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Abstract
Purpose of Review Multiple dietary components have the po-
tential to positively affect bone mineral density in early life
and reduce loss of bone mass with aging. In addition, regular
weight-bearing physical activity has a strong positive effect on
bone through activation of osteocyte signaling. We will ex-
plore possible synergistic effects of dietary components and
mechanical stimuli for bone health by identifying dietary com-
ponents that have the potential to alter the response of osteo-
cytes to mechanical loading.
Recent Findings Several (sub)cellular aspects of osteocytes
determine their signaling towards osteoblasts and osteoclasts
in response to mechanical stimuli, such as the osteocyte cy-
toskeleton, estrogen receptor α, the vitamin D receptor, and
the architecture of the lacunocanalicular system. Potential
modulators of these features include 1,25-dihydroxy vitamin
D3, several forms of vitamin K, and the phytoestrogen
genistein.
Summary Multiple dietary components potentially affect os-
teocyte function and therefore may have a synergistic effect on
bone health when combinedwith a regime of physical activity.

Keywords Dietary components . Nutrition . Diet .

Osteocytes . Bone health . Physical activity

Introduction

The incidence of osteoporosis-related fractures is expect-
ed to rise substantially over the coming decades [1]. It has
been estimated that the annual number of fractures in the
European Union will rise from 3.5 million in 2010 to 4.5
million in 2025, with a corresponding increase in costs,
which was estimated at €37 billion in 2010, including
pharmacological intervention [2]. More importantly,
osteoporosis-related fractures often lead to a diminished
quality of life, disability, discomfort, and even death [2].

One safe way to prevent fractures is to positively affect
bone mass and strength through mechanical stimuli. Lack
of physical activity, e.g., as is seen in bedridden patients,
results in a lack of mechanical stimuli and a rapid and
substantial loss of bone mass [3]. High impact physical
activity, on the other hand, has an anabolic effect on bone
mineral content (BMC) and bone mineral density (BMD)
[4]. The BMC and BMD have been shown to increase up to
20% in the loaded bone regions in athletes [5, 6]. In gen-
eral, high magnitude mechanical loads as well as loads
applied at high frequency are known to increase bone
mass, while low impact activities have less effect on bone,
even when applied for a longer duration [7, 8••].
Unfortunately, exercise at a high intensity might be diffi-
cult for those elderly at risk of fractures, and the key may
lie at building a sufficient “reserve” of bone mass at a
young age. Indeed, bone mass at the age of 70 largely
depends on peak bone mass reached before the age of 30
[9]. During growth, not only high impact activity but also
low impact activity contributes to skeletal health [10–12].
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High impact physical activity in childhood, especially
when initiated before puberty, results in increased bone
width and increased bone mineral content in girls and ad-
olescent females [13]. It is much debated whether the effi-
ciency of physical stimuli for increasing bone strength di-
minishes with age, especially after the menopause.
Exercise probably does benefit bone health in adults since
bone resorption and bone turnover markers are reduced by
1 month of moderate intensity exercise, i.e., four times per
week and 30 min per day, in both pre- and postmenopausal
women [14]. This suggests that mechanical loading of
bones through exercise benefits bone mass at a young
age as well as at a later age.

More than a century ago, Roux (1850–1924) proposed a
concept in which mechanical loading of bone leads to the
cell-mediated adaptation of bone structure, resulting in an
optimized load-bearing capacity of bone [15]. It then took
several decades until the groundbreaking experiments by
the groups of Nijweide and Burger in the Netherlands iden-
tified osteocytes as the chief mechanosensing cells in bone
[16, 17]. Definite proof that osteocytes sense mechanical
signals and respond by directing osteoclast activity came
from animal experiments performed by Tatsumi et al.,
demonstrating a lack of bone loss in unloaded hind limbs
of mice missing the majority of their osteocytes [18].
Activation of osteocyte signaling through exercise thus
provides a way to prevent osteoporosis by maintaining,
or even enhancing, bone mass.

Besides daily physical activity, a healthy diet is among the
most commonly advocated lifestyle measures to improve
(skeletal) health [19]. Recently, the National Osteoporosis
Foundation wrote a position statement on peak bone mass
development. The best evidence (grade A) is available for
positive effects of calcium intake and physical activity, espe-
cially during the late childhood and peripubertal years—a crit-
ical period for bone accretion [19]. “European guidance for
the diagnosis and management of osteoporosis in postmeno-
pausal women” recommends a daily intake of at least
1000 mg/day for calcium, 800 IU/day for vitamin D, and
1 g/kg body weight of protein for all women aged over
50 years [20]. Persons need to consume an overall healthy
diet, like increasing plant-based foods or dairy foods, to meet
their nutrient requirements [21].

The aim of this review is to identify potential interac-
tions between dietary components and mechanical stimuli
with respect to their effect on osteocytes and bone health.
To this end, we defined cellular aspects of osteocytes that
determine their signaling towards osteoblasts and osteo-
clasts in response to mechanical stimuli (Fig. 1) and by
describing a number of dietary components with the abil-
ity to affect these cellular structures, thereby potentially
enhancing the response of osteocytes to mechanical
loading.

The Combined Effect of Nutrition and Mechanical
Loading on Bone In Vivo

Since mechanical loading is beneficial for bone mass and
nutrition affects bone mass, the question then rises what is
known about the combination of exercise and diet with
respect to bone mass in animals and humans. It is difficult
to give a clear answer, as positive effects, negative effects,
and a lack of effects have been reported regarding the ef-
fect of exercise and dietary changes on bone mass. To
provide a few examples, in adult male rats, bone morphol-
ogy and strength are non-significantly affected by 30%
food restriction combined with voluntary exercise training
after a 13-week experimental period [22]. In young female
rats, on the other hand, food restriction in combination

Fig. 1 Mechanotransduction. Physical mechanical loads elicit a
biological response through the process of mechanotransduction. For
bone, this process can be broken down in the following steps: (1)
Transmission of the bulk mechanical stimulus to the osteocyte, (2)
Sensing of the mechanical stimulus by osteocytes and transduction into
a chemical response, (3) Modulation of intracellular signaling, (4)
Production of signaling molecules. The last step leads to an altered
osteoclast and osteoblast recruitment and activity, and an alteration in
bone mass and structure. Changes on each of these levels of
mechanotransduction, for example, by affecting the cellular structures
described in the figure, will potentially affect the efficacy of mechanical
stimuli for modulating bone mass and structure, and thereby the ability of
bone to withstand fracture. Governing all steps of the process of
mechanotransduction is the genetic make-up of the osteocytes
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with voluntary exercise significantly reduced bone
strength, bone mineral density, and calcium absorption
compared to an exercise group. This deficit could be par-
tially rescued by calcium supplementation, suggested that
calcium supplementation has a positive effect on bone
strength in combination with exercise [23•]. On the other
hand, dietary methionine restriction (MR) and endurance
exercise down-regulate bone and energy metabolic indices,
bone size, and extrinsic bone strength in growing rats,
which appears to be part of an adaptive response to chang-
es in energy metabolism in the entire organism. On a pos-
itive note, there is the possibility that MR and endurance
exercise reduce bone aging by slowing bone turnover and
enhancing energy metabolism [24].

In humans, a high intake of dairy, calcium, and protein
during diet- and exercise-induced weight loss in premeno-
pausal overweight and obese women favorably affects bone
health biomarkers [25]. Inversely, low calcium intake dimin-
ishes the increased bone mass resulting from exercise in pre-
pubertal girls [26]. One study conducted on the effect of diet
and physical activity in healthy subjects (age 14–18 yrs.)
shows that the main dietary variables related to bone mass
are energy intake, calcium, vitamin D, and servings of dairy
products, in combination with vigorous (jumping) physical
activity [27]. Another study in well-trained female cyclists
showed that a calcium-rich pre-exercise breakfast meal con-
taining ~ 1350 mg of calcium consumed as compared to no
calcium ~ 90 min before a prolonged and high intensity bout
of stationary cycling attenuates the exercise-induced rise in
markers of bone resorption [28]. A 2-year study showed that
exercise was effective in reducing fall-related injuries among
community-dwelling older women at a moderate cost.
Vitamin D supplementation had marginal additional benefit
[29]. An observational study in young adult men indicated
that habits of consuming breakfast and exercising at least 10 h
per week during high school were linked with significantly
higher L2–4 and femoral neck BMDs [30]. In osteoporotic
sedentary women, an intervention with soy isolate protein or
soy in combination with progressive resistance exercises four
times/week for 12 weeks significantly stimulates bone and
muscle strength gains. Interestingly, the improvements are
more pronounced in the soy-and-exercise group [31]. The
combination of improving nutrition (adequate energy and vi-
tamin D) and resistance exercise during spaceflight attenuates
the expected BMD deficits previously observed after 4- to 6-
month missions [32], showing that a proper combination of
nutrition and exercise serves to maintain bone mass, even
under extreme conditions.

The major drawbacks of studies on bone in vivo in animals
and humans are the associated high costs and the long-term
duration of the experiments. Moreover, the added benefit of a
combination of physical activity and optimal dietary compo-
nent status seems rather difficult to prove. However, it remains

a tantalizing idea that osteoporosis can be prevented by pro-
viding the optimal combination of exercise and nutrition. A
targeted approach to solving the question whether diet and
exercise can synergistically benefit bone mass and strength
is to start to answer the question whether it is possible to
identify dietary components that enhance the response of os-
teocytes to mechanical stimuli. In multiple cases, the effects of
dietary components on osteocytes have not been investigated,
and effects on osteoblasts are described instead. Osteocytes
are terminally differentiated osteoblasts, but care has to be
taken when extrapolating results obtained with osteoblasts
towards osteocytes, because they also have distinct differ-
ences in morphology and function as outlined below.

Degree of Differentiation

Osteocytes are derived from osteoblasts, and osteoblasts and
osteoblastic cell lines show mechanosensitivity [33••]. When
osteoblasts differentiate into osteocytes, they become more
sensitive to mechanical loading [33••]. Thus, by stimulating
the differentiation of osteoblasts into osteocytes, it may be
possible to enhance the sensitivity of bone tissue to mechan-
ical stimuli, and therefore dietary components that are able to
stimulate osteoblast differentiation might ultimately lead to
changes in bone mass. Several of such components exist.
The component fluoride is well known for its effect on oste-
oblast differentiation. It increases osteoblast proliferation and
differentiation in a rat osteosarcoma cell line [34]. Another
component that enhances osteoblast differentiation is
lactoferrin, a pleiotropic factor and well-known dairy ingre-
dient [35]. Lactoferrin stimulates both osteoblast proliferation
and differentiation into osteocytes [36]. Other components
that stimulate osteoblast differentiation are phytoestrogens,
such as genistein, daidzein, diarylheptanoid and 8-
prenylnaringenin [37, 38], and therefore it is possible that
they affect the mechanoresponse of cells from the osteoblast
lineage as well. Vitamin K2 inhibits miR 133a expression,
which is accompanied by enhanced osteogenic differentiation
of mesenchymal stem cells, but whether vitamin K also en-
hances the differentiation of osteoblasts towards osteocytes
remains to be determined [39]. Additional components
known to enhance osteoblast differentiation are strontium,
isoflavones, and whey protein [40–42]. Whether any of these
dietary components actually leads to an increase in the ana-
bolic response of bone tissue—as a whole—to mechanical
loading remains to be investigated. The increase in
mechanosensitivity of terminally differentiated osteoblasts is
likely related to the rigorous changes in the cytoskeleton as-
sociated with the transition of an osteoblast into an osteocyte
[43]. How osteocyte mechanosensitivity and the cytoskeleton
are related, and how this could be affected by dietary com-
ponents, is elucidated next.
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Cytoskeleton

Lately, the view of the cytoskeleton as a structure responsive
to external physical and chemical stimuli has become promi-
nent [44]. The cytoskeleton is involved in mechanosensing
and is a key determinant of the material properties of the cell.
Osteocyte morphology, determined by the cytoskeleton, is
correlated to the magnitude of the response to mechanical
stimuli, whereby round osteocytes seem to have a higher re-
sponse to mechanical stimuli than more spread, adherent os-
teocytes [45]. The shape of cytoskeletal structures depends on
the dynamics of actin fibers, intermediate filaments, and mi-
crotubules [46, 47]. Actin fibers are most abundant in eukary-
otic cells and form a framework that supports and shapes the
plasma membrane. Intermediate filaments are relatively under
investigated in mesenchymal cells, although they play an im-
portant role in the resistance of cells against shear forces.
Microtubules exhibit structural and functional polarity and
are important components of primary cilia [48], a mechano-
sensitive structure that is present on osteocytes [49].

When thinking of cytoskeleton-affecting dietary compo-
nents, a few come to mind. First, fluoride is known to disrupt
the actin cytoskeleton of protozoa [50] and actin fibers in
ameloblasts [51], leading to a disrupted actin cytoskeleton
and more rounded cells [51]. Fluoride might thus enhance
osteocyte mechanosensitivity by altering osteocyte shape, al-
though the intake would have to be relatively high, consider-
ing the dose required to affect the actin cytoskeleton. Second,
oleuropein comes to mind. Osteoporosis-related fractures are
lowest in Southern Europe, which is likely related to dietary
influences [52]. Olive oil and its main compound oleuropein
are abundantly present in the Mediterranean diet. The poly-
phenol oleuropein disrupts microtubules in tumor cells, also
resulting in rounded cells and altered cytoskeletal organization
[53]. Third, genistein, an isoflavone, and phytoestrogen most-
ly present in soybeans depolymerizes the microtubules in hu-
man A549 epithelium cancer cells and inhibits microtubule
polymerization in vitro [54]. One can hypothesize that
oleuropein and genistein affect osteocyte shape and primary
cilium formation, thereby altering the sensitivity of osteocytes
to mechanical loading and affecting bone mass. These find-
ings allow for a hypothetical role for fluoride, oleuropein, and
genistein in the mechanoresponse of osteocytes, making them
an interesting target for future investigations.

Estrogen Receptor Alpha

Estrogen is known to have profound bone preserving effects.
Decreased estrogen levels following menopause have a strong
negative effect on bone mass [55]. On the other hand, admin-
istration of exogenous estrogen increases bone mineral densi-
ty in humans and seems especially beneficial when combined
with an exercise regime [56, 57]. Estrogen can affect bone

resorption and bone formation after binding to its receptors
present on both osteoclasts and osteoblasts, the net effect de-
pending on the type of receptor (i.e., estrogen receptor (ER)α
or β) being activated [55, 58]. In addition, estrogen likely
alters the response of osteocytes to mechanical loading via
the estrogen receptor α and ERβ [59••, 60], thereby affecting
bone mass. Mechanical loading is able to preserve osteocyte
and osteoblast viability, because ERα, as well as ERβ, acti-
vates ERK. Interestingly, the ligand-binding domain of each
receptor suffices for mechanosensation, in a ligand-
independent fashion, and both plasma membrane localization
of the ERα and its interaction with caveolin-1 are required for
mechanotransduction [60]. It has been suggested that osteo-
cytes become less sensitive to mechanical stimuli in woman
after menopause due to the estrogen loss and alterations in
ERα expression, thereby explaining the rapid loss in bone
mass associated with menopause [61, 62]. Phytoestrogens
are plant-derived compounds with estrogen-like activity, and
supplementation with phytoestrogens likely prevents the re-
duction in BMD associated with menopause and maintains a
healthy bone structure [63]. Little is known about the ability of
phytoestrogens to modulate ERα expression, but at least ge-
nistein enhances ERα expression in MC3T3-E1 mouse oste-
oblasts [64], suggesting that genistein, similar to endogenous
estrogens, is able to modulate ERα expression, and thus po-
tentially alter osteocyte mechanosensitivity.

Vitamin D Receptor

Not only ERα but also the vitamin D receptor (VDR) is
expressed by osteocytes and has been linked to responses of
bone cells tomechanical stimuli. The VDR-mediated genomic
actions of 1,25 dihydroxy vitamin D3 (hereafter referred to as
“vitamin D”) occur by coupling of the VDR to VDR response
elements (VDRE) in the promoter regions of vitamin D target
genes [65]. Genes containing a VDRE often encode for pro-
teins involved in the regulation of osteoclast formation and/or
activity, or osteoblast differentiation, such as receptor activa-
tor of nuclear factor kappa-β ligand (RANKL) or nitric oxide
synthase, the enzyme responsible for nitric oxide (NO) pro-
duction, e.g., in response to mechanical loading [66]. This
prompts the hypothesis that vitamin D enhances the produc-
tion of signaling molecules by mechanically stimulated oste-
ocytes via genomic actions of the VDR. However, mechanical
loading of osteoblasts in vitro through a controlled pulsating
fluid flow (PFF) rapidly increases NO production in osteo-
blasts, but this PFF effect is abolished, rather than enhanced,
after 24 h of vitamin D preincubation [67]. Vitamin D may
affect mechanical loading-induced NO production indepen-
dent of genomic VDR action, since it diminishes PFF-
induced NO production in osteoblasts derived from genetical-
ly altered mice that lack the ability for genomic VDR action
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[67]. Vitamin D and mechanical loading thus interact at the
level of mechanotransduction, at least in vitro.

The role of vitamin D in bone mineral homeostasis is to
promote intestinal absorption of calcium and phosphate [68].
Vitamin D regulates calcium and phosphate homeostasis
through cross-regulation of PTH, but also via osteoclastogen-
esis and osteoblastogenesis, calcium and phosphate acquisi-
tion, and regulation of anabolic and catabolic gene expression
to achieve a proper mineral and skeletal metabolism [69].
Vitamin D deficiency results in increased PTH levels, and
PTH reduces the mechanical stress-induced NO production
in human primary bone cells in vitro, suggesting that vitamin
D might affect the response of osteocytes to mechanical load-
ing via PTH [70]. Taken together, vitamin D and mechanical
loading are likely to interact, either via the VDR or via mod-
ulation of PTH levels.

Lacunocanalicular Network Architecture and Bone
Matrix

PTH may directly affect the response of bone cells to me-
chanical stimulation, but it may also affect the perception
of mechanical stimuli in vivo. Continuously elevated
levels of PTH cause osteocytic osteolysis [71], thereby
affecting the architecture of the lacunacanalicular system
that forms the niche for the osteocytes embedded within
the bone matrix. Altered lacunar shape alters the quantity
of local strains occurring around the osteocytes during dai-
ly activities and exercise, as outlined elsewhere in this is-
sue, thereby effectively altering the height of the mechan-
ical stimulus experienced by osteocytes [72]. Thus, dietary
components that alter osteocyte lacunar shape will most
likely interact with mechanotransduction by osteocytes.
Regarding matrix strains transduced to osteocytes, dietary
components that significantly alter the mineralization of
the bone matrix, thereby rendering it more stiff or compli-
ant, will theoretically affect the amount of strain elicited on
osteocytes. Dietary components that significantly alter the
mineralization of the bone matrix could also affect the
ability of osteocytes to maintain an unmineralized layer
of matrix surrounding their cell fingers. It is generally as-
sumed that this layer is essential for the transmission of
mechanical signals, since loading-induced shifts in intersti-
tial fluid through the canaliculi wherein the osteocyte cell
extensions reside is considered an important amplification
mechanism for mechanical signals exerted on bone [17].
Factors produced by osteoblasts and osteocytes that affect
mineralization include osteocalcin (OC) and matrix GLA
protein (MGP). MGP has been found in bone, dentine,
cartilage, and soft tissue, including blood vessels, and is
associated with the organic matrix and mobilization of cal-
cium. Animal studies show that MGP prevents the calcifi-
cation of soft tissue and cartilage while facilitating normal

bone growth and development. The synthesis of OC and
MGP is regulated by calcitriol, retinoic acid, vitamin K,
and vitamin D [73]. In addition, it was shown that feeding
rats olive extract at 250 mg per day for 12 months increases
serum osteocalcin [74]. Whether this also affects matrix
mineralization and transmission of mechanical loads to-
wards the osteocytes is unknown. Matrix mineralization
is definitely affected by retinol intake in mice, at least
under extreme conditions of disturbed matrix mineraliza-
tion [75]. X-linked hypophosphatemic rickets is caused by
inactivation of the PHEX gene. Phex is expressed by very
late differentiated osteoblasts and early osteocytes in mice
and humans, while it is exclusively expressed by osteo-
cytes in chickens [16]. Feeding mice with a mutant
PHEX gene, a retinol-free diet results in a partial rescue
of growth plate and bone mineralization defects, while the
amount of non-mineralized bone matrix is reduced more
than 70%, showing the impact of retinol on the cell-
autonomous mineralization defect of Phex-deficient osteo-
blasts [75]. Whether retinol in the diet will have a similar
effect on matrix mineralization in otherwise healthy
humans remains to be seen. Taken together, vitamin D
may affect the transmission of mechanical signals to oste-
ocytes if it affects lacuna shape, but whether any other
dietary component will affect transmission of mechanical
signals is uncertain.

Signaling Molecule Production

Osteocytes produce soluble factors such as nitric oxide (NO),
prostaglandin E2 (PGE2), bone morphogenic proteins
(BMPs), Wnts, sclerostin, RANKL, and osteoprotegerin
(OPG) in response to changes in mechanical loading. If a
dietary component can alter the production of these signaling
molecules by osteocytes in response to mechanical loading, it
has the potential to enhance bone mass in concert with
exercise.

NO is a well-known early mediator of bone formation and
is essential for the anabolic response of bone to mechanical
loading in vivo [76]. NO also is an essential mediator for the
reduced stimulation of osteoclast formation by mechanically
loaded osteocytes compared to unloaded osteocytes [77].
Both animal studies and studies in humans support the use
of NO donors to prevent bone loss [78]. Since NO is formed
during the conversion of L-arginine by NOS, it is feasible that
the amino acid arginine plays a role in the process of adaptive
bone formation. Several in vitro studies have shown that argi-
nine administration significantly increases NO production, as
well as alkaline phosphatase and insulin-like growth factor-I
production, and type I collagen synthesis by human osteo-
blasts and in osteoblasts derived from calvariae of newborn
rats [79]. Low concentrations of oleuropein (10−4–10−6 M)
increase NO production via induction of inducible NOS by
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macrophages in a mouse infection model, thus increasing
functional activity of these cells [80]. Both these dietary com-
ponents could thus have a beneficial effect on NO production
by mechanically stimulated osteocytes.

Prostaglandins are generated by the release of arachidonic
acid from phospholipids in the cell membrane, followed by
conversion of arachidonic acid into prostaglandin G2 and sub-
sequently prostaglandin H2 by COX [81]. Prostaglandin H2 is
further isomerized to the biological active prostanoids, such as
PGE2 [81]. Oleuropein at 10–100 μg/ml reduces the levels of
COX-2 seen in inflammation [82]. Another polyphenolic
compound, chlorogenic acid, decreases inflammation-
induced production of PGE2 as well as the expression of
COX-2 in RAW 264.7 macrophages [83], indicating a role
for polyphenols in inflammation-induced bone resorption.
Finally, strontium is known for its effect on the proliferation
of pre-osteoblasts and the stimulation of bone formation [84].
In both MC3T3-E1 osteoblasts and MLO-Y4 mouse
osteocyte-like cells, strontium stimulates the production of
PGE2 [85]. Whether oleuropein or chlorogenic acid increases
the response of osteocytes to mechanical loading is unknown.
Strontium does not seem to have a synergistic effect on the
production of PGE2 by mechanically loaded osteocytes
in vitro, but it does have an additive effect [85].

RANKL is a membrane-bound cytokine and binds to its
receptor RANK on osteoclast precursors [86•]. Osteocyte
RANKL is a critical mediator of bone loss in response to
calcium deficiency [86•]. The severe osteopetrotic (abnormal
high bone density) phenotype observed in adult mice specif-
ically lacking osteocyte-derived RANKL indicates that oste-
ocytes are the major source of RANKL during bone remodel-
ing in vivo thereby determining bone mass [87]. Binding of
osteoprotegerin (OPG) to RANK results in suppression of
osteoclast formation in vivo and in vitro [88]. The ratio
OPG/RANKL is therefore considered crucial in osteoclast
formation [89]. RANKL is also expressed by osteocytes dur-
ing bone microdamage [90], and apoptotic osteocytes initiate
bone resorption by recruitment of osteoclast precursor cells to
the local damage site via RANKL production [91••].

Mechanical loading enhances OPG production and reduces
RANKL production by osteocytes. This effect of mechanical
loading on RANKL production may be modified via the in-
take of components that are known to affect RANKL produc-
tion such as vitamin K. Vitamin K is present as phylloquinone
(vitamin K1) and menaquinones (vitamin K2). Examples of
the latter are MK-7, MK-8, and MK-9 [92]. Vitamin K2 in-
hibits osteoclast formation by decreasing RANKL [93].MK-7
suppresses proliferation, but enhances OPG, RANKL, and
RANK gene and protein expression inMC3T3-E1 osteoblasts
[94, 95]. This opens the possibility that vitamin K affects the
mechanical loading-mediated communication between osteo-
blasts and osteoclasts. There are many other signaling mole-
cules produced by osteocytes in response to mechanical
(un)loading of bone, many of which can likely be affected
by dietary components in one way or the other. In this review,
we will restrict the discussion to aforementioned signaling
molecules as they have been the most extensively studied.

Conclusions

The increasing number of patients suffering from osteoporo-
sis is accompanied by high costs and decreased quality of life,
and therefore new curative and therapeutic approaches are
urgently needed. Given the crucial importance of dietary
components and physical activity for bone health in general,
much is likely to be gained from a regime of daily exercise
and a balanced diet. However, more research is needed to
obtain a better understanding of the ability of osteocytes to
respond to mechanical stimuli in patients with osteoporosis as
this might be altered compared to others without osteoporosis
[96]. More research is also urgently required to gain a better
understanding of the molecular mechanisms involved in the
process of mechanotransduction in osteocytes to aid the de-
velopment of optimal bone-anabolic treatments. In this re-
view, several mechanisms have been identified by which di-
etary components potentially modulate the beneficial effect of
mechanical stimuli on bone health. This review also

Table 1 Summary of dietary components potentially able to affect osteocyte properties

Arginine Calcitriol Lactoferrin Daidzein Fluoride Genistein Strontium Oleuropein Retinoic acid Vitamin D Vitamin K

Lacuna shape +/−
Matrix mineralization + + + +

Cytoskeletal changes + + +

ERα expression + +

VDR signaling +

Osteogenic diff. + + + + + + +

Signal molecules + + + + +
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identified a number of dietary components, e.g., fluoride,
oleuropein, (phyto)estrogens, lactoferrin, strontium, vitamin
K, and vitamin D with potential for enhancing bone health
when applied in combination with mechanical stimuli
(Table 1). This list can likely be expanded in the future as
research progresses, holding great promise for finding a bal-
anced curative or therapeutic approach for the prevention of
age-related bone loss.
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