€61 PIBUOPIIA pUE SLIIBH
9z1s pazrwojoayjedwAs wx(AWO}
Q) Uo JuI[eay AINJORIJ puE UONEZLIB[NOSEA paAoIduw] -ooyedwAs [erdyrenad [eioje[iun) [eo13Ing AInjoel 3oQq €¢61 diop
9ZIS PIZIOIoAY} sx(AWo)
-edwAs oy3 uo Surpeay pue YPSuans sn[ed paroiduy -oayedwAs Terrsyreriad Teioje[iun) [o13ing InoeI Soq ¢g6T dioD ur parrodar se ‘zg] aurejuoq
€11 s (Awoy
AwoyoayredwAs [errarrerrad yim Surfesy pasearouy -ooyredwAs [errayrerrad [erole[un) [eo13Ing Ioel 3oq 7€6]1 TWESY pue 0]
uonesrdde [eorur(o juex
-Iem 0} Jou pue  JY3II[s,, PoIOPISUOD INq SASBI £ 1/S| (Awojorj3ue3
ur 9pIs pazrwoldayyedwAs 9y} JO UONLISUIZAI 19)BIID) onayjedwAs Tequuny [eIoje[Iun) [o13Ing InoeI Soq €¢61 123uroz
i (Awojor3ues
AwoyoayredwAs requuny y)im Sul[eay paseaiou] onayedwiAs Tequiny [ereje[Iun) [eo13Ing Ioel 3oq 7€6]1 TWESy pue 0]
ap1s pazrwoydayyedwks oY) uo w5 (AWO) €61
3uITeay 2IMoBIj pue UONRZIIB[NISEA A[Ted pasoiduf -ooyyedwAs [ereyrerrad [eraje[run) [eo1sing ampoer]  iqqey djop ur paytodar se ‘4ge| 1Zznpaiyn
9pIs pazruojddyedwAs oy} uo (Awoyorj3ue3
Surreay a1moeIy pue uonezLIR[NOSEA K[Te9 pasoiduuy onoyjedwAs [eo1AI100 [eIoYe[IUN) [2J1SING ampoer]  1qqey €61 droD ur pajrodar se ‘GzgT ewred
J09Jop 2y} Ol UONRITTW (AwojorjSue3 SISQUA509)S0
[[99 W)S [BWAYOUISIW MOLIBW dU0q paAoiduu] onoyjedwAs [BOIAID [eIS)E[IUN) [BIISING uonoensI(| 1y +107 ‘T8 @ nq
uonepIosuod Jo (%¢[ +) (Awojorj3ued SISOUQ309)S0
sAep 41 pue (%G4+) | Je UOIRULIOJ UOQ PIsLaIou] onoyledwAs [eo1AID [eIoYR[IUN) [BIISING uonoensiq ey 7107 Suepy
UOTJBULIOJ (skep I
JSB[009)SO0 pue 90eyINS uondIosal dUOq Paseardd( oAnIsod  Jof ourpryjouens Aep/Sy/Sw (f) [eOTWYD UOIORIIXS JE[OJA ey 6661 ‘T 10 nentiay)
(%0€—~)
BIqN Yy Ul "Y1'qL, pue ‘AL/A9 ‘ANY FB[no3qen (uoneAIsuap onay)
pasea10ap ‘outds oy} ur Quoq Y ur 95ueYO ON [eNnauPAneSoN  -edwAs pajerpaw-ouIpIyiouLnsS) [ESIAYD) SISBISOQWOH ey €20C ‘Te 10 uenn
AIewruns SWOdNO QUOE  SWOOINO U0 (ampaooid) anbruyos) uoneAIoUS( [opowr auog  [SPOIN (1eak ‘J0TINE) APMIS

pringer

Qs

(ponunuoo) | sjqey



Current Osteoporosis Reports (2023) 21:503-518

511

Mixed Denervation Approaches Reinforce the Link
Between the Muscle and Bone and Provide New
Clues About Neural Coordination of Soft and Hard
Tissue Healing

Sir D’Arcy Thompson in 1917 said, “Between muscle and
bone there can be no change in the one but it is correlated with
changes in the other” [44]. The same remains true within the
context of the neural regulation of the bone. Specifically, any
reduction of the motor innervation of muscle will subsequently
lead to progressive skeletal atrophy due to loss of muscle mass.
This is most clearly shown after the transection of the ventral
motor roots of the spinal cord to induce selective motor den-
ervation of the limb [45, 46] and has since been repeated
many times in studies of peripheral nerve resection. This most
commonly includes the brachial plexus (upper limb), sciatic
and femoral nerves (lower limb), and inferior alveolar nerve
(mandible) that contain mixed populations of motor, sensory,
and sympathetic axons [47-59]. In 12/14 studies in Table 1,
when mixed surgical denervation was paired with models of
bone injury, denervation had a negative impact on soft tissue
closure, fracture repair, or osseous defect healing.

Mixed peripheral nerve function has also been studied
within the context of axolotl limb regeneration. Axolotls
are capable of full limb re-growth when amputation is per-
formed proximal to the elbow joint. Local expression of neu-
regulin-1 and its receptor, ErbB2, are decreased with limb
denervation [60]. In addition, denervation delays regenera-
tion, while supplementation of neuregulin-1 rescues regen-
eration in denervated limbs. The closest analog to this in
mammals is the regeneration of the terminal portion of the
digit tip. Sensory and sympathetic nerves are found in the
digit tip prior to and during regeneration [61ee]. However,
despite work suggesting that nerves are required for com-
plete renewal [62], a recent study found that nerves are
exclusively required for soft tissue wound closure rather than
bone regeneration. Thus, when open wounds were treated
with Dermabond to stimulate closure, regenerated digits
with denervation were morphologically similar to controls
[63]. Overall, mixed denervation approaches demonstrate
that an intact PNS supports optimal regeneration when pre-
sent. In addition to maintaining muscle mass, this work also
hints at mechanisms that may include the neural regulation
of both hard and soft tissue healing.

Studies of Surgical, but Not Chemical, Denervation
Show that Depletion of Sympathetic Nerves May
Promote Bone Accrual and Repair by Increasing
Blood Flow

In the early 1900s, an extensive series of experiments were
undertaken to understand the impact of surgical sympa-
thetic denervation on bone development and fracture healing

(Fig. 2, Table 1). The rationale was the finding that sym-
pathetic denervation could promote local vascularization
and blood flow. The first surgical method consisted of the
removal of the sympathetic ganglia (e.g., unilateral lumbar
gangliotomy to denervate the lower limb). This results in
permanent and selective removal of the sympathetic nerves
in a small body region. Fracture or bone defect healing
with sympathetic gangliotomy showed either no change
[64—68] or increased healing on the sympathectomized side
[67, 69-71]. Unilateral lumbar sympathectomy was also
performed in 46 children with leg paralysis and unilateral
shortening due to poliomyelitis, to increase the growth of
the affected limb [72]. Despite failed experiments in kit-
tens, puppies, and lambs that showed no difference in limb
growth, there was an acceleration or maintenance of the rate
of growth of the paralyzed leg on the sympathectomized side
in 63% of cases. The second approach, termed periarterial
sympathectomy, consisted of the removal of the sympathetic
nerve axon-containing adventitia from the vessel wall (e.g.,
the femoral artery for the lower limb). This causes sympa-
thetic denervation of the vessel itself and any downstream
site that was originally targeted by this vascular network.
Overall, periarterial sympathectomy resulted in increased
blood flow with more rapid callus formation, ossification,
and healing on the sympathectomized side in dogs, rabbits,
and humans [71, 73, 74]. However, despite some apparent
clinical success, these procedures received substantial push-
back from other members of the medical community that did
not find them to be advantageous, and surgical sympathec-
tomy has since been discontinued for growth- or fracture-
related outcomes.

In contrast to the generally positive results of surgical
sympathectomy, chemical sympathectomy often leads to
bone loss, impaired bone strength, and impaired bone heal-
ing (Fig. 2, Table 1) [75-81]. The discrepancy between the
surgical and chemical denervation models may be due to
the whole-body suppression of sympathetic adrenergic sys-
tems by chemical treatment, resulting in substantial global
alterations in mouse health that are not present after regional
surgical denervation.

Sensory Nerves are Required to Ensure Optimal
Skeletal Loading and May Augment Bone Formation
and Repair in Settings of Development and Injury

Surgical studies have also been performed to selectively
disrupt the sensory innervation of the bone (Table 1).
Interpretation is challenging because sensory denervation
causes improper limb use and joint trauma due to altered
position sense. However, when isolated from changes in
biomechanics and loading, surgical sensory denervation
generally does not alter bone mass or strength over long
periods of time (up to 3 years in one study) [45, 46e, 66,
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82-841]. In the 1930s, this led to the conclusion that skeletal
sensory innervation is not necessary for the maintenance of
bone. However, more recently, sensory nerves have gained
renewed attention based on their extensive pattern of infil-
tration following bone injury. Though some studies have
shown neutral effects, chemical and genetic denervation
studies have generally found that local sensory denerva-
tion during bone healing impairs implant osseointegra-
tion, alters fracture callus size, and decreases bone repair
[23, 85-87]. Whole-body chemical and genetic methods
of sensory denervation also lead to generalized bone loss
in the absence of injury [85, 88-91]. As with chemical
sympathetic denervation, differences between surgical and
genetic/chemical approaches may be due to the impact of
global sensory denervation on peripheral systems (sight,
smell, gait, etc.), in addition to any local effects. In addi-
tion, any benefits of sensory nerve recruitment for fracture
repair must be balanced with clinical needs. Management
of fractures is challenging, particularly in patients with
multiple co-morbidities, limited mobility, and pain. Cur-
rently, local sensory neurolysis is a clinically approved
adjunct to manage pain for inoperable hip fractures [92e,
93]. Neurolysis substantially improves mobility and qual-
ity of life, which can also independently promote positive
clinical outcomes for these patients.

Clinical Adaptation of Peripheral Neural
Pathways for Skeletal Regeneration

The PNS mediates a multitude of critical functions through-
out the body, and denervation studies over the last century
show that gross modification to the PNS is generally not
warranted to promote bone repair. However, the isolation
of novel molecular mechanisms linking the PNS and bone
has also led to the identification of several high-yield path-
ways that inform targeted strategies to support skeletal
regeneration.

Methods to Enhance Nerve Infiltration Are
Associated with Increased Bone Healing

With sensory denervation often resulting in impaired bone
healing after injury (Table 1), therapeutic studies have
aimed to promote neural ingrowth and, by proxy, encour-
age bone formation. Nerves and vessels infiltrate within the
first week following a fracture. Thus, therapeutic methods
aim to improve neurovascular infiltration early in the heal-
ing process. One study utilized MMP-degradable tissue-
engineered periosteum (MMP-TEP)-coated allografts to
improve scaffold integration with the native tissue since
periosteum can help direct neurovascular infiltration [94].
The MMP-TEP allograft group demonstrated early-stage

@ Springer

neurovascularization and improved both mineralization and
mechanical properties of femoral defects as compared to
hydrogel-TEP allografts and allografts alone. An additional
group of studies has aimed to encourage bone formation
by redirecting the entire nerve bundles to the injury region
to improve neural infiltration and neuropeptide release
during healing. Positioning the cut end of the peripheral
nerve trunk into tissue-engineered bone grafts (TEBGs)
improved callus and bone formation compared to TEBG-
only samples [95-98]. In addition, nerve bundle TEBGs
increased the expression of neuropeptides and their recep-
tors and improved vascularization in the defect region. The
mechanisms involved in this model were not explored in
depth; however, the implanted nerve bundles may either
be supporting innervation/neuropeptide production or per-
haps serving as a reservoir of pro-regenerative signals from
nerve-associated cells.

Sensory Neurotransmitter Calcitonin Gene—Related
Peptide (CGRP) Can Enhance Bone Repair

One possible osteoanabolic factor is the sensory neuro-
transmitter CGRP. In addition to being a potent vasodila-
tor, in vivo and in vitro studies report that CGRP promotes
osteoblast differentiation and inhibits bone resorption [99].
CGREP receptor deletion in osteoprogenitors during fracture
healing decreases callus and cartilage area as well as cell
proliferation, resulting in an overall impairment to fracture
healing [100]. Conversely, methods that increase the con-
centration of CGRP within skeletal defects can enhance the
rate of bone formation and repair [99, 101]. For example,
atypical femoral fractures, which exhibit delayed healing
and can occur following bisphosphonate treatment, demon-
strate lower CGRP expression, reduced bony bridging, and
increased fibrous tissue formation. Local injection of CGRP
(100 nM) for 14 days after injury helped to restore healing
in these fractures [102ee].

While exogenous neuropeptide delivery can enhance
regeneration, high levels are often required. To avoid this,
other therapeutic approaches aim to stimulate endogenous
release by exploiting materials or systems that encourage
neuronal signaling or neuropeptide expression. For example,
biomaterials containing divalent metal cations such as mag-
nesium induce local CGRP release and stimulate robust per-
iosteum-derived stem cell osteogenic differentiation [102ee,
103, 104ee]. Direct stimulation of sensory nerve cell bodies
in the dorsal root ganglia with an implanted microelectrical
stimulation system (IMESS) also enhances CGRP produc-
tion and drives spinal fusion only in IMESS-targeted areas.
Similarly, in osteoporotic femoral fracture healing, IMESS
at the dorsal root ganglia (20 min/day for 2 weeks) improves
vascularization and fracture healing in a CGRP-dependent
manner without increasing pain-like responses [105ee].
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Conversely, the intraperitoneal injection of CGRP inhibitors
in rats negatively affected fracture healing, demonstrating
a significant decrease in the formation of the mineralized
callus [106]. Balancing the osteoanabolic effects of sensory
neurotransmitters such as CGRP with pain outcomes is cru-
cial since these factors can also enhance nociception [107].
Adding to the complexity, CGRP inhibitors such as atoge-
pant and erenumab are used clinically for the treatment of
migraine [108]. Development of pro-regenerative paradigms
will require careful consideration of current therapeutics and
the actions of target neurotransmitters across systems.

Schwann Cell-Secreted Factors Signal
Bone-Forming Cells to Activate Repair Responses

Peripheral nerve axons are wrapped by a protective sheath
of myelinating or non-myelinating Schwann cells. After
an injury, certain populations of Schwann cells can disas-
sociate from damaged axons to expand at the site of injury.
Schwann cells primarily modulate bone regeneration
through secreted factors that signal bone-forming cells.
In mouse digit tip regeneration, denervation inhibited
Schwann cell infiltration, depleting Schwann cell-secreted
factors, including OSM and PDGF-AA, and inhibiting
regeneration [109]. Transplantation of additional Schwann
cells or local injection of OSM and PDGF-AA was able to
rescue the impaired healing [109]. Schwann cell-derived
exosomes were also shown to enhance osteogenic dif-
ferentiation in vitro and improve bone formation in vivo
when included in a titanium alloy scaffold [110]. Simi-
larly, when Schwann cells were included in scaffolds along
with osteoblasts and endothelial cells, angiogenesis and
vascularization were enhanced in vivo [111]. Mechanisti-
cally, in vitro studies suggest that Schwann cell-derived
factors increase the proliferation of skeletal stem cells and
endothelial cells while signaling through the VEGF, ERK/
MAPK, and PI3k-Akt pathways [112].

B-Blockers Increase BMD, Reduce Fracture Risk,
and Promote Healing

Surgical denervation studies pinpoint the sympathetic
nervous system as a negative regulator of bone (Fig. 2,
Table 1). Consistent with this, norepinephrine, the primary
neurotransmitter of sympathetic adrenergic axons, can act
on skeletal p-adrenergic receptors to suppress bone forma-
tion and increase osteoclast function, leading to decreased
bone mass [113-115]. This informs studies on the effects
of B-blockers, a group of common antihypertensive medi-
cations, on bone homeostasis and repair. f-blockers inhibit
the diverse effects of the neural- and adrenal-derived cat-
echolamines, including norepinephrine. Clinical use of
B-blockers is associated with reduced risk of fracture and

increased bone mineral density [116—118]. Treatment with
p-blockers in mouse models increases bone mass due to
enhanced bone formation and decreased bone resorption
[114]. The B-blocker propranolol can also promote mineral
apposition, callus formation, and strength in rodent femoral
defects [119]. Though it is unclear if the benefits to the
bone are due to direct actions on bone cells (vs. vasoregula-
tory or other effects), B-blockers remain a promising thera-
peutic strategy for managing osteoporosis and enhancing
bone healing. In addition, recent studies have identified
alternate pathways that converge on the regulation of sym-
pathetic tone to modulate bone mass. For example, genetic
downregulation of PGE2 signaling by advillin-expressing
sympathetic and sensory nerves or introducing divalent cat-
ions such as magnesium can suppress sympathetic activity,
promoting osteoblast formation and increases in the bone
[85, 91, 104ee, 120]. Increased sympathetic tone has also
been proposed as a putative mechanism underlying bone
loss and fragility in diseases including chronic heart failure
[78] and impaired fracture repair with the use of medica-
tions such as SSRIs [121], providing targeted opportunities
for future intervention.

Activation of NGF/TrkA Signaling Can Augment
Bone Healing but Needs to be Balanced with Pain
and Tumor-Promoting Responses

Therapeutic approaches using growth factors are popular
for targeting known regeneration pathways, as they involve
simple strategies to stimulate the host microenvironment.
Consistent with this, local application of the neurotro-
phin NGF activates neuronal signaling, vascularization,
and other bone resident cells that stimulate bone forma-
tion [30, 41, 122-126]. Genetic targeting approaches have
shown that the bone anabolic effects are largely mediated
by the activation of TrkA, the high-affinity receptor of NGF
[26e, 27], with the potential for additional pro-regener-
ative actions of the low-affinity NGF receptor p75-NTR
[127]. Specifically, when paired with rodent models of
long bone fracture or calvarial defect, global inhibition of
TrkA signaling reduces vascularization, osteoblastic activ-
ity, and ossification rate [26e, 27]. Conversely, treatment
with synthetic TrkA agonist gambogic amide can promote
angiogenesis and bone repair [128]. The mechanism under-
lying this effect remains to be clarified and may involve the
activation of TrkA on neural, vascular, and/or local skeletal
cells [30, 128]. Beyond this, targeted inhibition of p75-
NTR in osteoblast precursors can restrict osteoprogenitor
migration into the repair site [127]. Other nerve regula-
tory factors and neuropeptides such as BDNF, substance
P, Sema3A, vasoactive intestinal peptide, and galanin have
also been used to trigger bone healing and demonstrated
similar results [70, 129-136].
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NGF/TrkA signaling is also a major regulator of
peripheral pain. Given this, clinical anti-NGF therapies
to treat musculoskeletal pain are currently under devel-
opment, and inhibition of NGF/TrkA signaling to treat
fracture pain has been tested in rodents. In this case, anti-
NGF and anti-TrkA antibodies successfully reduced pain
behaviors without affecting fracture repair [137, 138].
In addition, NGF may also be relevant to tumorigenesis
[139]. Many studies highlight the increase of NGF secre-
tion and its receptors in the microenvironment of differ-
ent cancer types [140]. For this reason, increasing atten-
tion is directed toward NGF and/or TrkA as a therapeutic
target for effectively controlling tumor progression. Most
recently, this includes the clinical use of an emerging
class of TRK inhibitors to treat TRK fusion—positive can-
cers [141]. While TRK inhibitors have favorable overall
safety, off-target adverse events, including weight gain,
dizziness/ataxia, paraesthesias, and bone fracture, are
occasionally observed [141, 142]. Future studies will be
essential to understand the impact of the clinical modu-
lation of TRK signaling on the bone microenvironment
during the maintenance and healing phases.

Conclusions

Studies on the relationships between the PNS and bone
initially peaked in the early 1900s. Over 100 years later,
we have now uncovered diverse links between the PNS
and the skeleton that occur during bone homeostasis,
development, and repair. Overall, a common theme of
balance emerges whereby an orchestration of both local
and systemic neural functions must align to promote
optimal repair while limiting negative consequences
such as pain. Advances over the next century will neces-
sitate a rigorous identification of the mechanisms under-
lying these effects that is cautious not to oversimplify
the in vivo condition. Clinical use of sensory neuroly-
sis, CGRP inhibitors, and TRK-targeting therapies will
undoubtedly inform our understanding of their necessity
for bone health and the potential to leverage the ana-
bolic components of these pathways to promote regenera-
tion. In addition, B-blockers and PNS-targeting bioactive
implant materials represent emerging strategies to sup-
port repair.
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