
BONE MARROW AND ADIPOSE TISSUE (G DUQUE AND B LECKA-CZERNIK, SECTION EDITORS)

Insulin Signaling in Bone Marrow Adipocytes

Michaela Tencerova1,2 & Meshail Okla3,4 & Moustapha Kassem1,4,5

# The Author(s) 2019

Abstract
Purpose of Review The goal of this review is to discuss the role of insulin signaling in bone marrow adipocyte formation,
metabolic function, and its contribution to cellular senescence in relation to metabolic bone diseases.
Recent Findings Insulin signaling is an evolutionally conserved signaling pathway that plays a critical role in the regulation of
metabolism and longevity. Bone is an insulin-responsive organ that plays a role in whole body energy metabolism. Metabolic
disturbances associated with obesity and type 2 diabetes increase a risk of fragility fractures along with increased bone marrow
adiposity. In obesity, there is impaired insulin signaling in peripheral tissues leading to insulin resistance. However, insulin
signaling is maintained in bone marrow microenvironment leading to hypermetabolic state of bone marrow stromal (skeletal)
stem cells associated with accelerated senescence and accumulation of bone marrow adipocytes in obesity.
Summary This review summarizes current findings on insulin signaling in bone marrow adipocytes and bone marrow stromal
(skeletal) stem cells and its importance for bone and fat metabolism. Moreover, it points out to the existence of differences
between bone marrow and peripheral fat metabolism whichmay be relevant for developing therapeutic strategies for treatment of
metabolic bone diseases.
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Introduction

Bonemarrow adipose tissue (BMAT) comprises approximate-
ly 8% of total fat mass and thus representing a significant fat

depot in adult humans with a role in bone homeostasis and
whole body energy metabolism [1]. BMAT is more predomi-
nant in the appendicular than in axial skeleton [2]. The fatty
acid composition of BMAT varies considerably based on its
anatomical location, but tibia BMATwas found to have a fatty
acid profile that resembles white and classical brown adipose
tissues [3]. In the post-natal organism, BMAT originates from
progenitor cells that are distinct from peripheral adipose tis-
sues. BMAT is thought to be derived from bone marrow stro-
mal (skeletal, mesenchymal) stem cells (BMSC) present with-
in the bone marrow stroma and that are capable for differen-
tiation, in addition to adipocytes, into osteoblasts and
chondrocytes [1]. Currently, there is no consensus regarding
the phenotype of BMAT progenitors but a number of markers
have been proposed to identify adipocyte progenitors within
the bone marrow, including osterix [4, 5], Prx1 and Nestin1
(reviewed in [6]), leptin receptor [7], Rankl [8], Znf423 [9••],
and Hoxa11 [10].

BMAT plays a role in lipid storage, skeletal remodeling,
and hematopoietic regulation but the mechanisms mediating
and integrating these diverse functions have not yet been fully
delineated [3]. In addition, BMAT is recognized as an endo-
crine organ producing local and systemic factors including
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adiponectin, dipeptidyl peptidase 4 (DPP4), legumain
(LGMN), secreted frizzled-related protein 1 (sFRP-1), and
delta-like 1 (DLK1) (also known as preadipocyte factor 1
(Pref1)) [9••, 11••, 12–14]. BMAT undergoes pathologic
changes during aging and in a number of diseases [1, 2, 4];
e.g., it expands in anorexia nervosa, states of estrogen defi-
ciency, glucocorticoid excess, and growth hormone deficiency
[2, 11••].

Another evidence about the role of BMAT to participate in
regulating whole body energy metabolism is its ability to re-
spond to insulin [15], to activate Sirt1, a key cellular energy
sensor, and to induce a thermogenic gene program [16].
BMAT may contribute to systemic glucose and fatty acid
clearance [3]. In addition, BMAT responds to insulin-
sensitizing anti-diabetic medications such as thiazolidinedione
(TZD) drugs, PPARγ agonists [4, 15, 17].

In the current review, we will discuss the role of insulin
signaling in bone marrow adipocyte formation, metabolic
functions, and its contribution to cellular senescence (Fig. 1).
We will also summarize common factors involved in the reg-
ulation of BMSC differentiation fate into BMATwith a special
reference to obesity and type 2 diabetes (T2D).

Insulin Signaling in Bone Marrow Adipocytes

Insulin and Insulin Receptor

Bone marrow adipocytes express insulin receptors [18••, 19]
and insulin signaling is essential for BMAT formation and
function (reviewed in [17]). Ablation of insulin receptor de-
creases BMAT volume in distal tibia as a result of a reduction

in adipocyte size, but not in number [20]. In genetically
reconstituted insulin receptor knockout mice (that are
euglycemic as a result of human insulin receptor transgene
expression in the pancreas, liver, and brain), BMAT is sup-
pressed and whole tibial mRNA level of aP2, a marker of
mature adipocytes, is also reduced compared with wild-type
tibias [21]. On the other hand, insulin signaling activation in
HFD-fed mice associates with elevations in adipogenic genes
and expansion in BMAT [18••]. Interestingly, BMAT expan-
sion accompanying obesity has no adverse effects on insulin
sensitivity in marrow adipocytes, unlike peripheral white ad-
ipocytes, which manifested impaired insulin sensitivity [18••].
Similar to obese mice, activation of insulin signaling in obese
humans stimulates a pro-adipogenic differentiation of BMSC
[18••, 22••] (depicted in Fig. 1). Adults with morbid obesity
and T2D, who have high serum insulin levels, exhibited
higher total BMAT at the lumbar spine and femoral
metaphysis compared with those without diabetes [23].
Thus, current literature suggests that alterations in insulin re-
ceptor function or insulin level regulate BMAT formation.

Insulin Receptor Substances 1 and 2

Insulin responses are mediated largely through signaling sub-
strates insulin receptor substance 1 (IRS-1) and insulin recep-
tor substance 2 (IRS-2) [24] and a number of studies have
demonstrated that IRS-1 and IRS-2 play a regulatory role in
BMAT formation. IRS-1 and IRS-2 are expressed in BMAT
and regardless of BMATexpansion, their gene expression was
not reduced by HFD in obese mice as observed in visceral fat
[18••]. In fact, IRS-1 gene expression was induced by
prolonged HFD (20 weeks) [18••]. The specific role of IRS-

Fig. 1 Aworking model for the role of insulin signaling in bone marrow
adipocyte development, metabolic function and cellular senescence.
Active insulin signaling, as in the state of obesity, increases the pro-
adipogenic potential of bone marrow stromal stem cells (BMSC) leading
to bone marrow adipose tissue (BMAT) expansion, which is associated

with enhanced insulin sensitivity, glucose uptake, and oxidative phos-
phorylation. This metabolic phenotype of BMSC in obesity results in
increased ROS production, which might lead to creation of senescent
bone marrow microenvironment and stem cell exhaustion contributing
to bone fragility in metabolic bone diseases
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1 and IRS-2 in BMAT formation in vivo has not been studied.
A recent in vitro study, however, showed that IRS-1 negative-
ly regulates rodent BMSC adipogenesis as overexpression of
IRS-1 decreased the gene expression of adipogenic markers
Cebpβ and Pparγ, while IRS-1 deficiency upregulated Cebpβ
and Pparγ. The mechanism by which IRS-1 regulates rat
BMSC adipogenesis in this study was mediated partially by
PI3K-AKTandMEK-ERK pathways [25]. Contrary to IRS-1,
IRS-2 positively regulates adipogenesis in human BMSC as
Irs-2 expression was induced during adipogenesis, while IRS-
2 deficiency repressed adipogenesis and led to downregula-
tion of Cebpα and Pparγ. In addition, targeting IRS-2 in hu-
man BMSC by miR-431 negatively regulated adipogenesis
and decreased the gene expression of Cebpα and Pparγ
[24]. IRS-2 can compensate for IRS-1 dysfunctions as
BMSC of IRS-1-deficient mice showed induced IRS-2 ex-
pression, which was reported to be mediated by miR-33
downregulation [26].

Insulin-Like Growth Factor-1

Insulin-like growth factor-1 (IGF-1) plays an important role in
the regulation of bone marrow adiposity [24, 27]. IGF-1 me-
diates biological effects mostly through binding to IGF-1 re-
ceptor and with less affinity to insulin receptor [28, 29]. There
is a negative correlation between plasma IGF-1 and BMAT
formation [30]. In subjects with a severely reduced caloric
intake, dysregulation of the growth hormone-IGF-1 axis and
low leptin levels are associated with increased BMAT forma-
tion [31]. In obese women who underwent bariatric surgery,
the increase in serum IGF-1 levels is associated with declines
in BMAT volume. In addition, in a cross-sectional study,
obese premenopausal women with higher levels of IGF-1
have lower vertebral marrow fat content independent of age
and BMI [32]. Likewise, growth hormone replacement in rats
that underwent hypophysectomy exhibit reduced BMAT [33].
Moreover, BMSC obtained from mice with decreased serum
IGF-1, due to knockdown of IGF-1 production by the liver or
knockout of its binding proteins, revealed a greater adipogenic
potential compared with controls [34]. In vivo analysis of the
bone marrow of IGF-1 mutant mice showed elevated levels of
adipogenic markers [34].

IGF-Binding Protein 4

IGF-binding proteins (IGFBPs) are regulators of tissue levels
and functions of IGF. Among IGFBPs, IGF-binding protein 4
(IGFBP4) is required for bone marrow adipocyte formation.
In vitro cultures of primary BMSC exhibit a strong induction
of Igfbp4 gene expression with a 15-fold increase during early
stage of adipocyte differentiation [27]. Moreover, primary
BMSC from male and female IGFBP4−/− mice exhibit

reduced adipogenesis in vitro [27]. These experiments suggest
that IGFBP4 is involved in bone marrow adipocyte formation.

Factors Interacting with Insulin in Regulating
BMSC Differentiation Fate to Adipocytes

Glucose

Recent studies have demonstrated that the skeleton contrib-
utes to systemic nutrient clearance and is the second highest
contributing tissue to systemic glucose clearance [3]. A posi-
tive relationship between serum glucose andmarrow adiposity
has been reported [17]. Change in glucose metabolism is an
important determinant of marrow fat modulations after gastric
bypass surgery and improvement in the glycemic control is
associated with reduced marrow fat content [35]. The effect of
glucose status on human BMSC adipocyte differentiation has
been tested by incubating cells with sera obtained from wom-
en with T2D that promote adipocyte differentiation and result
in a significant increase in the expression of adipogenic genes
(aP2, Lpl, and Pparγ) and an increase in lipid accumulation
[36]. In addition, glycated hemoglobin (HbA1c) is positively
correlated with vertebral BMAT content of L1–L3 in diabetic
women. Diabetic women with hemoglobin A1C levels > 7%,
exhibit higher vertebral BMAT content of L1–L3 compared
with patients with HbA1c levels ≤ 7% [37]. Moreover, a high
level of blood glucose inhibits the proliferation and migration
of BMSC and promotes marrow adipocyte formation but not
osteoblastogenesis [15]. These studies demonstrate that
BMAT formation is affected by glycemic status and glycemic
control; however, further studies are needed to determine
whether these effects are independent of insulin action.

Receptor for Advanced Glycation End Products

RAGE is the receptor for advanced glycation end products
(AGEs), the products of non-enzymatic glycation and oxida-
tion of proteins that form in hyperglycemic conditions
(reviewed in [38]). RAGE signaling pathway plays a role in
the pathogenesis of diabetes complications (reviewed in [38]);
however, due to its ability to bind multiple ligands and its role
in perpetuating and amplifying inflammatory responses,
RAGE activation is involved in several inflammatory dis-
eases, such as arteriosclerosis, Alzheimer’s disease, arthritis,
acute respiratory failure, and sepsis (reviewed in [39]). In T2D
model (db/db mice) and T1D model (streptozotocin (STZ)-
injected mice), the abundance of endogenous BMSC is re-
duced as determined by colony-forming unit assay [40].
RAGE-KO mice are protected from STZ-induced BMSC re-
duction and RAGE-KO BMSC exhibit enhanced adipocyte
differentiation evidenced by formation of a higher number of
Oil Red O–stained mature adipocytes and higher expression
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levels of adipocyte marker genes, e.g., fatty acid-binding pro-
tein 4 (Fabp-4), Pparγ, and Cebpα compared with wild-type
BMSC [40]. Furthermore, RAGE-KO BMSC show a greater
potential to differentiate into osteoblasts evidenced by in-
creased expression of osteoblast gene markers, including
Alpl, Osx, Bglp, Runx2, Bmp2, and Bmp4 [40]. Based on the
above, RAGE signaling may mediate the effect of insulin and
glucose in diabetic patients on BMSC properties, and thus,
this pathway represents a potential target in the treatment of
diabetic bone disease [40].

Parathyroid Hormone

Diabetic bone disease increases the risk of postmenopausal
and age-related osteoporotic fractures [41]. Intermittent para-
thyroid hormone (PTH) treatment stimulates bone formation
and reduces osteoporotic bone loss and osteoporotic fracture
risk [41, 42]. Stimulation of type I PTH/PTHrP receptor sig-
naling enhances osteoblast and reduces adipocyte differentia-
tion [42]. In leptin receptor-labeled bone marrow stromal pop-
ulation, PTH treatment shifts cell fate from adipocytic to os-
teoblastic lineage as evidenced by decreased expression levels
of the adipocyte markers such as Cebpβ, Pparγ, and Zfp467.
Comparably, genetic deletion of the PTH1R in BMSC pro-
genitors resulted in high bone marrow adiposity and low bone
mass in rodents [43]. In ovariectomized mice, PTH treatment
suppressed the expansion of the BMAT [42]. Therefore, bone
marrow adipocytes are responsive to PTH and the positive
effects of PTH treatment on bone formation may be mediated
by a shift in the differentiation fate of BMSC from adipocytes
toward osteoblasts [43]. PTH treatment in mice with T1D
increases trabecular bone mass, mineral apposition, and oste-
oblast surfaces in addition to suppression of osteoblast apo-
ptosis [41], but in contrast to the abovementioned studies, the
positive effects of PTH on bone mass are not accompanied by
a reduction in diabetes-induced BMAT accumulation [41].

Glucagon-Like Peptide-1

Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that
plays an essential role in the regulation of glucose homeosta-
sis. In human adipose–derived stromal stem cells, GLP-1
stimulated osteoblastic cell differentiation and suppressed ad-
ipogenesis [44]. In these cells, inhibiting ERK reversed the
anti-adipogenic effect of GLP-1 [44]. In human BMSC,
Exendin-4, a stable GLP-1 gut hormone analogue currently
used for the treatment of T2D, promotes both adipocytic and
osteoblastic differentiations probably due to increased number
of committed progenitors. On the other hand, Exendin-4 in-
duces lipolysis in mature adipocytes and does not affect oste-
oblast metabolic activity [45]. In hindlimb-unloading-induced
bone loss rat model, Exendin-4 treatment enhances bone for-
mation and it decreases adipocyte number in the bonemarrow.

Also, Exendin-4 promotes osteoblastic differentiation and in-
hibits adipocytic differentiation in rat BMSC via regulation
PKA/β-catenin and PKA/PI3K/AKT/GSK3b signaling [46].
Although GLP-1 may regulate BMSC cell fate and BMAT
formation, the effect of GLP-1 on obesity- or diabetes-
associated BMAT expansion remains to be determined.

Secretory Factors within Bone Marrow
Microenvironment

Several extracellular factors present within BMSC niche play
a role in lineage allocation to adipocytes versus osteoblasts.
Our group has identified a number of factors secreted within
bone marrow microenvironment that participate in regulation
of BMAT formation including DLK1, sFRP-1, and LGMN
[12–14] that regulate the differentiation fate of BMSC into
osteoblasts versus adipocytes. Among these, DLK1 seems to
play a role in regulating insulin effects on the skeleton. DLK1
is co-localized with insulin within the secretory granules of
pancreatic β-cells. Under-caboxylated osteocalcin (Glu-
OCN), a hormone produced by osteoblastic cells, stimulates
pancreatic insulin secretion and also production of DLK1.
Interestingly, DLK1 antagonizes the effects of insulin on os-
teoblast production of Glu-OCN and thus represents a mech-
anism preventing OCN-induced hypoglycemia [47]. These
studies demonstrate the close association of secreted factors
present in bone marrow and skeleton microenvironment and
whole body energy metabolism.

Insulin Signaling in Bone Marrow Adipocytes
in Relation to Obesity

Insulin exerts anabolic effect on the bone metabolism and it
has a critical role in the regulation of skeletal development and
bone integrity [48]. Insulin signaling represents a key meta-
bolic pathway important for the bioenergetic demand of bone
cells [49–53]. Our group has recently examined the effects of
obesity on BMAT and its role in regulating skeletal energy
demands. We have observed a unique metabolic phenotype
of BMAT in obese mice and obese humans that exhibit en-
hanced insulin signaling, which was opposite to what we ob-
served in peripheral adipose tissue [18••, 22••]. In more de-
tails, we identified a pro-adipogenic potential of BMSC in
mice fed HFD and in obese humans driven by increased insu-
lin signaling associated with enhanced oxidative phosphory-
lation, leading to BMAT expansion. We have also observed
enrichment in a unique BMSC population with high expres-
sion of insulin receptor (IR+) in obese subjects [22••].
Interestingly, our study suggests that in murine and human
obesity, bone marrow microenvironment does not exhibit in-
sulin resistance phenotype. While this seems at variance with
previously published data that employed animal models, most
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of the studies have employed insulin receptor (INSR)-defi-
cient mice as a model for insulin resistance [49, 50, 51••].
This discrepancy may be explained by the biological differ-
ences between INSR-deficient mice, which is a suitable model
for insulin deficiency taking place in long-standing T2D and
obese subjects who exhibited insulin resistance phenotype but
no manifest diabetes. Further, murine studies did not examine
the presence of intrinsic changes in BMSC, as the observed
insulin resistance may have been related to microenvironmen-
tal factors. On the other hand, the study by Wei et al. [51••]
corroborates our findings as it demonstrates that mice with
enhanced insulin signaling in bone are protected from the
severe systemic insulin resistance phenotype. Our study dem-
onstrates that maintenance of insulin responsiveness in BMSC
of obese subjects is “a protective mechanism” allowing fat
storage in bone marrow, when peripheral tissues manifest im-
paired insulin signaling (Table 1 summarizes the major
findings of these studies and illustrating similarities and
differences between studies). We think that tissue-specific re-
sponses to insulin are highly relevant for the bone field with
respect to understanding the pathophysiology of obesity and
T2D-associated bone disease.

Insulin Signaling andMetabolic Programming
of BMSC

Stem cells existing in states of commitment and differentiation
have specific bioenergetic needs that determine their functions
[54, 55]. Bone marrow consists of heterogeneous population
of BMSC with different lineage commitments [56, 57]. Our
group has recently examinedwhether metabolic programming
of BMSC is upstream of lineage commitment [22] (Tencerova
et al., 2019 Bone Research, accepted https://doi.org/10.1038/
s41413-019-0076-5).

Stem cells get energy supply from either glycolysis or ox-
idative phosphorylation (OxPhos) and they differ in the choice
of energy substrate depending on whether they are in the
growth or differentiation stage. Pluripotent embryonic stem
cells prefer anabolic glycolysis, which is also the preferred
metabolic process of rapidly proliferating cells [58, 59].
Hematopoietic progenitor cells exhibit differentiation depen-
dent use of glycolysis or OxPhos [60, 61]. Osteoblast lineage
cells employ both oxidative and glycolytic metabolic path-
ways in undifferentiated state, but during osteoblast differen-
tiation, glycolysis is the preferred energy source [62]. On the
other hand, a pre-adipocytic embryonic murine cell line 3T3-
L1 employs OxPhos during adipocyte differentiation [62].
Thus, commitment to either osteoblasts or adipocytes is asso-
ciated with a characteristic bioenergetic profile that is main-
tained during differentiation. We have recently observed that
human BMSC and committed murine BMSC progenitors ex-
hibit similar bioenergetic phenotype [22••] (Tencerova et al., Ta
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Bone Research, accepted https://doi.org/10.1038/s41413-019-
0076-5). Employing high-throughput technologies including
RNAseq and metabolomics, we found that committed murine
adipocyte progenitors (named BMSCadipo) and osteoblast pro-
genitors (named BMSCosteo) [57] exhibit a distinct metabolic
program that is dependent on insulin signaling with higher
oxidative phosphorylation in BMSCadipo compared with pref-
erable glycolysis in BMSCosteo. Our findings demonstrate that
the BMSC exhibit cellular responses to exogenous metabolic
signals, which regulate their differentiation fate and the expan-
sion of osteoblast versus adipocyte progenitor populations de-
pendent on the prevalent metabolic environment. Future stud-
ies are needed to investigate the contribution of bioenergetic
properties of BMSC to whole body energy homeostasis.

Insulin Signaling and Senescence in Bone
Marrow—a Dual Role of this Pathway

Metabolic pathways play a critical role in aging [63]. Insulin
signaling belongs to nutrient sensing pathways that are impor-
tant not only for energy metabolism but also for regulation of
cellular senescence in different cell types [64].

Insulin signaling has been shown to regulate mitochondrial
function [65, 66], which produces the most of cellular energy in
form of ATP but this process is also accompanied with forma-
tion of intermediates such as reactive oxygen species (ROS)
that play a role as a second messenger. Recent study has dem-
onstrated that ROS increases insulin sensitivity via oxidative
modification of the insulin receptor (autophosphorylation) or
inactivation of protein tyrosine phosphatases, including PTEN
and PTP1B [67]. Thus, this oxidative challenge suggests acti-
vation of cellular adaptation via modulation of insulin action
and antioxidant system [68–70]. In physiological condition,
ROS is also required for adipocyte differentiation, which is
controlled by insulin signaling [71]. On the other hand, chronic
exposure to ROS in obesity and diabetes is associated with
insulin resistance [72] as ROS is also a trigger for cell damage,
inflammation, and senescence. Insulin signaling regulates mi-
tochondrial function and biogenesis by inhibiting FOXO1,
which tunes redox signaling by maintaining NAD+/NADH
ratio for activation of SIRT1/PGC1α important for normal mi-
tochondrial function [73, 74]. SIRT1 deacetylase activity is
essential for prolongation of lifespan and delay of cellular se-
nescence [75, 76]. Thus, the ratio between mitochondrial ROS
production and NAD+/NADH redox complex needs to be
maintained at the levels, to which the cellular metabolic capac-
ity can adapt. This regulation can be tissue-specific. Insulin
signaling in connection to mitochondrial function has been in-
tensively investigated in liver, muscle, or adipose tissue [65].
However, it has not been studied in this context in BMAT and
BMSC. We have recently reported that enhanced insulin sig-
naling in BMSC of obese subjects leads to increased OXPHOS

activity accompanied with higher ROS production [22••]. We
suggested that the presence of this hypermetabolic status of
BMSC leads to accelerated senescence phenotype and conse-
quently impairment of stem cell functions and increased risk of
bone fragility in obesity and diabetes (depicted in Fig. 1).

Perspectives

Obesity and T2D are increasingly recognized as risk factor for
bone fractures [77–81]. New therapeutic strategies are needed
based on understanding the biological and molecular mecha-
nisms of BMAT formation. Thus, unraveling the relationship
between BMATand bone metabolism at the molecular level is
relevant.

Based on our understanding of insulin signaling and
BMAT formation, it is possible that inhibiting insulin
signaling within BMSC may serve as a protective mech-
anism against expansion of BMAT. This notion is sup-
ported by experience of using TZD in treatment of
T2D. These drugs increase insulin sensitivity but led
to increased BMAT formation and increased risk for
fractures [77, 80, 81].

Other approach is metabolic slowing induced by ca-
loric restriction or nutrient supplementation that can pre-
vent accumulation of unused intermediates from meta-
bolic processes and support mitochondrial functions in
metabolically active tissues [82–84]. On the other hand,
calorie restriction in animals is associated with increased
BMAT formation, but its effects on humans remain to
be determined.

Given the interactions among medications and lifestyle
modifications/interventions, the relative effect on BMATmet-
abolic phenotype and insulin signaling within bone microen-
vironment needs studying to identify specific approaches for
prevention and treatment of metabolic bone diseases associat-
ed with obesity and T2D.
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