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Abstract
Purpose of Review One aim in bone tissue engineering is to develop human cell-based, 3D in vitro bone models to study bone
physiology and pathology. Due to the heterogeneity of cells among patients, patient’s own cells are needed to be obtained,
ideally, from one single cell source. This review attempts to identify the appropriate cell sources for development of suchmodels.
Recent Findings Bone marrow and peripheral blood are considered as suitable sources for extraction of osteoblast/osteocyte and
osteoclast progenitor cells. Recent studies on these cell sources have shown no significant differences between isolated progenitor
cells. However, various parameters such as medium composition affect the cell’s proliferation and differentiation potential which
could make the peripheral blood-derived stem cells superior to the ones from bone marrow.
Summary Peripheral blood can be considered a suitable source for osteoblast/osteocyte and osteoclast progenitor cells, being less
invasive for the patient. However, more investigations are needed focusing on extraction and differentiation of both cell types
from the same donor sample of peripheral blood.

Keywords Invitrobonemodel .Bonemarrow .Peripheralblood .Mesenchymalstemcell .Hematopoieticstemcell .Personalized
medicine

Introduction

Bone is a complex multifunctional organ that sustains the in-
tegrity of the vertebrate skeleton, provides mechanical support
for locomotion, protects internal organs, and acts as a mineral
storage [1]. Throughout life, bone tissue continuously un-
dergoes a physiological process called bone remodeling to
adapt to environmental changes, repair old and damaged bone,
and maintain its shape and strength. Bone remodeling occurs
via balanced activities of its specialized cells which are tightly
regulated and controlled through biochemical pathways [2].
In vivo, bone remodeling is composed of four consecutive
phases: recruitment and activation of mononuclear progenitor
cells, resorption of the organic and inorganic matrix of bone by
mature osteoclasts, preparation of the resorbed surface ofmatrix
deposition, and deposition of new bone by osteoblasts [1, 3].

Bone Cells

Osteoblasts

Osteoblasts are bone-forming cells derived from mesenchy-
mal stem cells (MSCs). MSCs differentiate towards osteo-
blasts under appropriate mechanical and/or biochemical stim-
uli [4, 5]. Osteoblasts are responsible to produce the organic
matrix of bone extracellular matrix composed of mainly col-
lagen type I and a small percentage of non-collagenous pro-
teins (NCPs) [6]. Moreover, they are involved in inorganic
matrix deposition through mechanisms in which NCPs play
important roles [7, 8]. At the end of the bone-forming phase,
osteoblasts can have one of the following fates: become em-
bedded in the mineralized matrix and differentiate towards
osteocytes, transform into inactive bone-lining cells, or under-
go apoptosis (Fig. 1) [9].

Osteocytes

Osteocytes as terminally differentiated osteoblasts form 95%
of the cellular component of bone; thus, they are the most
abundant bone cell type [10]. During bone formation, a large
portion of osteoblasts becomes embedded in the mineralized

This article is part of the Topical Collection on Osteocytes

* Sandra Hofmann
S.Hofmann@tue.nl

1 Orthopaedic Biomechanics, Department of Biomedical Engineering
and Institute for Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600MB Eindhoven, the Netherlands

Current Osteoporosis Reports (2021) 19:88–100
https://doi.org/10.1007/s11914-020-00648-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11914-020-00648-6&domain=pdf
http://orcid.org/0000-0002-2568-8388
mailto:S.Hofmann@tue.nl


matrix, decrease their cell body volume, and attain a stellar
shape morphology with long processes which form a network
with their neighboring cells and cells on the bone surface [10].
These cells are thought to orchestrate the activities of bone
formation and resorption by translating mechanical loading
into biochemical signals [11, 12].

Osteoclasts

Osteoclasts are bone-resorbing cells that dissolve the inorgan-
ic matrix and enzymatically degrade extracellular matrix pro-
teins by secreting acid and lytic enzymes [13]. These cells are
large, multinucleated cells originating from the monocyte/
macrophage lineage which differentiate from hematopoietic
stem cells (HSCs) (Fig. 1). These stem cells are situated in
bone marrow and can be mobilized into the peripheral blood
[14]. Osteoclast differentiation and activation are thought to
be regulated by neighboring stromal cells and osteoblasts [15].

Others

Besides the cell types that are involved in bone remodeling
process, bone consists of other cell types which are less known
to have a direct role in the bone remodeling process; they will
not be addressed in this review. These cells are for example
bone-lining cells, which are inactive osteoblasts at the end of
the bone formation phase, chondrocytes, and endothelial and
perivascular cells due to the vascularized nature of bone tissue
[10, 16, 17].

Bone Metabolic Diseases

Disturbing the bone remodeling process results in the devel-
opment of metabolic bone diseases including osteoporosis
characterized by an altered bone turnover balance as a result
of high osteoclast activity and impaired bone formation.
Osteoporosis is the most common bone metabolic disease. It
is characterized by decreased bone strength and increased
bone fracture risk [18, 19]. Apart from osteoporosis, there
are more diseases related to an impaired bone remodeling
process including osteopetrosis, Paget’s disease, renal
osteodystrophy, and rickets. They are less prevalent, which
limits our current knowledge on their pathology and their
efficient treatment [20]. Thus, the development of in vitro
models that mimic bone-related pathologies could enhance
the understanding of these diseases and the design of more
efficient treatments.

The Need for Personalized In Vitro Models

The current gold standard in developing novel treatments for
bone pathologies and pre-clinical drug screening is using an-
imal models. However, these often fail to represent human
conditions due to interspecies differences in physiology [21,
22]. Moreover, the need for indicating the appropriate species
to model a specific disease, ethical concerns due to genetic
mutations and/or nutrient deficiency to induce the disease and
high costs of maintenance limit the use of animals as models
and thus our knowledge on specific bone metabolic diseases.
Animal models often result in poor translation of pre-clinical
studies to human clinical trials and promising new treatments

Fig. 1 Bone progenitor cells and their differentiation into osteoblasts/osteocytes and osteoclasts
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might fail prior to clinical testing [22–24]. The development
of new therapies requires an in-depth and detailed understand-
ing of bone physiology and pathology and how the different
cells are affected in their interaction. Over the past few years,
bone tissue engineering techniques have been applied to create
3D in vitro bone models based on human cells that can be used
as an alternative to in vivo models [18, 23]. These in vitro bone
models require the (co-)culture of the specific bone cells to
work closely together under physiological conditions.
Because there is a large cell heterogeneity among patients
and their diverse characteristics caused by diseases include
changes in cell receptors, there is a need to use patient-
specific cells for personalized in vitro bone models [19, 25].
Thus, in order to represent the patient’s bone biological system,
representative in vitro models require the patient’s own cells.
The ideal and efficient way to achieve this approach is to isolate
progenitor cells of osteoblasts and osteoclasts with high
efficiency, to expand them in vitro, and to differentiate them
towards osteoblasts/osteocytes and osteoclasts, respectively,
ideally from one cell source with minimal invasiveness for
the patient (i.e., either from peripheral blood or from bone
marrow).

This review attempts the following: to (a) briefly identify
what kind of cells can be used for bone-related studies, (b)
explain the importance of progenitor cells as the most prom-
ising cell types for developing in vitro bone models, (c) dis-
cuss bone marrow and peripheral blood as sources to obtain
both osteoblasts/osteocytes and osteoclasts progenitor cells,
and (d) finally, the isolation method, proliferation capacity,
and differentiation potential of progenitor cells from bone
marrow and peripheral blood are discussed.

Cells in Development of In Vitro Bone Models

Advancement in development of in vitro bonemodels requires
the selection of suitable cell models which can behave simi-
larly to the ones in vivo. Cells that have been used in bone-
related studies might be originated from one of the following:
immortalized cell lines, primary cells which are isolated di-
rectly from the tissue, induced pluripotent stem cells (iPSCs),
and progenitor cells.

Immortalized cell lines such as MC3T3-E1, MLO-A5, and
MG-63 have been used extensively in bone tissue engineering
due to their ease of access, high expansion capacity, and re-
producibility of outcomes [3]. However, these cell models do
not always behave similarly to primary bone cells [26]. For
instance, in murine calvarial cell line MC3T3-E1, the gene
expression of specific transcripts coding for extracellular ma-
trix proteins such as osteopontin may differ compared with
primary osteoblastic cells [27, 28]. Besides, as immortalized
cell lines are not patient-specific, it is clear that they cannot be

considered as suitable candidates for personalized human
in vitro bone models.

iPSCs, which are generated by transferring a mixture of
nuclear transcriptional factors including Oct4, Sox2, Klf4,
and c-Myc to human primary cells, exhibit high similarity to
human embryonic stem cells [29]. Due to their robust prolif-
eration capacity, differentiation potential into many cell types,
and the ability to generate patient-specific stem cells, iPSCs
gained high interest in disease modeling, drug screening, and
transplantation therapies [29]. Several studies have shown the
ability of iPSCs to differentiate into osteoblasts and osteo-
clasts, suggesting that iPSCs could be considered as a cell
model for the generation of in vitro bone models [30–33].
However, approaches to generate iPSCs might be complex,
expensive, and time-consuming with low reprogramming ef-
ficiency and possible alternations of gene expression profiles
and pathways, which make iPSCs less appropriate for devel-
opment human in vitro bone models, at least for the moment.

Primary osteoblasts and osteocytes can both be directly
isolated from bone tissue and provide an alternative to cell
lines for bone-related studies. Several protocols and methods
are available for the isolation of human osteoblasts including
enzymatic digestion and spontaneous outgrowth cultures from
bone biopsies [34, 35]. Isolation of primary osteocytes is more
challenging due to their location within the mineralized bone
matrix which requires multiple digestion and decalcification
steps [36]. As an alternative, human osteocytes can be obtain-
ed in culture through differentiation of isolated osteoblasts
under osteogenic stimulation [37, 38•]. For primary osteo-
clasts, it has been reported in early studies that they can be
isolated from human bone tissue [39, 40]. However, isolation
of primary osteoclasts from bone tissue requires multiple steps
which might affect the number of extracted cells and their
survival rate [41].

Primary cells have greatly enhanced the knowledge of bone
biology; for instance, a recent study has shown development
of an in vitro model to investigate the interaction of primary
human osteoblasts and osteocytes [38•]. But due to their need
for a bone biopsy, slow proliferation rate, short life-span, de-
creased doubling time after two or three passages, long isola-
tion procedures, limited accessibility, restricted pool of poten-
tial donors (they are usually acquired during orthopedic sur-
gery) [34, 42], their use for developing personalized human
in vitro models is restricted.

The use of progenitor cells of the bone-specific cell types
could be more promising to develop human in vitro bone
models. MSCs are osteoblast/osteocyte progenitor cells which
were primarily extracted from bone marrow and later from
other tissues such as adipose tissue, muscle, peripheral blood,
dental pulp as adult tissue sources and umbilical cord, umbil-
ical cord blood, placenta, amniotic fluid as fetal and perinatal
tissue sources [43–45]. MSCs can differentiate into various
lineages such as adipogenic, chondrogenic, and osteogenic
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lineage under appropriate stimuli [46–48]. In addition to their
multi-potency, their availability and relative ease of isolation
and expansion have made them popular for use in many
in vitro models. Bone marrow-derived MSCs have shown
significant roles in bone regeneration and fracture repair
in vivo; furthermore, in vitro studies demonstrated a high os-
teogenic differentiation capacity under biochemical and/or
mechanical stimuli [49–53]. In bone tissue engineering, bone
marrow has so far probably gained the greatest attention as a
source ofMSCs, but due to the invasive and painful procedure
of bone marrow aspirate collection which can also cause do-
nor site morbidity, other adult and fetal tissue sources have
been studied as the source of MSCs [54]. For instance, several
studies have indicated the osteogenic differentiation and bone
formation potential of adipose-derived MSCs, which can be
isolated from the tissue obtained during liposuction,
lipoplasty, or lipectomy procedures with less discomfort and
complications compared with bonemarrow aspirate collection
[55, 56]. Further, MSCs derived from umbilical cord blood
and peripheral blood with less invasive cell collection
methods have also shown their potential for bone defect repair
[57–59].

Hematopoietic stem cells (HSCs) are multi-potent and self-
renewing cells that can give rise to immune and blood cells
[60, 61]. HSCs are primarily located in the bone marrow and
can be mobilized into the bloodstream which makes bone
marrow and peripheral blood the common tissue sources for
HSC extraction [62, 63••, 64]. Moreover, it has been shown
that these cells can also be isolated from umbilical cord blood
[65, 66]. HSCs differentiate into the monocyte/macrophage
lineage and further into osteoclasts under stimulation with
receptor activator of nuclear factor kappa-B ligand
(RANKL) and monocyte-colony-stimulating factors (M-
CSF), both of which are secreted in vivo by osteoblasts and
osteocytes [67, 68].

Taken together, the most promising cell models for gener-
ation of personalized human in vitro bone models are progen-
itor cells. To develop these models, the patient’s own progen-
itor cells should ideally be extracted from one source which

makes the procedure more convenient for the patient, as well
as results in less demanding clinical procedure. Among all
adult tissue sources, due to the possibility to extract both
MSCs and HSCs from bone marrow and peripheral blood,
they can be considered being the most suitable sources for
the isolation of osteoblast/osteocyte and osteoclast progenitor
cells (Fig. 2).

Bone Marrow–Derived MSCs vs. Peripheral
Blood–Derived MSCs

The frequency of MSCs derived from bone marrow and pe-
ripheral blood is very low, representing approximately 0.001–
0.01% and 0.000001% of isolated mononuclear cells, respec-
tively [69, 70]. The number of isolated MSCs can be changed
depending on the gender, donor age, health condition, and in
case of bone marrow-derived MSCs, skeletal site of isolation
such as anterior or posterior iliac crest, vertebral body or fem-
oral head [71–73]. It has been shown that the frequency of
circulating MSCs in peripheral blood can be enhanced in re-
sponse to pathological conditions such as bone fracture, oste-
oporosis, breast cancer, and bone sarcomas; for instance, a 9-
fold increase in the number of MSCs has been reported in the
bloodstream of patients with osteosarcoma compared with
control subjects [74–78]. This could be as a result of released
cytokines and chemical signals to recruit MSCs and mobilize
them into the bloodstream. Several methods have been used to
mimic these signals to increase the number of MSCs in blood
circulation such as administration of granulocyte-colony-
stimulating factor (G-CSF) and activation of the sympathetic
nervous system by electro-acupuncture [79–82]. These
methods could result in elevated number of isolated peripheral
blood-derived MSCs which might be an advantage to develop
patient-specific in vitro bone models; however, due to the
possible side effects of stimulating the migration of cells from
bone marrow to peripheral blood, it might not be ethical for
the donors and also not applicable for patients with specific
diseases [83]. To isolate MSCs from bone marrow and

Fig. 2 Cell sources for personalized in vitro bone models
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peripheral blood, several protocols have been used such as
direct plating based on the adherence property of MSCs to
the plastic surface [45, 70], density gradient centrifugation,
or hemolysis to separate mononuclear cells and remove eryth-
rocytes prior to seeding cells on a plastic surface [63, 84–88,
89•, 90, 91], using fibrin microbeads and fluorescence-
activated cell sorting (FACS) to increase the purity of extract-
ed MSCs [79, 92]. Due to the low frequency of isolated
MSCs, their applicability relies on their high in vitro prolifer-
ation capacity.

The proliferation capacity of MSCs can be evaluated by
calculating population doubling time [93]. Various studies
on MSCs derived from bone marrow and peripheral blood
have shown different doubling times for MSCs; for instance,
80 and 27 h of doubling times have been reported for bone
marrow-derived MSCs and peripheral blood-derived MSCs,
respectively [44]. These differences could also be as a result of
donor-to-donor variability, factors such as age and health con-
dition of the donor, passage number of cells in vitro and the
use of different protocols for cell isolation and culture [76, 87,
94–101]. For instance, isolation of peripheral blood-derived
MSCs based on positive expression of CD133 led to obtain
MSCs with high proliferative potential in comparison with the
peripheral blood-derived MSCs based on their adherence ca-
pability to plastic surface [101]. This could be due to the
heterogeneous population of cells in the plastic adherence
method that might interfere with proliferation capacity.
While an investigation on bone marrow- and peripheral
blood-derived MSCs obtained from same patients with the
same isolation method and culture condition has reported no
significant differences in their characteristics such as popula-
tion doubling time [76], in another study, the quantity of ob-
tained MSCs from bone marrow after two passages was 2
times higher than MSCs from peripheral blood [89•]. These
differences not only could be a result of donor variation, but
also of the culture condition and most importantly the medium
composition. Even though these observations could suggest
that the use of peripheral blood-derived MSCs in tissue engi-
neering applications might be equally valuable as bone
marrow-derived MSCs, the chosen culture conditions need
to be evaluated carefully.

The in vitro osteogenic differentiation of MSCs makes
them highly interesting for the development of in vitro bone
models [63, 76, 89•, 102–106]. The general trend shows a
beneficial osteogenic differentiation potential for bone
marrow-derived MSCs based on significantly increased ex-
pression of osteoblastic specific genes, such as alkaline phos-
phatase (ALP) and calcium deposition compared with other
tissue sources [106, 107]. On the other hand, studies onMSCs
extracted from bone marrow and peripheral blood of the same
patients have shown no significant differences in quantitative
measurements of ALP expression and calcium content; more-
over, MSCs from both sources have demonstrated positive

staining for calcium deposits [76, 89]. Besides the differenti-
ation potential of MSCs towards the osteogenic lineage, their
ability to promote bone formation after in vivo implantation
has been shown in various studies. The majority of these stud-
ies has been conducted using bone marrow-derived MSCs in
human and animal models [108–112]. In a small number of
studies, also peripheral blood-derived MSCs have been used
and shown to enhance bone regeneration in critical-sized bone
defects in animal models [59, 113, 114]. Taken together, pe-
ripheral blood-derived MSCs seem to exhibit similar charac-
teristics as bone marrow-derived MSCs and can be used to
develop patient-specific in vitro bone models.

The main challenge in developing in vitro bone models to
represent bone remodeling is the formation of osteocytes em-
bedded in the mineralized matrix. In vitro, human osteocytes
have been obtained through the differentiation of primary os-
teoblasts, but so far, full differentiation of MSCs towards
functional osteocytes has not been reported (Table 1).
Further investigations will be needed to induce the formation
of osteocytes that are embedded in their own matrix in vitro.
This might be acquired for example through exposing cells to
mechanical stimuli which are known to be involved in bone
homeostasis and bone remodeling [3, 123].

Bone Marrow-Derived HSCs Vs Peripheral
Blood-Derived HSCs

HSCs represent a rare population of cells in bone marrow and
peripheral blood, representing less than 0.01% and less than
0.000001% of total nucleated cells, respectively [124–127].
However, the population of cells could be influenced by the
age and health condition of patients and the method of cell
isolation [128–131]. HSCs are primarily located in the bone
marrow, but, just like MSCs, they display dynamic behavior
by moving out of the bone marrow and entering into the gen-
eral circulation [68, 132]. The mobilization process could be
enhanced by administration of various factors and depending
on the type of used pharmacological agent such as G-CSF and
CXCR4 receptor antagonist AMD3100, the frequency of
HSCs in peripheral blood could be elevated up to 100 times
[68, 132–135]. However, the possible side effects of exposing
donors to these pharmacological agents might not be ethical
for the donors [83]. Luckily, monocytes that are derived from
HSCs and comprise 10–20% of peripheral bloodmononuclear
cells can be directly isolated from peripheral blood and have
been used as osteoclast precursor cells in in vitro studies
[136–142]. To isolate HSCs from bonemarrow and peripheral
blood, several protocols have been developed including direct
plating of bone marrow aspirates and blood samples on plastic
surface and collecting the non-adherent cells as it has been
shown that HSCs are less likely to attach to the plastic sub-
strate compared with MSCs. The molecular and biochemical
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analyses on the non-adherent cells of bone marrow and pe-
ripheral blood mononuclear cells revealed that they are posi-
tive for HSCmarkers such as SLAMF1 [63••]. Culturing non-
adherent cells in osteoclastogenesis promoting medium result-
ed in the differentiation of functional osteoclasts which was
associated with expression of the tartrate-resistant acid phos-
phatase (TRAP) gene and an increased TRAP enzyme activity
[62, 63, 143••, 144]. Another method is culturing mononucle-
ar cells separated via density gradient centrifugation under
osteoclastogenic culture condition which led to the generation
of osteoclasts in culture [145, 146]. Moreover, HSCs and
monocytes can be isolated and purified based on the expres-
sion of their own specific surface marker such as CD34 and
CD14 using techniques including an automated magnetic pu-
rification system and FACS [124, 125, 136–138, 147–150].

Unlike MSCs which exhibit a high proliferation capacity
and can be expanded in vitro to obtain a high number of cells
for in vitro studies, the proliferation of HSCs and monocytes
remains challenging. For the generation of in vitro bone

models and osteoclast-related studies, freshly isolated osteo-
clast progenitor cells have been used in most studies [137,
151–153]. The time-consuming procedure of cell isolation
might cause difficulties in obtaining a high enough number
of cells; as a result, large volume of bone marrow aspirates or
peripheral blood would be required. Attempts to increase the
number of osteoclast precursor cells in vitro resulted in the
development and use of several components and factors in
culture [126]. It has been shown that combinations of growth
factors and cytokines such as interleukin 6 (IL-6), interleukin
3 (IL-3), thrombopoietin (TPO), and stem cell factor (SCF)
with additional molecules such as Prostaglandin E2 (PGE2),
Stemregenin 1 (SR1), and UM171 could support the prolifer-
ation of HSCs in vitro [126, 154–156]. Monocytes have also
showed an increased proliferation potential in vitro in re-
sponse to macrophage-colony-stimulating factor (M-CSF),
1α,25-dihydroxyvitamin D3, and lymphokines [157–161].
However, the influence of these components on the subse-
quent osteoclastogenesis potential needs further investigation.

Table 1 Current approaches to differentiate osteocytes in vitro

Cell Osteoblast source Culture substrate Outcome Reference

Human primary osteoblasts Purchased from LONZA Biphasic calcium phosphate
particles

Expression of CX43, DMP1, E11,
MEPE, SOST, PHEX

Embedded osteocyte-like cells in
collagenous matrix

[115]

Human primary osteoblasts Femoral trabecular bone
tissue from the knee region

Mineralized collagen matrix Expression of DMP1 and FGF23
Formation of lacunae around the cell

[116]

Human primary pre-osteoblasts
and mature osteoblasts

Spongious bone fragment of
human femoral head

Collagen gel Expression of E11, osteocalcin,
PHEX, MEPE, RANKL

Acquire stellar shape of osteocyte

[38•]

Mineralized collagen gel Expression of ALP, PDPN, PHEX
Acquire stellar shape of osteocyte

[37]

Human primary osteoblasts Intertrochanteric bone 2D on tissue culture plastic Expression of E11, DMP1, SOST,
OOCN, BSP1, PHEX

[117]

Human primary osteoblasts Knee cortical 3D microfluidic perfusion
device

Expression of SOST and FGF23
Form 3D cellular network
Inhibit cell proliferation

[118]

Mouse primary osteoblasts Long bone 3D microfluidic perfusion
device

Expression SOST, FGF23
Form 3D cellular network
Inhibit cell proliferation

[119]

Mouse primary osteoblasts Calvarial tissue 2D culture on
poly-L-lysine-coated 2-well
chamber slide

Expression of ALP, DMP1, sclerostin
Formation of mineralized nodules
Acquire stellar shape of osteocyte

[120]

Rat primary periosteal cells Femur bone Fibrin hydrogel with calcium
phosphate ceramic anchors

Deposition of ordered matrix
containing collagen and
hydroxyapatite

Expression of sclerostin and PDPN
Embedded cell with osteocyte

morphology in the mineralized
matrix

[121]

Mouse mesenchymal stem cell Bone marrow 2D culture on tissue culture
plastic

Formation of mineralized nodules
Expression of E11, DMP1, PHEX,

SOST, FGF23, RANKL, OPG.
Acquire stellar shape of osteocyte

[122]
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Cryopreservation of osteoclast progenitor cells seems feasible
as it has not affected monocyte viability and function in re-
sponse to various factors [162–165]. However, further explo-
ration is required on the osteoclast differentiation ability of
cryopreserved osteoclast progenitor cells.

Osteoclast differentiation of both HSCs and monocytes
derived from bone marrow and peripheral blood has been
shown in several in vitro studies [67, 152, 153]. Variations
in donor age, health condition, and osteoclastogenesis proto-
cols have resulted in mixed outcomes regarding osteoclast
differentiation capacity [143, 166, 167]. For instance, a mix-
ture of growth factors such as RANKL, M-CSF, transforming
growth factor beta (TGF-β), and dexamethasone has led to the
generation of multinuclear cells with higher number of nuclei
and an increased expression of osteoclast-specific genes such
as tartrate-resistant acid phosphatase (TRACP) 5a and 5b in
peripheral blood-derived monocytes compared with bone
marrow-derived monocytes (Fig. 3) [143••]. However, no sig-
nificant differences were reported in bone resorption activity
between the used cell types and growth factor combinations
[143••]. This study highlighted the importance of carefully

considering the combination of chosen growth factors for
the osteoclastogenesis of osteoclast precursor cells.

Conclusion

In vitro bone models provide a platform to study bone phys-
iology including bone remodeling, bone-related diseases, and
potential treatments. These models require all three types of
cells in bone, namely osteoblasts, osteocytes, and osteoclasts,
ideally from individuals to account for donor-specific differ-
ences and disease-related cell reactions. To achieve that, it is
required to collect progenitor cells from one patient and ide-
ally from one cell source for patient convenience. MSCs and
HSCs are progenitor cells of osteoblasts/osteocytes and oste-
oclasts, respectively, and can be extracted from both bone
marrow and peripheral blood as reviewed here. Limited stud-
ies directly comparing bone marrow-derived and peripheral
blood-derived MSCs and HSCs have shown no significant
differences between osteogenesis and osteoclastogenesis of
the progenitor cells from both sources. However, many

Fig. 3 Osteoclast differentiated from bone marrow and peripheral blood
cultures under different combination of growth factors. The multinuclear
TRACP-positive cells are shown in a and the actin rings are illustrated in
b. Higher number of multinuclear cells in bone marrow-derived cultures
were obtained in the presence of RANKL andM-CSF (c). The number of
nuclei in multinuclear cell was similar in bone marrow and peripheral
blood-derived osteoclasts when only RANKL and M-CSF were used,

but in the presence of dexamethasone, the peripheral blood-derived
osteoclasts contained significantly more nuclei (d). 12D and 14D: 12
and 14 days of culture, respectively [143]. Reprinted from Heliyon, Vol
4, Elina Kylmäoja et al. Peripheral blood monocytes show increased
osteoclast differentiation potential compared with bone marrow
monocytes, Copyright (2018) with permission from Elsevier
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parameters such as medium composition have been reported
to affect cell proliferation and their differentiation potential
which could make the peripheral blood-derived stem cells
superior to the ones from bone marrow. Thus, as both sources
have their advantages and disadvantages (Table 2), yet, pe-
ripheral blood could be considered as a suitable source for
both osteoblast/osteocyte and osteoclast progenitor cells, be-
ing less invasive for the patient. In this case, more investiga-
tions are needed focusing on extraction and differentiation of
both cell types from the same sample of peripheral blood.
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