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Abstract
Purpose of Review This review aims to provide a comprehensive overview of mesenchymal sinonasal tract tumors (STTs), a 
distinct subset of STTs. Despite their rarity, mesenchymal STTs represent a unique clinical challenge, characterized by their 
rarity, often slow progression, and frequently subtle or overlooked symptoms. The complex anatomy of the sinonasal area, 
which includes critical structures such as the orbit, brain, and cranial nerves, further complicates surgical treatment options. 
This underscores an urgent need for more advanced and specialized therapeutic approaches.
Recent Findings Advancements in molecular diagnostics, particularly in next-generation sequencing, have significantly 
enhanced our understanding of STTs. Consequently, the World Health Organization has updated its tumor classification to 
better reflect the distinct histological and molecular profiles of these tumors, as well as to categorize mesenchymal STTs with 
greater accuracy. The growing understanding of the molecular characteristics of mesenchymal STTs opens new possibilities 
for targeted therapeutic interventions, marking a significant shift in treatment paradigms.
Summary This review article concentrates on mesenchymal STTs, specifically addressing sinonasal tract angiofibroma, 
sinonasal glomangiopericytoma, biphenotypic sinonasal sarcoma, and skull base chordoma. These entities are marked by 
unique histopathological and molecular features, which challenge conventional treatment approaches and simultaneously 
open avenues for novel targeted therapies. Our discussion is geared towards delineating the molecular underpinnings of 
mesenchymal STTs, with the objective of enhancing therapeutic strategies and addressing the existing shortcomings in the 
management of these intricate tumors.
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Introduction

Sinonasal tract tumors (STTs), although relatively uncommon, 
represent major clinical challenges in the field of head and 
neck medicine, comprising both benign and malignant entities. 
Accounting for approximately 5% of head and neck tumors, 
these neoplasms have an annual incidence rate of 0.5 to 1.0 per 
100,000 individuals [1]. Their development is associated with 
environmental risk factors, including exposure to industrial by-
products, such as metals, textiles, leather, and wood dust [2].

The presentation of STTs, which can include symptoms, 
such as purulent nasal discharge, epistaxis, and nasal obstruc-
tion, is often non-specific and insidious, leading to delayed 
diagnosis and varying prognoses. While benign tumors may 
present less aggressive behavior, malignant STTs have a more 
dire prognosis, with 5-year survival rates dropping to 20% in 
advanced stages [3••]. The complex anatomy of the sinona-
sal region, which includes vital structures, including the orbit, 
brain, and cranial nerves, adds to the challenges in treating 
these tumors [4]. Surgical resection remains the primary treat-
ment objective, but complete tumor removal is often challeng-
ing due to these anatomical constraints [5]. Consequently, 
adjuvant therapies (i.e., radiotherapy and chemotherapy) play 
a crucial role in managing residual disease and improving local 
control.

Advances in molecular diagnostics, particularly next-gen-
eration sequencing (NGS), have revolutionized our under-
standing of STTs [6]. These technologies have enabled more 
precise tumor subtyping, as exemplified by the World Health 
Organization's classification system, which categorizes STTs 
based on their histological and molecular markers [7••]. This 
system distinguishes different tumor types, including hamarto-
mas, respiratory epithelial lesions, and mesenchymal tumors.

Our review specifically focuses on mesenchymal STTs, a 
subset of STTs that includes entities, such as sinonasal tract 
angiofibroma, sinonasal glomangiopericytoma, biphenotypic 
sinonasal sarcoma, and skull base chordoma. These tumors 
are particularly noteworthy due to their unique histological 
and molecular profiles, which not only challenge conventional 
diagnostic and treatment strategies but also present opportuni-
ties for the development of targeted therapies. By exploring the 
molecular underpinnings of mesenchymal STTs, we aim to 
highlight the potential for more precise and effective treatment 
modalities, addressing a critical gap in the current manage-
ment of these complex tumors.

Sinonsal Tract Angiofibroma

Sinonasal tract angiofibroma (STA), also known as juvenile 
nasopharyngeal angiofibroma, is a tumor that, while histo-
logically benign, exhibits a high degree of vascularity [8]. 

As the most common non-cancerous tumor in the sinonasal 
region, STA accounts for up to 0.5% of all head and neck 
tumors [9]. STA predominantly affects male adolescents, 
typically in their second decade of life [10]. The tumor car-
ries a significant risk of local recurrence, estimated at 40%, 
especially if it is not completely excised [11]. The exact eti-
ology of STA remains a subject of debate, with theories 
ranging from vascular malformations to branchial remnants 
[12]. Notably, familial predisposition is well documented, 
with individuals carrying the familial adenomatous polypo-
sis (FAP) gene being 25 times more likely to develop STA 
[13]. Treatment primarily involves preoperative emboli-
zation followed by surgical resection based on thorough 
clinical and radiological assessments, typically avoiding 
preoperative biopsies [14, 15]. Although malignant transfor-
mation in STA post-radiotherapy has been reported, it is still 
recommended as adjunctive therapy in cases of incomplete 
tumor removal, unresectable tumors, or extensive intracra-
nial extension [11, 16]. For recurrent cases, chemotherapy 
options, such as doxorubicin and dacarbacine, ought to be 
considered despite limited long-term experience regarding 
its therapy success [17].

Histopathological Characteristics of STA

In STA, characteristic histological features include the 
development of unevenly distributed vascular channels in a 
fibrous matrix. This matrix is composed of varying amounts 
of collagen fibers and cells that are typically plump and 
either spindle or stellate in shape [18]. A consistent finding 
across studies is the presence of CD34 in all vascular cells, 
as revealed by immunohistochemical analysis [19–21]. Star-
linger et al. further underscored the diverse vascular struc-
tures present in STA [22]. The high expression levels of 
laminin alpha2 found in the vasculature of STA suggest that 
these vessels may be at an early developmental stage of the 
tumor [22]. This finding substantiates the hypothesis that 
remnants of the first branchial arch artery's plexus play a 
significant role in the formation of the vascular component 
of this tumor [12].

The Molecular Landscape of STA

Over the past three decades, substantial progress has been 
achieved in understanding the molecular characterization of 
STA. A comprehensive review of the literature suggests a 
structured categorization of these findings for better clarity 
and analysis. This categorization includes genomic altera-
tions, the role of tumor suppressor genes, the expression 
of oncogenes, the dynamics of growth factor interactions, 
and hormonal influences. Figure 1 illustrates this intricate 
molecular and histological network, delineating the interplay 
between these various factors.
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Genomic Alterations

Molecular genetic techniques, such as loss of heterozygo-
sity (LOH) analysis, Fluorescence In Situ Hybridization 
(FISH), Comparative Genomic Hybridization (CGH), and 
Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR) have revolutionized the detection of chromosomal 
alterations in STA. The methods have been instrumental 
in identifying regions harboring potential oncogenes or 
tumor suppressor genes. A landmark study by Schick 
et al. utilized CGH and FISH to identify genetic imbal-
ances in STA, finding an extra chromosome X and loss 
of chromosome Y, along with further chromosomal gains 
(8q12-q22) and losses (17, 19p, and 22q) [23, 24]. In 

addition, they noted chromosomal aberrations on several 
chromosomes, including frequent gains and losses, and 
amplification of the AUKRA (STK15) and MDM2 genes, 
which may contribute to chromosomal instability [25]. 
Brunner et al. documented diverse chromosomal abnor-
malities in STA, including frequent gains and a complete 
loss of the Y chromosome [26]. Employing CGH, Heinrich 
et al. also reported frequent DNA gains in STA [27]. Gene 
expression analyses have revealed a positive correlation 
between endothelial and stromal components for genes 
such as ASPM, CDH1, CTNNB1, FGF18, and SUPT16H 
[28]. Calanca et al. identified significant alterations in gene 
expression, with increased expression of COL4A2 and 
LAMB1 and decreased expression of BCL2 and RAC2, 
as assessed by RT-qPCR [29•].

Fig. 1  Intricate molecular and histological network of STA. VEGFR, 
vascular endothelial growth factor receptor; FGFR, fibroblast 
growth factor receptor; TGFβ, transforming growth factor-β; HIF1α, 
hypoxia-inducible factor 1α; GSK-3β, glycogen synthase kinase-3β; 
LRP, lipoprotein receptor-related proteins; CK1α, casein kinase 1α; 

APC, adenomatous polyposis coli; TCF/LEF, T-cell factor/lymphoid 
enhancer factor; ER, estrogen receptor; AR, androgen receptor; PR, 
progesterone receptor; ERK, extracellular signal-regulated kinase; 
CD31, platelet endothelial cell adhesion molecule (Figure created 
using BioRender, Toronto, ON, Canada)
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Tumor Suppressor Genes

The observed higher incidence of STA in individuals with 
FAP suggests a potential genetic link between these condi-
tions. The adenomatous polyposis coli (APC) gene, located 
on chromosome 5q21, is well known to cause FAP [30••]. 
The APC gene product is a crucial regulator of beta-catenin, 
a key element in cell adhesion and the Wnt signaling path-
way [31].

However, research investigating APC mutations in STA, 
yielded varying results. Ferouz et al. and Guertl et al. found 
no APC mutations in their analyses of five and eleven STA 
cases, respectively [13, 32]. Conversely, significant beta-
catenin gene transcript expression was observed in 75% 
of STA, with notable nuclear accumulation in the stromal 
cells of these tumors [33]. This was further supported by 
findings of nuclear staining of beta-catenin in both sporadic 
and familial STA, with altered APC expression particularly 
noted in FAP-associated STA [34]. Additionally, variations 
in Wnt pathway gene expressions, such as reduced WNT5A 
and increased WNT5B, were identified, suggesting alter-
native mechanisms of Wnt pathway involvement in STA 
pathogenesis [29•]. Zhang et al. reported strong beta-catenin 
expression in STA compared to nasal polyps [35], and simi-
lar findings were confirmed by Rippel et al. and Pandey et al. 
in their studies on stromal and endothelial cells of STA [36, 
37]. However, the expression of beta-catenin in STA has 
been found to be inconsistent, challenging the assumption 
of its universal amplification in STA [38].

Separately, the tumor suppressor gene TP53, known for 
its role in cell growth regulation, has also been a subject 
of interest in STA research. Studies have reported differ-
ent TP53 mRNA expression levels in STA, with some cases 
showing increased expression, while others found gene 
losses without mutations [39, 40]. Intriguingly, lower TP53 
mRNA expression was associated with skull-base involve-
ment, whereas a higher expression correlated with lateral 
extension [41].

Oncogene Expression

The c-myc gene, encoding a phosphoprotein essential for 
cellular growth, proliferation, and apoptosis, exhibits potent 
angiogenic effects and is commonly deregulated in malig-
nancies [42•]. In STA, c-myc expression has shown mixed 
results, with some studies finding no significant differences 
from normal tissues, while others reported overexpression 
or loss in certain cases [40, 43, 44]. Notably, higher c-myc 
mRNA expression was associated with skull base involve-
ment, whereas lower expressions correlated with lateral 
extension [41].

The c-kit protooncoprotein, a tyrosine kinase recep-
tor, plays a central role in mesenchymal tumors and is a 

treatment target in specific cases. Its strong expression in 
STA stromal and endothelial cells, along with high mRNA 
expression, indicate its clinical relevance [35, 37, 44]. How-
ever, conflicting findings have also been reported, with one 
study detecting no c-kit expression in STA [45].

Regarding the ras gene, known for its involvement in cel-
lular signal transduction, no mutations in key codons were 
found in STA [46]. Increased mRNA expression of ras, cor-
relating with clinical characteristics, such as intraoperative 
hemorrhage, tumor volume, skull base extension, and recur-
rence potential, has been described by Pandey et al. [37, 41].

The fos family proteins (c-fos, FosB, Fra-1, and Fra-2), 
which, together with the Jun protein, form the AP-1 tran-
scription factor complex, influence cell proliferation, death, 
differentiation, and inflammation [47]. The c-fos gene, 
known for its oncogenic potential, is frequently overex-
pressed in tumors and showed increased expression in 14% 
of STA cases [40].

Finally, the Her-2/neu gene, which has been linked to 
various tumors, showed no amplification in a small-scale 
STA study [39].

Angiogenesis and Growth Factor Interplay

The molecular characteristics of STA are strongly influenced 
by a network of growth factors that are essential for tumor 
development and angiogenic responses. In this regard, vas-
cular endothelial growth factor (VEGF), a prominent proan-
giogenic factor in tumor biology, plays a key role [48]. The 
role of VEGF in STA has been extensively studied, with 
findings indicating that its significant expression is associ-
ated with enhanced cell proliferation and increased blood 
vessel density [49–51]. This is in line with Mishra et al.’s 
findings of increased mRNA expression of VEGF in STA, 
correlating with clinical variables, such as intraoperative 
hemorrhage, tumor volume, skull base extension, and recur-
rence [41]. Transcription of VEGF genes is activated under 
hypoxic conditions by an inhydroxylated hypoxia-inducible 
factor 1α (HIF-1α) [52]. Song et al. found higher HIF-1α 
expression in recurrent STA cases, suggesting its potential 
as a prognostic marker for recurrence [53].

Equally important are the fibroblast growth factors (FGF 
and bFGF), which are involved in angiogenesis and tissue 
development [54]. Increased expression of these factors has 
been reported in STA, implying their role in the disease 
pathogenesis [41, 50, 55]. This is corroborated by the find-
ings of Safhi et al., who noted significant upregulation of 
fibroblast growth factor receptor (FGFR)3/4 genes in STA 
patients, with a more pronounced association among smok-
ers [56•]. Jones et al. also documented an upregulation of 
FGFR2 in patient STA sections [51]. The importance of 
FGFR signaling is further underlined by studies showing 
that STA fibroblast proliferation, migration, and invasion can 
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be inhibited by blocking FGFR signaling pathways, as exem-
plified by the efficacy of AZD4547 treatment in vitro [57].

Transforming growth factor (TGF)-beta 1, secreted by 
fibroblasts, macrophages, and endothelial cells, is another 
relevant factor in STA. It plays a crucial role in the regula-
tion of the cell cycle, extracellular matrix production, and 
angiogenesis [58]. Its significant presence in STA has been 
documented in multiple studies, pointing to its importance 
in stromal and vessel growth [40, 50, 59, 60].

While other factors like bone morphogenic proteins 
from the TGFb superfamily, platelet-derived growth fac-
tor (PDGF), insulin-like growth factors (IGFs), and nerve 
growth factor (NGF) have been studied in STA, their specific 
roles are not as clearly defined [35]. The variable expression 
levels of IGFs in STA hint at their possible involvement in 
tumor growth [61], and the role of NGF in vascular growth 
in STA represents an intriguing area for further research 
[35].

Hormonal Dynamics

The development of STA is believed to be hormonally 
driven. This hypothesis is backed up by the relatively high 
prevalence of STA in young men and its onset typically dur-
ing the years of sexual maturation [62]. Initial research in 
this area suggested that imbalances in sex hormones might 
underlie the occurrence of STA [63–65]. Martin et  al. 
reported that patients with STA often experienced delayed 
sexual maturation, and it was noted that the size of the tumor 
tended to decrease following the onset of secondary sexual 
characteristics [64].

Further studies on the hormonal aspects of STA con-
firmed the impact of sex hormones on its progression 
[66–69]. For instance, estrogen therapy, which was widely 
used in the 1960s and 1970s to reduce tumor size and surgi-
cal bleeding, is no longer a standard practice. This change 
is attributed to the inconsistent results and potential side 
effects of the therapy [70, 71]. Additionally, the hypothesis 
that testosterone could exacerbate tumor growth led to the 
exploration of treatments with anti-androgenic agents, such 
as cyproterone acetate and flutamide. However, these treat-
ments showed inconsistent efficacy in reducing the growth 
of STA cells and the overall tumor size [71–73, 74••].

Analyses of hormone receptors in STA tissues yielded 
divergent results. While some studies found no presence 
of estrogen receptors (ERs) in STA tissues [65, 66], others 
detected androgen receptors (ARs) but no ERs or proges-
terone receptors (PRs) [75, 76]. Hwang et al. observed 
ARs presence in 18 out of 24 STA cases, with immu-
nostaining evident in stromal and endothelial cells [77]. 
In contrast, Gatalica found no ERs or progesterone recep-
tors in 8 STA cases and 8 nasal turbinate control samples, 
with only minor nuclear AR immunoreactivity in some 

endothelial and stromal cells of both tumor and normal 
tissues [78]. This aligns with findings of Pandey et al., who 
also failed to detect AR expression in STA samples [37]. 
Saylam et al. conducted an immunohistochemical analysis 
of 27 STA samples and discovered ER presence in 7.4% 
of cases and PRs in 33.3% [60]. In this context, it is also 
worth mentioning that Brentani et al. reported a correla-
tion between the presence of ARs and PRs, and a higher 
density of endothelial and fibroblast cells in STA [67]. 
Moreover, recent studies have suggested that ER-α, alone 
or in combination with heat shock protein (Hsp)90, might 
serve as an indicator for predicting tumor recurrence [79, 
80]. These findings indicate that hormone receptor stabil-
ity, potentially influenced by Hsp90, plays a significant 
role in STA development.

Despite the evidence pointing to hormonal imbalances in 
STA patients and the detection of ARs and/or ERs in STA 
tissues, no consistent changes in serum hormone levels have 
been found. This discrepancy leaves the hormonal impact on 
STA a subject of ongoing debate in the scientific community.

New Horizons in STA Treatment

Research regarding new therapeutic strategies for STA is 
still in its infancy, with only a single clinical trial currently 
registered on ClinicalTrials.gov (NCT05549167). One key 
aspect currently under investigation is the role of mamma-
lian target of rapamycin (mTOR) signaling in the growth and 
vascularization of STA. Sirolimus, an mTOR inhibitor, has 
emerged as a potential therapeutic agent [81••]. The trial 
is intended to fill a knowledge gap, as available data on the 
efficacy and safety of Sirolimus in STA are scarce and pri-
marily based on few clinical cases. The primary aim of the 
study is, therefore, to evaluate the effectiveness and safety 
of Sirolimus, especially in young patients with primary or 
recurrent STA.

In parallel to pharmacological interventions, a novel diag-
nostic and potentially therapeutic approach targeting diverse 
somatostatin receptor subtypes (SSTRs) in STA stromal cells 
is being explored. This has led to the utilization of advanced 
imaging methods, such as 68Ga-DOTANOC PET/CT, which 
binds to multiple SSTRs, improving the accuracy of STA 
imaging [82]. Recent evidence has demonstrated uniform 
DOTANOC uptake in all analyzed cases of STA, under-
scoring its potential in preoperative diagnostics and post-
operative assessments [83••]. This finding also highlights 
the potential use of radionuclide-based therapies targeting 
SSTRs for more specific treatment. However, current data 
indicates that the maximum standardized uptake values in 
STA are lower than in the pituitary gland [82]. Accordingly, 
the use of more potent radioactive methods for therapy is 
deemed hazardous at this stage.
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Sinonsal Glomangiopericytoma

Sinonasal glomangiopericytoma (SGP), also known as 
sinonasal-type hemangiopericytoma, is a rare vascu-
lar soft tissue neoplasm. Originating in the nasal cavity 
and paranasal sinuses, it represents less than 0.5% of all 
primary sinonasal tumors [84, 85]. SGP predominantly 
affects individuals in their 60s and 70s, showing a slight 
inclination towards the female population. The risk of 
recurrence post-treatment is relatively low, approximately 
20%, typically manifesting within the first five years post-
therapy [86]. The exact cause of SGP remains elusive, 
but different hypotheses suggest a link to increased blood 
vessel growth, potentially triggered by factors like trauma, 
pregnancy, hypertension, or corticosteroid usage [85]. 
The preferred treatment for SGP is endoscopic surgical 
excision [87, 88]. Recurrences are generally attributed to 
incomplete removal during initial surgery [84]. To reduce 
the likelihood of recurrence, adjuvant radiotherapy can 
be employed following surgery [89]. To date, no specific 
clinical trials have been conducted for SGP. While there 
are established clinical trials for hemangiopericytoma, it 
is important to note that SGP, with its unique pathologi-
cal features, is different from solitary fibrous tumors, for-
merly known as hemangiopericytoma [90]. Therefore, in 
this review, we will not discuss clinical trials pertaining to 
hemangiopericytoma, but rather focus on the particulari-
ties of SGP.

Histopathological Characteristics of SGP

SGP originates from pericyte cells surrounding capillar-
ies [84]. SGP is characterized by a richly vascularized 
stroma, featuring vascular channels lined by a single layer 
of endothelial cells ranging from flat to cuboidal in shape 
[91]. The tumor’s cellular composition is predominantly 
oval or spindle-shaped cells with a “patternless” architec-
ture with hyperchromatic nuclei, characterized by incon-
spicuous nucleoli and minimal eosinophilic cytoplasm 
[92]. Some areas of the tumor exhibit myxoid changes, 
presenting a gelatinous texture, and significant hyaliniza-
tion around the blood vessels [92].

Immunohistochemically, SGP cells express nuclear 
beta-catenin, vimentin, smooth muscle actin (SMA), 
CD99, cyclin D1, and transducing-like enhancer of split 
1 (TLE1) [90, 92–94]. Notably, cyclin D1 shows promi-
nent nuclear expression in tumors that also express nuclear 
beta-catenin, suggesting a potential link between beta-
catenin mutational activity and cyclin D1 overexpression 
in SGP pathogenesis [93]. The tumor does not typically 
stain for cytokeratin AE1/AE3, desmin, and nuclear signal 

transducer and activator of transcription (STAT)6 [90, 92, 
94, 95]. Contrary to traditional viewpoints, the absence 
of CD34 reactivity, once thought to be a defining feature 
of SGP, has been challenged by Sangoi et al. due to high 
variability in CD34 expression and laboratory inconsisten-
cies [86, 90, 93, 94, 96•, 97]. This may sensitize providers 
when using negative CD34 reactivity as a sole diagnostic 
criterion, especially in small tissue samples. Their find-
ings advocate for a more inclusive diagnostic approach 
that employs a comprehensive panel of immunostains, 
rather than solely relying on CD34 [96•].

CTNNB1 Mutations and Wnt Pathway Involvement 
in SGP

The molecular pathogenesis of SGP remains partially under-
stood, but recent advancements turned the focus on certain 
aspects. For instance, one significant discovery is the iden-
tification of CTNNB1 gene mutations and the consequent 
nuclear accumulation of beta-catenin in SGP, a feature dis-
tinct from the NAB2-STAT6 fusion typically associated with 
solitary fibrous tumors [93, 98, 99]. Research by Obeidin 
et al. further supports this understanding, revealing missense 
mutations in the CTNNB1 gene, specifically at the beta-
catenin destruction complex recognition site, in four SGP 
cases [92]. These mutations predominantly involve a serine 
residue, impeding the phosphorylation and subsequent pro-
teasomal degradation of beta-catenin. Consequently, there 
is an accumulation of beta-catenin in the nucleus, enhanc-
ing the transcription of Wnt pathway target genes, such as 
lymphoid enhancer binding factor 1, as highlighted in stud-
ies by Suzuki et al. (Fig. 2) [100]. Moreover, Lasota et al. 
have also identified mutations at these critical residues in 
SGP, reinforcing the role of beta-catenin pathway alterations 
in its pathogenesis [93]. While SGP shares histologic and 
immunohistochemical features with glomus tumors, includ-
ing perivascular patterns and SMA expression, the MIR143-
NOTCH gene fusion, commonly observed in glomus tumors, 
has not been detected in SGP [86, 101].

Biphenotypic Sinonasal Sarcoma

Biphenotypic sinonasal sarcoma (BSNS) is an uncommon 
sinonasal malignancy, characterized by both neural and 
myogenic properties. Despite being a slow-growing and 
low-grade malignancy, BSNS exhibits a locally aggressive 
growth pattern [102]. The average onset age is between 
50 and 53 years, with a female to male incidence ratio of 
approximately 2–3:1 [103, 104]. At diagnosis, around 20% 
of patients show bone invasion, particularly in the orbit 
(25%) and cribriform plate (10%) [102]. The long-term 
prognosis of BSNS remains unclear due to sparse research, 
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but it is believed to have a higher five-year survival rate com-
pared to other STTs. Literature suggests a recurrence rate 
of 32%-40%, occurring within 1 to 9 years post-treatment 
[105]. Given its slow-growing nature, surgical excision is the 
primary treatment for BSNS. If surgical margins are incon-
clusive or positive, adjunctive chemotherapy or radiation 
therapy may be considered [103, 105]. As of now, no clinical 
trials have been conducted for BSNS.

Histopathological Characteristics of BSNS

Histologically, BSNS is characterized by uniformly elon-
gated spindle-shaped cells, displaying minimal pleomor-
phism and low mitotic activity, alongside benign epithelial 
proliferation [106]. These features closely resemble those 
seen in cellular schwannomas or malignant peripheral nerve 
sheath tumors [107]. In some instances, BSNS may include 
larger cells with eccentric nuclei, prominent nucleoli, and 
brightly eosinophilic, fibrillary cytoplasm, occasionally 

showing cross-striations indicative of rhabdomyoblastic 
differentiation [108]. The histology of BSNS often displays 
a characteristic herringbone pattern [7••]. Additionally, a 
common observation includes the presence of a hemangio-
pericytomatous vascular pattern.

Diagnosis of BSNS is often confirmed through immu-
nohistochemical staining, revealing positivity for SMA, 
S-100, calponin, desmin, and, in some areas, myogenin [106, 
109–111]. A majority of BSNS cases also exhibit nuclear 
beta-catenin immunoreactivity [110–114]. Additional immu-
nostains such as factor XIIIa, PAX3, PAX7, PAX8, cytoker-
atin AE1/AE3, CD34, and TLE1 have also been documented 
as positive in BSNS [106, 109, 112, 113, 115–120]. Interest-
ingly, Andreasen et al. identified cytoplasmic positivity for 
STAT6 in three BSNS cases [112]. Conversely, markers such 
as SOX-10, ER, and progesterone receptor consistently test 
negative in BSNS, further aiding in its differentiation from 
other STT entities [106, 111–113, 117, 118].

PAX3 Fusion Variants in BNSN

In a pivotal study conducted in 2012, Lewis et al. analyzed 
the karyotypes of two BSNS cases and identified a t(2;4)
(q37.1;q31.3) chromosomal translocation, previously unre-
ported in any neoplasms considered in the differential diag-
nosis [106]. This finding underscores the unique genetic 
profile of BSNS, particularly its aberrant expression of 
genes that are key in neuroectodermal and myogenic dif-
ferentiation, echoing the developmental roles of the PAX3 
gene [115]. 

Wang et al. further advanced this understanding by iso-
lating PAX3-MAML3 cDNA from BSNS tumor mRNA. 
They inserted this cDNA into a mammalian expression vec-
tor and, through transient transcription assays, demonstrated 
that PAX3-MAML3 fusion significantly upregulates PAX3-
driven receptor plasmids, a much more potent effect com-
pared to wild-type PAX3 [115]. This finding suggests that 
PAX3-MAML3 fusions may play a critical role in BSNS 
pathogenesis, potentially through disrupting normal cell lin-
eage commitment and activating Notch signaling pathways, 
which promote tumor growth [103, 109, 112, 117, 120–123]. 
Interestingly, BSNS tumors with PAX3-NCOA1 and PAX3-
FOXO1 fusions have shown morphologic and immunophe-
notypic characteristics consistent with focal rhabdomyoblas-
tic differentiation [109, 118, 119]. More recent reports from 
Loarer et al. and Fritchie et al. have identified cases of BSNS 
with PAX3-WWTR1, PAX3-FOXO1, and PAX3-NCOA2 
fusions, while other novel studies have discovered PAX3-
FOXO6, PAX3-INO80D, and PAX7-PPARGC1 fusions in 
BSNS [109, 117, 124••, 125, 126]. 

Despite consistently negative SOX-10 staining in BSNS, 
gene expression profiling has revealed alterations in a vari-
ety of genes involved in neurogenic development, such as 

Fig. 2  Glycogen synthase kinase-3β (GSK-3β) diminishes β-Catenin 
levels, a key player in the Wnt signaling pathway, by phosphorylating 
Serine/Threonine (Ser/Thr) sites at its N-terminal end. This leads to 
ubiquitination and subsequent breakdown by proteasomes. In sinon-
sal glomangiopericytoma (SGP), mutations in the CTNNB1 gene, 
which alter one of the vital Ser/Thr sites in the β-catenin’s GSK-3β 
region, lead to the stabilization of β-catenin. This, in turn, activates 
the β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) tar-
get genes. LRP, lipoprotein receptor-related proteins; CK1α, casein 
kinase 1α; APC, adenomatous polyposis coli (Figure created using 
BioRender, Toronto, ON, Canada)
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NTRK3, ALX1-4, DBX1, GREM1, and NUROG2 [115]. 
These findings further validate the biphenotypic nature of 
the tumor. 

Table 1 presents a comprehensive list of gene fusion vari-
ants identified in BSNS cases, each verified using one or 
more of the following methodologies: Sanger Sequencing, 
NGS, or Real-Time Polymerase Chain Reaction (RT-PCR).

Skull Base Chordoma

Chordoma, a rare malignant tumor of the bone, is thought 
to originate from the remnants of the primitive notochord 
within the axial skeleton, and typically presents in the 
skull base and spine [127]. The most common sites for 
chordomas are the skull base, particularly the clivus and 
petrous apices, and this review will focus on skull base 
chordomas (SBC) [128]. SBC are uncommon, constitut-
ing less than 0.2% of all intracranial tumors, with an inci-
dence rate of approximately 0.08 per 100,000 individuals 
annually [129, 130]. They can affect individuals of any 
age but are rare in children and adolescents, and the inci-
dence is nearly the same across genders for skull base 
chordomas [131]. Characterized by slow growth and local 
invasiveness, SBC seldom show lymphatic or hematog-
enous spread at the time of diagnosis [132]. Treatment 
poses significant challenges, evidenced by a high local 

recurrence rate of 53% within five years and 88% over ten 
years [133]. The overall 5-year survival rate for patients 
with SBC is about 68% [133]. The preferred treatment 
approach for these tumors is radical surgical resection, fol-
lowed by charged-particle radiotherapy, specifically proton 
beam therapy, targeting the resection cavity and surround-
ing areas of the initial tumor [134, 135]. However, achiev-
ing complete resection of SBC is often challenging due to 
the proximity of critical neural and vascular structures, 
including the brain stem, optic nerve/chiasm, and carotid 
and basilar arteries [136].

Histopathological Characteristics of SBC

SBC display a distinctive structure composed of large epi-
thelioid cells arranged in cords or clusters. These cells 
often exhibit cytoplasmic multi-vacuolation, known as 
physalipherous cells, set within a copious extracellular 
myxoid matrix [137]. There is a possibility of observing 
cartilaginous differentiation in these tumors. Despite their 
malignant nature, the cytological atypia in SBC varies 
significantly, ranging from low-grade, where tumor cells 
appear uniform with infrequent mitotic figures, to high-
grade, characterized by notable nuclear irregularities and 
abundant mitoses [138]. SBC demonstrate heterogeneity in 
terms of atypia, and necrosis is commonly observed [138].

Immunohistochemical analysis shows SBC cells stain-
ing positive for cytokeratin, epithelial membrane antigen, 
S-100 protein, and vimentin, alongside a notable absence 
of nuclear SMARCB1/INI1 expression [138, 139, 140•]. 
The most sensitive marker for SBC is brachyury, a nuclear 
protein indicative of notochordal differentiation [141, 
142]. While brachyury is highly specific to SBC, it is note-
worthy that in poorly differentiated and dedifferentiated 
regions of the tumor, brachyury immunoreactivity may be 
absent [143, 144]. Additionally, a high Ki-67 proliferation 
index has been noted, and p53 protein accumulation is 
often observed in the cells of SBC [139, 145–147].

The Molecular Landscape of SBC

Significant advancements have been made in deciphering 
the molecular profile of SBC. An extensive review of the 
literature indicates the benefit of systematically organizing 
these findings to improve clarity and analytical precision. 
This systematic approach involves categorizing key areas 
such as genetic irregularities and chromosomal changes, 
the impact of microRNAs, aspects related to cell signaling 
and receptor tyrosine kinases, and the expression of cell 
adhesion molecules along with the epithelial-mesenchy-
mal transition.

Table 1  Identified gene fusion variants in BSNS

Each variant has been verified through one or more advanced genetic 
analysis techniques: Sanger Sequencing, Next Generation Sequenc-
ing, or Real-Time Polymerase Chain Reaction

Authors (date) / Reference Gene fusion Positive case ratio

Le Loarer et al. (2019) / [117] PAX3-MAML3
PAX3-WWTR1
PAX3-NCOA2

35/44
2/44
1/44

Fritchie et al. (2016) / [109] PAX3-MAML3
PAX3-FOXO1
PAX3-NCOA1

24/44
3/15
1/15

Wang et al. (2014) / [115] PAX3-MAML3 19/25
Andreasen et al. (2018) / 

[112]
PAX3-MAML3 3/3

Muraoka et al. (2023) / [121] PAX3-MAML3 1/1
Georgantzoglou et al. (2022) 

/ [120]
PAX3-MAML3 1/1

Bell et al. (2022) / [122] PAX3-MAML3 1/1
Sugita et al. (2019) / [123] PAX3-MAML3 1/1
Huang et al. (2016) / [118] PAX3-NCOA1 2/7
Wong et al. (2016) / [119] PAX3-FOXO1 1/1
Nichols et al. (2023) / [124••] PAX3-FOXO6 1/1
Vilamontes et al. (2023) / 

[125]
PAX3-INO80D 1/1

Bhele et al. (2023) / [126] PAX7-PPARGC1 1/1
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Genetic Aberrations and Chromosomal Alterations

Our understanding of the molecular underpinnings in 
SBC has been significantly enhanced through recent 
genomic studies, although it remains an area ripe for 
further exploration. Key insights have been gained into 
genetic anomalies and chromosomal alterations charac-
terizing these tumors. Notably, duplications in the TBXT 
gene, deletions in CDKN2A/B, and mutations in genes 
like LYST, SETD2, and PBRM1 are consistently observed 
[148••, 149, 150, 151•, 152]. These genetic aberrations 
are accompanied by chromosomal changes, particularly 
LOH at 3p and 13q14, which involves the Rb locus [149]. 
Intriguingly, while LOH at 9p correlates with reduced 
overall survival, similar changes at 1p, 10q23, or 17p13 
do not seem to impact survival rates significantly [145, 
152]. A genome-wide single nucleotide polymorphism 
(SNP) genotyping array analysis reveals that TBXT 
amplifications, though rare, appear more frequently in 
sacral than in skull base chordomas [153]. The role of 
PBRM1 alterations, highlighted by Bai et al., emerges 
as a significant prognostic factor, suggesting a potential 
link to the efficacy of anti-programmed cell death protein 
(PD)-1 checkpoint inhibitors, a connection well-estab-
lished in other cancer types [148••, 154, 155]. Addition-
ally, partial loss of SMARCB1 through hemizygous 22q 
deletion or copy number alterations, unlike the complete 
loss observed in other chordoma subtypes, underscores 
the importance of the SWI/SNF complex in SBC patho-
genesis [148••, 156•, 157, 158].

Genomic profiling has also led to the discovery of 
recurrent somatic variants, including mutations in MUC4, 
NBPF1, and NPIPB15, as well as SAMD5-SASH1 gene 
fusion [159]. Of particular interest is the identification 
of a germline functional SNP, rs2305089, in the T gene, 
strongly linked to SBC occurrence. The duplication of 
the T gene, encoding brachyury, is observed in famil-
ial SBC and sporadic cases, offering insights into tumor 
development [160, 161]. Bell et al.'s RNA sequencing 
analysis further enriches our understanding by highlight-
ing five upregulated genes (T, LMX1A, ZIC4, LHX4, 
and HOXA1) as potential biomarkers [162]. Moreover, 
the presence of TP53 mutations, primarily in dediffer-
entiated components of SBC, hints at the role of the p53 
pathway in the tumor's pathology [163, 164]. A unique 
molecular characteristic of SBC is the loss of H3K27me3 
in dedifferentiated chordomas, a marker retained in sacral 
chordomas [137]. Additionally, MGMT promoter meth-
ylation observed in recurrent clival chordomas and the 
absence of IDH1 and IDH2 mutations, commonly seen in 
conventional chondrosarcomas, further differentiate SBC 
at the molecular level [165–167].

Role of microRNAs

The molecular landscape of SBC is further illuminated 
by studies on microRNAs (miRNAs), which play critical 
roles in cancer initiation and progression [168]. Kuang 
et al. discovered a significant decrease in miRNA 10a and 
125a in SBC [169]. These antitumor miRNAs are inhibited 
by the ADAR gene, which is found to be overexpressed in 
this condition [169]. Bayrak et al.'s microarray analysis of 
fresh SBC samples identified key miRNAs such as miR-31, 
miR-140-3p, miR-148a, and the miR-221/222 cluster [170]. 
Notably, hsa-miR-31 has been found to induce apoptosis in 
chordoma cells and to modulate the expression of c-MET 
and radixin, offering potential therapeutic targets [170].

Cell Signaling and Receptor Tyrosine Kinases

The recurrence and progression of SBC are closely linked to 
cell signaling pathways. High expression levels of TGFal-
pha, bFGF and fibronectin correlate with increased recur-
rence rates [171]. Elevated levels of c-MET and epidermal 
growth factor receptor (EGFR) are often noted in SBC 
samples, while the expression of c-Erb-b2 (HER2/neu) 
shows variability [172]. Shalaby et al. reported that a sig-
nificant proportion of SBC cases exhibit high-level EGFR 
copy number gains, with a majority expressing total EGFR, 
suggesting a potential avenue for EGFR-targeted therapies 
[173]. Immunohistochemical analysis in a study of 21 SBC 
cases revealed the presence of receptor tyrosine kinases like 
HER2, KIT, EGFR, and PDGFR-β [174]. The detection of 
phosphorylated isoforms indicative of tyrosine kinase activ-
ity, such as p44/42-mitogen-activated protein kinase, Akt, 
and STAT3, further underscores the potential of targeting 
these pathways in treatment strategies. The discovery of 
high levels of phosphorylated PDGFR in SBC has already 
influenced the adoption of novel chemotherapeutic agents 
[175, 176].

Expression of Cell Adhesion Molecules 
and Epithelial‑Mesenchymal Transition

The role of cell adhesion molecules and the process of epi-
thelial-mesenchymal transition (EMT) in the pathology of 
SBC has garnered considerable attention. Research has doc-
umented the expression of molecules like E-cadherin, beta-
catenin, gamma-catenin, and neural cell adhesion molecule 
within these tumors [177, 178]. A particularly interesting 
observation is the inverse correlation between E-cadherin 
and N-cadherin expression in clival chordomas, suggesting 
a significant role for EMT [179]. EMT is a critical process 
where epithelial cells lose their cell-cell adhesion proper-
ties and gain migratory and invasive capabilities, transi-
tioning into mesenchymal cells. This transition is pivotal 
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in SBC invasiveness and metastatic potential. Zhang et al. 
have identified a partial EMT program in SBC cells and 
demonstrated the potential effectiveness of the TGF-betaR1 
inhibitor Y-L13027 in attenuating tumor growth [180••]. 
This inhibitor targets the p-EMT pathway, emphasizing the 
role of ZEB2 and its association with the p-EMT marker 
TGFbeta1. These findings highlight the importance of the 
EMT process in the aggressiveness of SBC and suggest new 
avenues for therapeutic intervention.

Further studies have delved into the role of local inva-
siveness in SBC. High levels of matrix metalloproteinases 
(MMP-1, MMP-2) and related proteins like tissue inhibi-
tor of MMP-1/2, cathepsin-B, and urokinase plasminogen 
activator (uPA) have been observed [181]. These molecular 
characteristics correlate with tumor infiltration into the host 
bone and have been linked to a worse prognosis in primary 
and recurrent SBC. The elevated expressions of MMP-1 and 
uPA, in particular, may serve as biomarkers for aggressive 
disease and provide valuable prognostic information.

Advances in the Treatment of SBC

Compared to the three mesenchymal STTs previously dis-
cussed, recent clinical trials targeting SBC have yielded 
promising results, particularly through the use of recep-
tor tyrosine kinase inhibitors, checkpoint inhibitors, and 
CDK4/6 inhibitors. It is noteworthy that these trials typi-
cally include patients diagnosed with chordoma, regardless 
of its specific anatomical location, and those with locally 

advanced, unresectable, or metastatic disease. Table 2 pro-
vides a carefully selected overview of pharmacological clini-
cal trials targeting SBC.

Receptor Tyrosine Kinase Inhibitors

Extensive research has revealed that SBC often exhibits 
active tyrosine kinase receptors, particularly MET, PDGFR, 
EGFR, HER2 (ERBB2), KIT (SCFR), and VEGFR (KDR) 
[175, 182]. This discovery has prompted investigations into 
receptor-targeted therapies for chordoma patients, specifi-
cally those whose tumors express such targets. Clinical tri-
als have been conducted with various drugs such as lapa-
tinib and erlotinib (targeting EGFR and HER2), imatinib 
and dasatinib (targeting PDGFR), and sorafenib and suni-
tinib (targeting VEGFR) [176, 183–187]. A retrospec-
tive study of 46 metastatic chordoma cases, all PDGFR-β 
positive, found a median progression-free survival (PFS) of 
9.9 months [184]. During a median observation period of 
24.5 months, stable disease (SD) was noted in 34 out of 
46 patients as per RECIST 1.0 criteria, without any par-
tial or complete responses. This aligns with earlier phase 
II trial results involving 50 advanced chordoma patients 
treated with imatinib, showing a median PFS of 9 months 
and SD in 70% of the cases [183]. The low response rates in 
these trials, despite high PDGFR-β expression, hint at the 
possibility of exploring alternative pathways for treatment 
beyond PDGFR-β. Consequently, a combination therapy 
of imatinib and a histone deacetylase (HDAC) inhibitor 

Table 2  Curated selection of pharmacological clinical trials targeting SBC

PDGFR platelet-derived growth factor receptor; PD-1 programmed cell death protein 1; mTOR mammalian target of rapamycin; EZH2 enhancer 
of zeste homolog 2; CTLA-4 cytotoxic T-lymphocyte associated protein 4; TIGIT T-cell immunoreceptor with Ig and ITIM domains; PD-L1 
programmed death-ligand 1; EGFR epidermal growth factor receptor; VEGFR vascular endothelial growth factor receptor; CDK-4/6 cyclin-
dependent kinase 4/6; LAG-3 lymphocyte activation gene 3; FGFR fibroblast growth factor receptor

NCT ID Status Phase Intervention Target

NCT01175109 Unknown Status I Imatinib + LBH589 (Panobinostat) PDGFR/Histone deacetylase inhibitor
NCT03190174 Completed I/II Nivolumab + ABI-009 (Nab-rapamycin) PD-1/mTOR
NCT05407441 Recruiting I/II Tazemetostat + Nivolumab + Ipilimumab EZH2/PD-1/CTLA-4
NCT05286801 Recruiting I/II Tiragolumab + Atezolizumab TIGIT/PD-L1
NCT05041127 Recruiting II Cetuximab EGFR
NCT06140732 Recruiting II Apatinib + Camrelizumab VEGFR/PD-1
NCT03242382 Recruiting II Palbociclib CDK-4/6
NCT04416568 Recruiting II Nivolumb + Ipilimumab PD-1/CTLA-4
NCT05519917 Not yet Recruiting II Afatinib ErbB-family
NCT03623854 Active, not Recruiting II Nivolumab + Relatlimab PD-1/LAG-3
NCT03083678 Active, not Recruiting II Afatinib ErbB-family
NCT02601950 Active, not recruiting II Tazemetostat EZH2
NCT03110744 Completed II Palbociclib CDK-4/6
NCT00150072 Completed II Imatinib PDGFR
NCT00464620 Completed II Dasatinib PDGFR
NCT04042597 Unknown status II Anlotinib Hydrochloride VEGFR, FGFR, PDGFR, c-kit
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is currently being assessed in recurrent chordoma patients 
(NCT01175109). In a phase II clinical trial involving lapa-
tinib, 18 patients with advanced, progressing chordoma 
were examined [186]. The study assessed the expression 
and activation of EGFR through immunohistochemistry 
and/or phosphoarrays. Results showed partial responses 
in six patients (33.3%) and SD in seven patients (38.9%), 
based on the Choi criteria. The median PFS observed in 
this study was 6 months. Conversely, other EGFR inhibi-
tors have shown promising responses, indicating their poten-
tial efficacy against these tumors [188, 189]. For example, 
afatinib, another EGFR inhibitor that targets multiple ErbB 
family members, has shown promise in preclinical studies 
and is currently being evaluated in two separate phase II tri-
als for EGFR-expressing chordoma patients (NCT03083678, 
NCT05519917) [190, 191••]. Scheipl et al. conducted a 
drug screening involving 133 approved anticancer drugs, 
both as standalone treatments and in combination with 
EGFR inhibitors (EGFRis; such as afatinib and erlotinib) 
[192••]. They discovered that combining crizotinib, pan-
obinostat, and doxorubicin with EGFRis presents a promis-
ing therapeutic approach. Specifically, the HDAC inhibitor 
panobinostat displayed a moderate synergistic effect when 
combined with afatinib. Although the study did not reveal 
significant success for these drugs as single-agent thera-
pies in solid tumors, including chordoma, it suggested their 
potential effectiveness in combination therapies and multi-
target inhibition strategies [193]. Studies also highlight the 
effectiveness of combined HDAC and PDGFR inhibition in 
addressing PTEN disruptions in chordoma [194]. Moreover, 
a phase II clinical trial with sorafenib, which has shown 
in vitro activity against VEGFR and PDGFR, indicated a 
longer PFS compared to imatinib [195]. Apatinib, another 
VEGFR inhibitor, was tested in a phase 2 study in China, 
with promising results including an objective response in 
one patient and a median PFS of 18 months [196••].

Immunotherapeutic Strategies

Immunotherapy has made significant progress in cancer 
treatment, especially in targeting immune checkpoint mol-
ecules like PD-1 and cytotoxic t-lymphocyte associated pro-
tein 4 (CTLA-4) [197]. PD-1 inhibitors such as nivolumab 
and camrelizumab enhance the immune response against 
tumors by blocking PD-1’s interaction with the respective 
ligands on tumor cells [198]. Studies on PD-1 and pro-
grammed death-ligand (PD-L)1/PD-L2 expression in chor-
doma have yielded mixed results, limited by small sample 
sizes [199, 200]. A study by Mathios et al. specifically found 
that while chordoma cells did not express PD-L1, this pro-
tein was present in macrophages and T cells [200]. Later 
research, which examined 78 tissue samples, delved deeper 
into the expression of PD-L1 and its association with the 

clinical profiles of chordoma patients [199]. Contrary to 
Mathios' findings, these subsequent studies indicated posi-
tive PD-L1 expression in the tumor cells themselves, and 
this expression correlated with a worse prognosis for chor-
doma patients [201]. CTLA-4 is targeted by ipilimumab, the 
first FDA-approved therapy for immune checkpoint block-
ade, which plays a vital role in deactivating T-cell-based 
immune attacks [202]. TIGIT, another immune checkpoint 
molecule, is targeted by tiragolumab to enhance antitumor 
responses [203]. Various clinical trials are currently assess-
ing the efficacy of these immune checkpoint inhibitors in 
chordomas, including studies on nivolumab (NCT03623854, 
NCT03190174,  NCT04416568) ,  camrel izumab 
(NCT06140732), atezolizumab (NCT05286801), ipili-
mumab (NCT04416568), and tiragolumab (NCT05286801), 
either as single agents or in combination with other thera-
pies. One notable combination therapy includes nivolumab, 
ipilimumab, and the enhancer of zeste homolog 2 (EZH2) 
inhibitor tazemetostat (NCT05407441). EZH2, a component 
of the PCR2 polycomb repressive complex, is implicated 
in oncogenesis, and agents targeting it have shown poten-
tial in inducing tumor regression and enhancing radiation 
sensitivity in SMARCB1/INI1-deficient tumors, including 
chordomas [204, 205].

CDK4/6 Inhibitor

The frequent deletion of the p16 (CDKN2A) tumor sup-
pressor gene in SBC cell lines and patient biopsies points 
to a universal activation of the CDK4/6 pathway in these 
tumors [148••, 149, 150, 151•, 152]. Studies using patient-
derived chordoma cell lines have demonstrated that abnor-
mal CDK4/6 activity, resulting from p16 loss, can be 
effectively targeted by the CDK4/6 inhibitor palbociclib, 
leading to a reduction in tumor cell proliferation and growth 
[191••, 206•, 207, 208]. Currently, two phase II clinical tri-
als are underway to evaluate the effectiveness of palboci-
clib in patients with advanced/metastatic chordoma who 
are not eligible for standard treatments (NCT03110744, 
NCT03242382).

Future Directions and Conclusions

The fifth edition of the World Health Organization Clas-
sification of Head and Neck Tumors marks a significant 
advancement in the categorization and understanding of 
STTs. This classification not only introduces a plethora of 
new, well-defined, and emerging STTs but also highlights 
the diverse range of mesenchymal entities within this cat-
egory. Mesenchymal STTs are particularly challenging 
to manage due to their rarity, often indolent growth pat-
terns, and the subtlety or non-specificity of their presenting 
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symptoms. Therefore, a comprehensive understanding and 
approach to these complexities are paramount for the effec-
tive management and treatment of STTs. A cornerstone in 
the primary characterization and diagnosis of most STTs 
lies in their histological features. This traditional diagnostic 
method is significantly enhanced by the integration of tar-
geted immunohistochemical and molecular testing. Adding 
to these developments, a novel classification system based 
on methylation patterns has been recently introduced for 
STTs [209••]. This innovative approach delineates four 
distinct molecular subtypes and includes sinonasal undif-
ferentiated tumors. The utility of these methylation-based 
assays offers an intriguing possibility for application in the 
diagnostic classification of mesenchymal STTs.

The utilization of advanced molecular genetic techniques, 
such as LOH, FISH, CGH, and RT-qPCR has led to the 
identification of various chromosomal imbalances, altera-
tions in key tumor suppressor genes like APC and TP53, 
and the variable expression of oncogenes such as c-myc and 
c-kit in STA. Moreover, the intricate network of growth fac-
tors, including VEGF, FGF, and TGFb1, has been found to 
play a substantial role in STA's angiogenesis and develop-
ment, while the influence of hormonal dynamics on STA 
pathogenesis remains an area of active investigation. For 
SGP, the identification of CTNNB1 gene mutations leading 
to beta-catenin accumulation in the nucleus and its effect on 
the Wnt signaling pathway represents a pivotal discovery. 
Similarly, the detection of PAX3 fusion variants in BSNS 
has significantly altered the perception of its genetic frame-
work. In the case of SBC, recent investigations have revealed 
a complex genetic landscape with notable findings includ-
ing TBXT gene duplications, CDKN2A/B deletions, muta-
tions in genes like LYST, SETD2, PBRM1, and the loss of 
heterozygosity at critical chromosomal locations. The high 
expression of growth factors and receptor tyrosine kinases 
in these pathways suggests new therapeutic targets, cur-
rently being tested in clinical trials. Furthermore, research 
into EMT and the role of cell adhesion molecules such as 
E-cadherin and N-cadherin has provided insights into the 
invasiveness and metastatic potential of SBC.

In contrast to these recent advancements, the rare nature, 
scarcity of adequate in vitro and in vivo models, and the 
inherent heterogeneity of STTs underscore the ongoing 
challenges in understanding and targeting these conditions. 
To address these issues, patient-derived organoids (PDOs) 
have garnered significant interest as effective models [210]. 
They offer accurate representations of patient tumors and are 
more efficient in terms of initiation time, cost, and overall 
efficiency than patient-derived xenografts. This approach 
is now being actively investigated in chordoma research. 
For instance, a recent study successfully created chordoma 
PDOs from five different patients, using them to screen vari-
ous drugs for potential personalized repurposing [211•]. In 

other types of cancer, PDOs have been shown to closely 
replicate patient drug responses and have been employed 
in personalized treatment strategies [212–214]. The slow 
growth rate of chordoma tumors provides a significant time 
window to develop and refine protocols for establishing and 
validating chordoma PDOs, particularly for patients at high 
risk or those experiencing relapse. This could facilitate the 
identification of effective drug repurposing strategies within 
a clinically relevant timeframe for treatment decisions.

Viral infections play a crucial role as an etiological fac-
tor in the development of various tumors, making them a 
compelling area of future research in the pathogenesis of 
mesenchymal STTs. For example, recent findings highlight 
the prevalence of oncogenic viruses in chordomas, dem-
onstrating the variable presence of genomic DNA from 
viruses such as BPV19, EBV, and HHV7 [215]. Addition-
ally, the advent of innovative therapies, particularly CAR 
T-cell therapy, presents a promising avenue, especially in 
the treatment of SBC [216•].

In summary, the challenge to fully unravel the com-
plexities of mesenchymal STTs and to develop effective 
treatment strategies remains a work in progress. Embrac-
ing a multidisciplinary approach, which integrates innova-
tive technologies and emerging therapies, is crucial in this 
endeavor. This comprehensive strategy is key to unlocking 
new possibilities in the management and treatment of these 
challenging tumors, paving the way for more effective and 
personalized therapeutic options in the future.
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cant antitumor effects highlight the potential of CAR-T-cell 
therapies in treating chordomas.
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