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Abstract
Purpose of Review Physical activity is increasingly recommended for chronic pain. In this review,we briefly survey recent, high-quality
meta-analyses on the effects of exercise in human chronic pain populations, followed by a critical discussion of the rodent literature.
Recent Findings Most meta-analytical studies on the effects of exercise in human chronic pain populations describe moderate
improvements in various types of chronic pain, despite substantial variability in the outcomes reported in the primary literature.
The most consistent findings suggest that while greater adherence to exercise programs produces better outcomes, there is
minimal support for the superiority of one type of exercise over another. The rodent literature similarly suggests that while
regular exercise reduces hypersensitivity in rodent models of chronic pain, exercise benefits do not appear to relate to either the
type of injury or any particular facet of the exercise paradigm. Potential factors underlying these results are discussed, including
the putative involvement of stress-induced analgesic effects associated with certain types of exercise paradigms.
Summary Exercise research using rodent models of chronic pain would benefit from increased attention to the role of stress in
exercise-induced analgesia, as well as the incorporation of more clinically relevant exercise paradigms.

Keywords Chronic pain . Exercise . Rodent . Treadmill . Voluntary . Stress

Introduction

Chronic pain represents an urgent global health problem [1]
that incurs massive social and economic costs [2, 3]. Highly
prevalent, chronic pain affects between 19 and 43% of the US
population [4–8]. A substantial portion of the chronic pain
population is comprised of those with bone/joint pain [7],
where osteoarthritis (OA) and rheumatoid arthritis (RA) are
considered to be among the most disabling of the chronic
bone/joint diseases [9–11]. At the population level, over
20% of adults under 65 years old, and almost 50% of adults
over 65, have some form of arthritis [12]. A substantial pro-
portion of this population have restricted joint motion, muscle
weakness, substantial activity limitations, and are physically
inactive [12–19]. As such, arthritis is thought to be the main
cause of disability in the USA, with a socio-economic impact
approaching $200 billion annually as of 2007 [20].

Three main treatment modalities are available for bone/
joint diseases such as OA and RA: surgical, pharmacological,
and non-pharmacological [21, 22]. While surgical and phar-
macological treatments can certainly be beneficial [23, 24],
these approaches are not without risk and/or unpleasant sec-
ondary effects [22, 25, 26]. Indeed, referrals for orthopedic
surgical interventions are often indicated only after less inva-
sive treatment options have been exhausted [27]. As such,
non-pharmacological approaches are increasingly recom-
mended as first-line treatments for certain types of chronic
pain, even prior to pharmacological interventions [28]. An
increasingly popular non-pharmacological approach is exer-
cise, which has been defined as “planned, structured, and re-
petitive bodily movements that are performed to improve or
maintain one or more components of physical fitness” [29].
The beneficial effects of exercise are undeniable, both for
maintaining health and for reducing the negative impacts of
many chronic illnesses including cancer, type 2 diabetes, obe-
sity, and depression [30–33]. In this brief review, our goal is to
survey the current state of knowledge on the effects of exer-
cise on chronic pain outcomes both in humans and in rodent
models of chronic pain. Considering the number of high-
quality reviews and meta-analyses that have critically ap-
praised the literature on the effects of aerobic exercise in
chronic bone/joint pain in humans, we will only outline their
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main conclusions. We will, however, discuss the limited ro-
dent literature in more detail. Finally, we will discuss these
rodent findings in light of the human studies.

Is Exercise Beneficial for Chronic Pain
in Humans?

Habitual physical inactivity is one of the leading risk factors
driving non-communicable diseases and death worldwide
[34–37]. Sedentary lifestyles are associated with poorer health
as well as reduced day-to-day functioning and quality-of-life
[13, 38–40], where even intermittent bouts of vigorous activ-
ity appear to be unable to counteract the impacts of habitual
physical inactivity [13, 39, 40]. Regular physical activity,
however, can be effective in both prevention and treatment
of many chronic diseases [30–32]. In healthy individuals,
there is a long history of support for analgesic effects of reg-
ular physical activity, particularly highly aerobic exercises
such as endurance running/cycling [41–43]. Additional bene-
fits include the reduction of depression, anxiety, and stress
[44–48]. Increasingly, guidelines state that exercise should
be part of the core treatment for chronic pain [28, 49–52],
generally advising low-to-moderate levels of physical activity
that are increased incrementally (i.e. “Start low, go slow”) and
monitored by a qualified health care professional. The effects
of regular exercise for chronic pain and its comorbidities has
been the subject of many primary research reports, reviews,
and meta-analyses over the last 30 years. Rather than attempt
to re-evaluate the surfeit of primary literature, we will instead
briefly report the main conclusions from a few recent
Cochrane reviews that have carefully collated this massive
and diverse literature into a more digestible format.

Among the most up-to-date and comprehensive reviews is
a Cochrane review from Geneen et al. [53••]. Geneen et al.
assessed 21 previous Cochrane reviews, incorporating 264
primary reports and 19,642 participants, to determine the ef-
fectiveness of different physical exercise interventions in re-
ducing pain stemming from various chronic pain syndromes.
Overall, while exercise resulted in reduced pain severity and
improved physical function in various forms of chronic pain,
effects were small-to-moderate at best and were quite incon-
sistent across reviews. Exercise-induced effects on psycholog-
ical function and quality of life were equally variable.
Nonetheless, exercise was associated with few adverse events
as well as improved pain severity, physical function, and qual-
ity of life. Similarly, in a 2014 Cochrane review assessing
therapeutic exercise for hip OA in 9 trials (549 participants),
Fransen et al. [54] reported high-quality evidence in support of
exercise-induced improvements in pain and physical function
in individuals with hip OA. In another Cochrane review from
the same group based on 44 trials (3537 participants), Fransen
et al. [55] reported that therapeutic exercise produced short-

term improvements in pain and physical function in individ-
uals with knee OA. However, the lack of blinding in most
trials (i.e., participants being aware of their treatment group)
may have contributed to the improvement.

In terms of the relative effects of different types or inten-
sities of exercise, O’Connor et al. [56] assessed 17 studies on
walking exercise in individuals with chronic low back pain,
OA, or fibromyalgia. Overall, walking produced a small-to-
medium improvement in pain and physical function in the
short term, whereas longer-term effectiveness was uncer-
tain. Regneaux et al. [57] included 6 reports comparing the
effects of high- or low-intensity exercise in 656 participants
experiencing hip or knee OA. Overall, high-intensity exer-
cise did not seem to provide any clinical benefit over low-
intensity exercise in terms of pain and physical function.
Regneaux et al. [57] indicated that the paucity of studies
comparing high- and low-intensity exercise programs in
OA points to the need for research focusing on the minimal
exercise intensity required for clinical effect as well as the
highest intensity considered both safe and tolerable. In the
same vein, Golightly et al. [58••] reviewed 39 studies focus-
ing on the effects of aerobic and strength training exercise on
OA-related pain and physical function. They showed that
while both forms of exercise improved pain and function,
there was no difference in effectiveness between the types
of exercise programs studied (i.e., aerobic vs. strengthening
regimens). Similarly, a recent meta-analysis of 48 random-
ized controlled trials on the effects of exercise on OA pain
also showed an overall moderate benefit of exercise on pain,
regardless of exercise type [59•]. However, Juhl et al. report-
ed (i) that regular aerobic exercise (i.e., at least three times
per week for 12 weeks) was more impactful than the inten-
sity of aerobic exercise; (ii) that exercise programs using a
single type of exercise (i.e., aerobic exercise, strength train-
ing) were more effective than programs mixing multiple
types into the same exercise session [59•], but see [60]; and
(iii) therewas no evidence to support individualized exercise
programs based on patient characteristics including radio-
graphic severity of OA. In addition to these points, another
important consideration is the duration of exercise-induced
effects. A number of groups have indicated that exercise-
induced OA benefits appear to fade once the exercise pro-
gram is discontinued [56, 61, 62], underlining the impor-
tance of continued engagement in exercise programs in order
to maintain beneficial effects. Indeed, improved adherence
to exercise programs seems to be a stronger predictor of
improvement in pain and physical function associated with
knee OA than exercise frequency or intensity [63–65].
Taken together, while exercise appears to be beneficial for
many types of chronic pain, a number of qualifications are in
order: Firstly, no intensity or approach appears to be superior
to another. Secondly, the available evidence does not appear
to support individualized exercise programs. Thirdly,
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greater adherence to exercise programs yields better out-
comes. Finally, benefits do not seem to last much longer than
the duration of exercise program.

Is Exercise Beneficial for Mental Health Impacts
of Chronic Pain?

Aerobic exercise can improve depression to a level similar
in scope to either psychological or pharmacological thera-
pies [33]. Considering that depression affects between 20
and 35% of the chronic pain population [7, 66, 67] and can
be considered a consequence of chronic pain [68, 69], es-
tablishing the effectiveness of exercise against comorbid
depression has clear clinical relevance. While some studies
indicate that aerobic exercise improved depression comor-
bid with fibromyalgia [70, 71], only 5 of the 21 Cochrane
reviews assessed in Geneen et al. [53] reported mental
health/depression outcomes, with positive yet somewhat
variable results. While the existing literature indicates that
exercise for depression comorbid with chronic pain is at
least moderately effective, more randomized controlled tri-
als of high methodological quality are needed.

Mechanisms of Exercise-Induced Benefits in Chronic
Pain

Activation of the endogenous opioid system has long been
proposed to be themain biochemical mechanism underlying
exercise-induced analgesia reviewed in [41, 65, 72, 73], as
well as the euphoric state commonly referred to as ‘runners
high’ [74]. However, these effects seem to occur acutely
post-exercise and are largely dependent on exercise intensi-
ty, where a dose-response relationship exists between exer-
cise intensity and reward/affective response [75] and per-
haps also with anti-nociception [76]. Indeed, vigorous ex-
ercise (i.e., greater than 70% of the maximum aerobic ca-
pacity [VO2

max], or the range required to improve cardio-
vascular fitness in healthy individuals) seems to be required
to produce endogenous opioid release [77, 78], reviewed in
[79] [80]. As such, benefits associated with lower intensity
exercise (i.e., walking at an intensity substantially below
70% of VO2

max) may involve longer-term engagement of
the endogenous opioid system along with other endogenous
systems. Another avenue by which exercise can reduce pain
involves factors such as weight loss and other musculoskel-
etal benefits. Considering that excess weight plays an im-
portant structural role in OA pain [16, 81, 82], it is clear that
weight loss can be beneficial [83, 84]. However, in terms of
other musculoskeletal outcomes such as muscle function,
the amount of benefit in pain does not necessarily correlate
with the amount of benefit in these outcomes, suggesting
that factors other than improved musculoskeletal function
may be mediating pain relief [85]. Taken together,

mechanisms of exercise-induced attenuation of persistent
pain, especially pain relief associated with low-intensity
exercise, remain unclear.

Is Exercise Beneficial in Rodent Models
of Chronic Pain?

Given the variability and other challenges inherent in human
clinical trials, the apparent difficulty in isolating factors under-
lying exercise-induced analgesia is perhaps not surprising.
Rodent studies, however, allow precise control of biological
and environmental factors, as well as experimental interven-
tions. As such, they should be well placed to probe these ques-
tions. A careful search of the biomedical research repository
Pubmed (https://www.ncbi.nlm.nih.gov/pubmed) was
performed using the search terms “exercise” and “chronic
pain” or “pain” in non-human animal research. Only studies
incorporating land-based physical exercise (i.e., voluntary
wheel running or treadmill running; Fig. 1) as a primary inter-
vention were included. Studies in which access to exercise was
not ensured for each animal (i.e., environmental enrichment
paradigms with a single voluntary exercise wheel for numerous
cage mates) were not included in this review. Review articles,
studies not focused on rodent models of persistent pain, and
studies lacking pain/hypersensitivity outcomes were also

Fig. 1 Rodent exercise paradigms. a. Forced treadmill running involves
placing the rodent in an inescapable enclosure, either with or without an
electrical shock grid to reinforce running behavior. Speed and incline of
the treadmill can be adjusted. b. Voluntary wheel running paradigms yield
either restricted or unrestricted access to the running wheel. During
access, the rodent is free to run as much or as little as desired
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excluded from this assessment. This search strategy revealed no
less than 43 studies focused on the effects of exercise in rodent
models of persistent pain (Tables 1 and 2). In the context of
these studies, we discuss the impact of a number of factors
including the type of chronic pain model (neuropathic, osteoar-
thritis, etc), species (rat, mouse), gender (male, female), exer-
cise modality (forced treadmill running, voluntary wheel run-
ning), and exercise intensity characteristics (i.e., duration, fre-
quency and velocity). While most studies used exercise as a
therapeutic intervention (i.e., main exercise paradigm initiated
post-injury), a number used exercise preventatively (i.e., exer-
cise initiated pre-injury) or integrated both pre- and post-injury
exercise into a single paradigm. Given that preventative para-
digms may influence not only the maintenance of persistent
pain states, but also the development of pain, we considered
preventative exercise paradigms (Table 1) separately from ther-
apeutic exercise paradigms (Table 2).

Preventative Exercise

A number of studies incorporated experiments that were de-
signed specifically to assess the effectiveness of preventative
exercise on the development of persistent pain in rodents
(Table 1). Of the 11 studies employing preventative exercise
paradigms, 7 used neuropathic pain models (64%), 3 used a
model of chronic muscle pain (27%), and 1 study used a
model of incisional pain (9%). A total of eight studies used
male rodents (73%), whereas two studies used both males and
females (18%) and one used only females (9%). Seven studies
used mice (64%), while the remaining four used rats (36%).
Seven studies used a forced treadmill running paradigm
(64%), while the remaining four employed voluntary wheel
running (36%). In terms of exercise characteristics, all of the
studies employing voluntary running allowed rodents unre-
stricted access to runningwheels for a duration between 5 days
and 8 weeks. While the duration of forced treadmill running
studies was fairly uniform (i.e., 2–3 weeks), their frequency
ranged from 10 min per day twice a week to 1 h per day for
5 days a week. Maximal running velocity in studies using
voluntary running wheels was not reported. However, the
maximal running velocity used in forced treadmill studies
ranged between 6 and 30 m/min.

A total of four studies reported that preventative exercise
paradigms reduced mechanical hypersensitivity [86–88, 89••].
These studies all used voluntary exercise, where rodents had
unrestricted access to running wheels. Moreover, three of the
four voluntary exercise studies employed a muscle pain model
[86, 88, 89••], whereas the fourth used a neuropathic pain
model [87]. Exercise of longer duration, beginning 6–8 weeks
prior to pain induction, appeared to be most effective [86–88]
but see [89••]. In terms of the duration of exercise-induced
benefits, while Grace et al. reported long-lasting effects of
preventative exercise for neuropathic pain [87], the beneficial

effects of exercise on chronic muscle pain lasted no longer
than 3 days post-induction [86, 88, 89••]. In the two studies
using both male and female rodents, no sex differences in the
effects of exercise were observed [88, 89••]. Of the five stud-
ies assessing thermal hypersensitivity, all employed forced
treadmill running paradigms. However, none found preventa-
tive exercise to be effective at reducing thermal hypersensitiv-
ity (Table 1). Overall, among the studies where preventative
exercise was not effective at reducing hypersensitivity, all
used forced treadmill running in models of neuropathic pain
[90, 91•, 92–96]. As such, it appears that the exercise para-
digm (i.e., voluntary exercise), the amount of running (i.e.,
unrestricted wheel access), and possibly the model of chronic
pain, may all contribute to the effectiveness of preventative
exercise paradigms in rodent models of chronic pain.

Therapeutic Exercise

A total of 40 studies initiated the main exercise program ther-
apeutically, after the onset of experimental models of chronic
pain in rodents (Table 2). Over half of these studies used
therapeutic exercise that was preceded by some level of pre-
training prior to injury (21/40, or 52.5%). None of these stud-
ies reported an analgesic effect of pre-training on early post-
injury hypersensitivity. As such, these studies are considered
in the context of therapeutic exercise.

Of the 40 studies employing therapeutic exercise para-
digms, 29 used neuropathic pain models (72.5%), 3 used
models of osteoarthritis (7.5%), 3 used incision models
(7.5%), and 5 used other models (12.5%). A total of 30 studies
used male rodents (75%), whereas 10 studies used females
(25%). The majority of studies used rats (31 or 77.5%), while
the remaining nine studies usedmice (22.5%). In most cases, a
forced running paradigm was used (34 studies, or 85%). In
these studies, exercise was performed for between 20 and
60 min/day for 4–7 days/week. The six studies (15%) using
voluntary wheel running generally allowed longer wheel ac-
cess (2–24 h/day [87, 97, 98, 99••, 100••] but see [101]) for 4–
7 days per week. However, it should be noted that the actual
running time in voluntary exercise paradigms is unknown
because rodents do not necessarily engage in constant running
during periods of wheel access. The duration of the voluntary
running paradigms ranged between 1 and 12 weeks, but most
lasted between 2 and 4 weeks. Furthermore, only one study
using voluntary exercise reported the average running veloc-
ity: Pitcher et al. [100••] showed that the average velocity of
both sham and OA groups was approximately 45 m/min,
which is comparable to other studies using voluntary wheel
running [102•, 103]. On the other hand, the maximal velocity
at which rodents were forced to run on treadmills ranged be-
tween 6 and 30 m/min. While it is certainly possible to train
rodents to run on a treadmill at velocities of 30 m/min, main-
taining this velocity for more than a few minutes appears to
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require substantial aerobic pre-training (8–10 weeks) at oxy-
gen intake levels approachingmaximal capacity (i.e., VO2

max)
[104]. In fact, some groups report difficulty in forcing rats to
run faster than 20 m/min [102•], and approximately 25% of
mice forced to run at 12 m/min on treadmills cease running by
10–15 min, and around 50% cease running by 20–25 min
[105]. Considering that the forced running studies discussed
here generally employed little or no pre-training prior to rela-
tively high exercise intensities, it is somewhat surprising that
rodents with painful hind paw injuries were able to complete
the studies. Indeed, a number of studies reported that some
rodents were excluded due to stress or refusal to run [90, 91•,
92, 96, 106, 107], while another reported that some mice
discontinued running at the 12 m/min velocity during the ther-
apeutic exercise phase [95]. Moreover, a number of studies
indicated that electric shocks or physical encouragements
were required to ensure continued running [90, 91•, 92–94,
108•, 109–113, 114••, 115–117]. Under these conditions, the
vast majority of studies (36 or 90%) reported that at least some
form of therapeutic exercise was effective in reducing or re-
versing mechanical hypersensitivity. While three of the four
studies showing no beneficial effect of therapeutic exercise on
mechanical hypersensitivity initiated exercise 8 or more days
after injury [92, 98, 118], other studies using similar delays in
initiation of exercise were effective [87, 91•, 114••, 116, 119,
120]. Similarly, while two of the four studies showing no
beneficial effect of therapeutic exercise on mechanical hyper-
sensitivity used voluntary exercise paradigms [98, 101], other
studies using voluntary exercise were effective [87, 97, 99••,
100••]. Of the 36 studies showing that exercise was effective,
a few indicate that some approaches were not as effective as
others [91•, 95, 99••]. Specifically, Stagg et al. reported that
3 weeks at a slower treadmill speed of 10 m/min did not
improve mechanical hypersensitivity, whereas the same dura-
tion at a higher speed of 16 m/min was effective [91•]. On the
other hand, Wakaizumi et al. showed that while 2 weeks of
slow running (6 m/min) was effective, 1 week of faster run-
ning (12 m/min) was not effective [95]. Finally, Cormier et al.
indicated that while 3 weeks of pre-training followed by
3 weeks of therapeutic running resulted in beneficial effects,
1 week of pre-training followed by 3 weeks of therapeutic
running was not beneficial [99••]. Importantly, in all of these
cases, other studies using similar exercise parameters show
effectiveness. Consequently, no particular factors appear to
be consistently associated with either effectiveness or ineffec-
tiveness of therapeutic exercise.

A total of 22 studies incorporated measures of thermal hy-
persensitivity (Table 2). Two of these studies, both using
models of diabetes-induced pain, did not observe thermal hy-
persensitivity in diabetic rodents [97, 110], which is in con-
trast to other studies using diabetic models [107, 113, 121]. Of
the remaining 20 studies, 16 showed that exercise was effec-
tive in reducing or reversing thermal hypersensitivity (80%).

Of the four studies in which no effect of exercise was ob-
served, three were conducted in female rats [92, 111, 122].
Nonetheless, three other studies also using female rats showed
improved thermal hypersensitivity [123–125]. Similarly,
while three of the four studies in which no effect of exercise
was observed utilized neuropathic pain models [98, 111, 122],
a number of other studies successfully employed therapeutic
exercise against neuropathic pain-induced thermal hypersen-
sitivity [123–125]. Therefore, among the studies considered
here, therapeutic exercise appears to be an effective method of
reducing thermal hypersensitivity. However, no specific fac-
tors appear to be related to exercise-induced improvements in
thermal hypersensitivity.

Mechanisms of Exercise-Induced Benefits in Rodent
Models of Chronic Pain

As illustrated in Tables 1 and 2, both voluntary wheel running
and forced treadmill running promote favorable outcomes in a
number of physiological systems impacted by persistent pain.
Exercise improves measures of neurological function in the
periphery and spinal cord [90, 94, 97, 111, 115, 119, 121,
123] as well as improved musculoskeletal outcomes [99••,
114••, 120, 126]. In addition, exercise improved neurotrophic
receptor signaling in the spinal cord and periphery [87, 97,
108•, 109, 111, 115, 122–124]; restoration to pre-injury levels
of cytokines and other neuroimmune products in the brainstem,
spinal cord, and periphery [87, 88, 90, 93, 96, 112, 113, 116,
117, 119, 121, 123, 124, 127, 128]; and increased endogenous
opioid activity in the rostroventral medulla (RVM), spinal cord,
and dorsal root ganglia (DRG) [91•, 106, 110, 114••, 121, 129,
130]. Importantly, while endogenous opioid-mediated mecha-
nisms can produce analgesia at acute post-exercise time points,
some studies suggest that longer-term endogenous opioid-
mediated effects also occur. Specifically, Stagg et al. [91•]
and Allen et al. [114••] demonstrated that naloxone blocks
exercise-induced analgesia even when injected at time points
far beyond the potential acute effects of exercise. As such,
regular exercise may induce long-term tonic changes in endog-
enous opioid tone that promote analgesia.

Does Exercise Alter Stress in Rodent Models
of Chronic Pain?

Of the 43 studies discussed here, only two incorporated stress
measures [89••, 100••], and both employed voluntary wheel
running paradigms. Sabharwal et al. demonstrated that as little
as 5 days and up to 8 weeks of unrestricted access to running
wheels prior to injury prevented injury-induced reductions in
heart rate variability (HRV), a measure of autonomic health
known to be negatively impacted by stress [131–134],

reviewed in [135] and chronic pain [136]. In the same vein,
Pitcher et al. showed that following induction of a rat model of
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OA, 3 weeks of modest access to running wheels (2 h/day,
4 days/week) improved both HRV and plasma levels of the
stress hormone corticosterone. Pitcher et al. also assessed the
relationship between exercise intensity and pain and stress
outcomes [100••]. Similar to studies in humans, exercise in-
tensity (i.e., total distance, average velocity) was unrelated to
the degree of benefit in both pain and stress, a finding that
challenges the widely held belief that more exercise yields
better outcomes. Others have shown a similar lack of accord
between the intensity of voluntary running and measures of
stress/reward [137••, 138–142]. Overall, relatively low levels
of self-regulated exercise appear to be protective against per-
sistent pain and persistent pain-induced stress.

Conclusions

The vast majority of rodent studies discussed here report bene-
ficial effects of exercise in models of chronic pain. These ben-
efits were accrued from both voluntary and forced exercise
paradigms incorporating a diversity of exercise characteristics.
To some extent, exercise-induced improvements in rodent
models of chronic pain mirror the conclusions expressed in
human chronic pain meta-analyses, where no intensity or ap-
proach appears to be superior to another, and exercise benefits
do not seem to be related to any particular facet of either the
type of injury or the exercise paradigm. In fact, there appears to
be only one consistent factor among rodent studies showing
exercise efficacy: regular exercise. In each study, rodents are
exposed to exercise on a regular basis for a period of time.
Similarly, regular exercise seems to be among the most impor-
tant factors underlying exercise-induced benefits in the human
literature. That said, this brief review of a relatively limited
body of rodent literature was not meant to be meta-analytic
(i.e., incorporating comparable data from multiple sources for
statistical re-analysis). As such, it is possible that it was not
sufficiently refined to detect an existing relationship between
certain exercise characteristics and analgesic outcomes.

How might regular exercise exert its beneficial effects in-
dependently of other exercise-related factors? A number of
rodent studies suggest that exercise-induced modulation of
the immune/inflammatory response may play a role [87, 88,
90, 93, 96, 112, 113, 116, 117, 119, 121, 123, 124, 127, 128].
Indeed, stress-related changes in immune reactivity has been
proposed as a major contributing factor in the development
and maintenance of chronic pain [143]. Exercise, particularly
regular aerobic exercise, appears well placed to reduce the
impact of an altered immune/inflammatory responses in
chronic diseases such as diabetes and obesity [144–146]. As
such, it may be similarly effective in chronic pain states.
Perhaps even more prominent than the immune response, the
human literature emphasizes a role for endogenous opioids in
exercise-induced analgesia reviewed in [41, 65, 72, 73].
However, the apparent intensity-dependence of acute exercise

for activation of the endogenous opioid system [75–78],

reviewed in [79, 80] seems to argue against its involvement
in low-intensity exercises such as walking. In the rodent exer-
cise literature, activity of the endogenous opioid system is also
widely reported [91•, 106, 110, 114••, 121, 129, 130].
However, these studies employed forced treadmill running,
which can be highly stressful [102•, 147–154]. Indeed, forced
running is more stressful than voluntary exercise when both
paradigms are compared directly [102•, 155, 156]. Stressors
involving unpleasant, inescapable contexts (i.e., cold-water
swim, restraint) and/or electric shock are commonly used to
evoke stress-induced analgesia (SIA), a stress-induced reduc-
tion in pain sensitivity related to increased endogenous opioid
or cannabinoid activity [157, 158]. By definition, the forced
running paradigm is inescapable and often incorporates elec-
tric shock plates or other negative reinforcements to promote
running (Fig. 1), and forced treadmill walking has been used
by at least one research group as a model of stress-induced
analgesia [159–162]. Of the 43 studies considered here, almost
80% employed forced running paradigms, the vast majority of
which reported exercise-induced analgesia (Tables 1 and 2).
Of these, 41% indicated that negative reinforcements, in the
form of electric shock or physical stimuli such as manual
prodding of the rodent, were used to promote running. Only
one study stated explicitly that electrical shock was not used to
reinforce running behavior [128], while another indicated that
positive reinforcement (i.e., sweetened water) was used to re-
inforce treadmill running [108•]. The remaining forced run-
ning studies did not state whether or not negative reinforce-
ment was used. Considering the clear potential for stress-
induced analgesia in forced running paradigms, it is surprising
that the only two rodent studies including stress outcomes both
employed voluntary running paradigms [89••, 100••]. On the
other hand, at least one study has reported that relatively in-
tense forced treadmill running does not increase tail flick la-
tencies, a common assay for stress-induced analgesia in ro-
dents [163]. In addition, forced running paradigms can activate
reward centers in the rodent brain if the animals are pre-trained
appropriately [164], as well as produce beneficial physiologi-
cal effects in some contexts [153, 165–167]. Nevertheless,
given the absence of stress measures in the forced running
studies, it is not possible to exclude the potential contribution
of stress-induced analgesic effects in their results.

While voluntary running paradigmsmay avoid the influence
of stress-induced analgesia, it is well known that rodents will
often exhibit very high levels of running behavior when given
unrestricted access to running wheels, where rats have been
reported to attain peak velocities of approximately 160 m/min
and mice up to 210 m/min for very brief bursts [168, 169]. As
aforementioned, high-intensity activity triggers the endogenous
opioid system [77, 78], reviewed in [79] [80], and voluntary
wheel running can certainly increase endogenous opioid levels
[138, 139, 170–174]. However, such high-intensity physical
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activity cannot be said to represent a clinically relevant thera-
peutic approach for most chronic pain patients. On the other
hand, evidence in rodents suggests that regular exercise may
also enhance tonic activity of the opioid system beyond acute
post-exercise time points [91•] [114••]. As such, a better under-
standing of the effects of long-term exercise on tonic endoge-
nous opioid activity is needed. Only three rodent studies
assessed the effect of more modest levels of voluntary exercise
[98, 100••, 101]. Of these, only one demonstrated that exercise
was effective [100••], indicating that additional research direct-
ly assessing the role of stress in the analgesic effects of running
is required, incorporating experimental paradigms that more
accurately represent the human chronic pain population.
Taken together, the human and rodent literature suggest that
regular exercise, even at modest levels, can be beneficial for
chronic pain. However, the current state of the literature pre-
cludes a nuanced understanding of optimal exercise parameters
and putative biological mechanisms.
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