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Abstract
Purpose of Review  In the last decade, poly (ADP-ribose) polymerase (PARP) inhibitors have been approved in the treatment 
of several cancers, such as breast and ovarian cancer. This article aims to discuss the current uses, limitations, and future 
directions for PARP inhibitors (PARPis) in the treatment of breast cancer.
Recent Findings  Following the results of the OlympiAD and EMBRACA trials, PARPis were approved in HER2-negative 
breast cancer with a germline BRCA mutation. We reviewed this class of drugs’ mechanism of action, efficacy, and limita-
tions, as well as further studies that discussed resistance, impaired homologous recombination repair (HRR), and the com-
bination of PARPis with other drugs.
Summary  Improving understanding of HRR, increasing the ability to target resistance, and combining PARPis with other 
novel agents are continuing to increase the clinical utility of PARPis.

Keywords  PARP inhibitor · Breast cancer · BRCA​ · Homologous repair deficiency

Introduction

Breast cancer is the most diagnosed malignancy worldwide, 
with around 2.26 million cases in 2020 [1]. It is estimated 
that 1 in every 8–10 women will get breast cancer in their 
lifetime [2]. Breast cancer can be categorized based on the 
presence or absence of specific molecular markers: hor-
mone (progesterone or estrogen) receptor (HR) positive/
human epidermal growth factor-2 (HER2)-negative (70% 
of patients); HER2-positive (15–20%); and lastly triple-
negative breast cancers (~15%) [3]. The discovery of these 
molecular subtypes combined with earlier detection has 
dramatically improved survival; according to the Ameri-
can Cancer Society’s “Cancer Facts and Figures 2022,” the 
breast cancer death rate dropped 42% from its peak in 1989 
compared to 2019 [4]. Triple-negative breast cancer (TNBC) 

tends to have the worst prognosis, with stage I tumors having 
a 5-year cancer-specific survival rate of 85% compared to 
94% and 99% for HER2-positive and HR-positive breast can-
cers, respectively, and a stage IV median survival of 1 year 
for TNBC compared to a median of 5 years for HER2-posi-
tive and HR-positive tumors. In addition, molecular subtype 
identification has allowed for better-personalized therapy, 
with HR+ tumors receiving endocrine therapy +/− chemo-
therapy, HER2-positive tumors receiving HER2-directed 
antibody therapy+ chemotherapy, and TNBC receiving 
chemotherapy alone as standard [3].

In the last 20 years, the advent of genomics has allowed 
the analysis of tumors on a molecular level, informing treat-
ment decisions based on specific gene mutation status. Up 
to 10% of breast cancers have an underlying germline DNA 
mutation, typically in genes necessary for DNA repair and 
cell cycle checkpoint activators [5]. The most well-studied 
mutations are those in the BRCA1 and BRCA2 genes. BRCA 
mutations impair homologous recombination repair (HRR), 
resulting in genomic instability. BRCA mutations follow an 
autosomal dominant inheritance, increasing breast and ovar-
ian cancer susceptibility. Specifically, a 45 to 75% lifetime 
risk of breast cancer and an 18 to 40% lifetime risk of ovar-
ian cancer. In addition, BRCA-related breast cancer tends to 
be triple-negative and high-grade, making it typically more 
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aggressive than sporadic breast cancer [6]. HRR is a com-
plex pathway, and the mutation of several other genes, such 
as PALB2, RAD51C, and RAD51D, may result in a similar 
phenotype to BRCA mutations [7].

The evolving understanding of HRR has increasing 
clinical importance, as an improved understanding of HRR 
increases potential therapeutic targets. Tumors with homolo-
gous repair deficiency (HRD) have increased sensitivity to 
both DNA-damaging agents and poly (ADP-ribose) poly-
merase (PARP) inhibitors, the topic of this review [8]. This 
article aims to review the current literature surrounding the 
use of PARP inhibitors (PARPis), their efficacy, limitations, 
and future perspectives.

Indications

PARPis are currently approved to treat ovarian cancer, cas-
tration-resistant metastatic prostate cancer, metastatic pan-
creatic cancer, and breast cancer [9]. At present, two PARPis 
are approved for the treatment of breast cancer: olaparib 
and talazoparib. In 2018, olaparib was approved in the USA 
for patients with metastatic HER2-negative breast cancer 
with germline BRCA mutations, following the promising 
results of the OlympiAD trial [10••, 11]. In Europe, it is also 
approved for locally advanced breast cancer [12]. One year 
later (2019), talazoparib was approved for the same patient 
group following the EMBRACA trial [13••, 14]. Both tri-
als showed improved progression-free survival (PFS) and 
health-related quality of life compared to chemotherapy; 
however, overall survival was not significantly improved 
[15].

Specifically, the OlympiAD trial randomized 302 
patients, in a 2:1 ratio, to receive olaparib monotherapy vs. 
single-agent chemotherapy of physician’s choice. Olaparib 
monotherapy had a median PFS of 2.8 months longer and 
a 42% lower risk of disease progression than chemotherapy 
[10••]. The EMBRACA trial randomized 431 patients, in 
a 2:1 ratio, to receive talazoparib vs. single-agent chemo-
therapy of the physician’s choice. Findings were similar to 
the OlympiAD trial, with a 3-month increase in median PFS 
in the talazoparib treatment group and a 46% lower risk of 
disease progression compared to standard chemotherapy 
[13••].

In 2022, following the OlympiA trial, olaparib also gained 
license for high-risk early HER2-negative breast cancer with 
a germline BRCA mutation. This phase III trial randomized 
1836 patients, in a 1:1 ratio, to receive adjuvant olaparib 
vs. placebo in patients with high-risk clinicopathological 
features, early HER2-negative breast cancer with a germline 
BRCA mutation, post-local treatment plus adjuvant/neoad-
juvant chemotherapy [11]. At 3 years follow-up, improved 
invasive disease-free survival (85.9% vs. 77.1%) and distant 

recurrence-free survival (87.5% vs. 80.4%) were observed in 
the olaparib group vs. placebo [11, 16] (Table 1).

While not currently licensed in breast cancer, rucaparib 
and niraparib are the other two PARPis approved for other 
cancer types. Rucaparib is approved in recurrent ovarian 
cancer for patients with epithelial ovarian, fallopian tube, 
or primary peritoneal cancer, who had a complete or par-
tial response to platinum-based chemotherapy and in meta-
static castration-resistant prostate cancer with a BRCA 
mutation, previously treated with androgen receptor-
directed therapy and a taxane-based chemotherapy [17•]. 
RIO (ISRCTN92154110) is an ongoing phase II window 
trial assessing rucaparib response in metastatic TNBC or 
breast cancer with a BRCA mutation. Patients receive 12–14 
days of rucaparib prior to primary neoadjuvant treatment. 
Tumor Ki67 is assessed pre- and post-treatment to evaluate 
response [18]. Niraparib is approved in both advanced and 
recurrent ovarian cancer for patients with epithelial ovarian, 
fallopian tube, or primary peritoneal cancer who had a com-
plete or partial response to platinum-based chemotherapy 
or have completed three or more chemotherapy regimens 
of any kind and have an HRD-associated tumor [19••]. The 
TOPACIO/KEYNOTE-162 (NCT02657889) phase I/II trial 
evaluated niraparib and pembrolizumab in advanced TNBC 
with promising results [20].

Mechanisms of Action

When DNA damage occurs, cells have multiple repair path-
ways in place. These include non-homologous end join-
ing (NHEJ), HRR, and single-strand break repair (SSBR). 
PARPs, specifically PARP1, PARP2, and PARP3, are criti-
cal enzymes for base excision repair (BER). They bind to 
damaged DNA at sites of single-stranded DNA breaks and 
recruit DNA repair effectors [21]. PARPis are believed to 
have multiple mechanisms of action. The first is through 
synthetic lethality, where the PARPis block BER, causing 
a single-stranded break to become a double-stranded break. 
Cells with HRD fail to repair the double-stranded break, 
ultimately leading to cell death. An alternative mechanism 
is trapping PARP1 to DNA, causing damage that HRD cells 
cannot repair [22]. A summary of PARPis’ mechanisms of 
action is displayed below in Fig. 1.

Side Effects (SE) and Adverse Events (AE)

Managing the side effects and adverse events of talazo-
parib and olaparib provides a challenge for clinicians and 
requires a proactive approach to ensure both good adherence 
and patient safety when taking these important therapeutic 
agents. While all PARPis share a similar side effect profile 
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and are tolerated similarly to chemotherapy regimens, there 
are some nuances between their SE/AEs and drug interac-
tion profiles [10••, 13••, 16••, 23•]. Managing the common 
side effects of both olaparib and talazoparib is crucial to 
maintaining good adherence while preserving the patient’s 
quality of life. Common SEs include anemia, fatigue, nau-
sea, and vomiting, and serious adverse events include myelo-
dysplastic syndrome/acute myeloid leukemia (MDS/AML), 
pneumonitis, and venous thromboembolism (VTE) [10, 13, 
16, 23].

Patients should be encouraged to be involved in their 
own care and counselled on how to proactively deal with 
SE/AEs. Strategies to combat fatigue include promot-
ing balanced exercise, rest, and good sleep hygiene, and 
educating patients on the benefits of good nutrition and 
adequate hydration [23–26]. Other causes of fatigue, such 
as anemia and hypothyroidism, should be investigated. 
To encourage compliance, patients should be counselled 
that fatigue may be caused by the underlying disease pro-
cess and/or chemotherapy. Nausea and vomiting may be 
mitigated through small, frequent meals and antiemetics 
[23, 24]. These symptoms may be caused by acid reflux; 
therefore, a proton pump inhibitor (PPI) may be of ben-
efit. Patients should be counselled that these symptoms 
are worst in the first month of treatment and may improve 
thereafter [23, 24, 27–29].

Both talazoparib and olaparib can cause myelosup-
pression, including anemia, neutropenia, thrombocytope-
nia, lymphopenia, and myelodysplastic syndrome/acute 
myeloid leukemia (MDS/AML). Hematological toxicity is 

the most common AE necessitating dose reduction/cessa-
tion of therapy [23•]. Patients should be allowed to recover 
from myelosuppression adequately (≤ Grade 1) caused by 
prior chemotherapy before commencing PARPi treatment 
[11, 14]. A baseline full blood count (FBC) prior to ini-
tial treatment to assess for hematological toxicity, followed 
by monthly FBCs to monitor for same for the first year of 
treatment and then periodically thereafter [11, 14]. In mild 
myelosuppression, stopping medication for 1–2 days and a 
dose reduction should be considered [11, 14]. Dietary advice 
and iron supplementation may also be of benefit. If severe 
hematological toxicity or dependence on blood transfusion 
develops, it is advised to stop treatment and to investigate 
appropriately [11, 14]. Should blood abnormalities persist 
for more than 4 weeks after stopping treatment, it is advised 
that bone marrow and/or blood cytogenic analysis are per-
formed [11, 14]. If AML/MDS is suspected, hematology 
referral is advised for an appropriate workup. If AML/MDS 
is confirmed, treatment should be stopped immediately [11, 
12, 14, 30].

All PARPis are associated with a rare but serious risk of 
interstitial lung disease (ILD); however, it is most associ-
ated with olaparib administration [31]. While the occur-
rence has no obvious clinical pattern, it is exacerbated 
by having an underlying respiratory condition. Worsen-
ing respiratory symptoms or abnormal chest radiograph 
requires prompt investigation treatment interruption. 
PARPi treatment should be stopped entirely if pneumoni-
tis is confirmed [11, 12, 31, 32]. Drug-induced liver injury 
(DILI) has been reported in olaparib but not talazoparib. 

Fig. 1   A summary of PARP 
inhibitor’s mechanism of action. 
On the top is a PARP inhibitor 
leading to cell death by trapping 
PARP1 to DNA causing DNA 
damage and cell death. On the 
bottom is the classical synthetic 
lethality concept, where the 
PARP inhibitor blocks the cell’s 
ability to repair single strand 
breaks using the base excision 
repair pathway, causing it to 
transform into a double stranded 
break that cannot be repaired in 
cells with HRD. Created with 
https://​www.​biore​nder.​com/

https://www.biorender.com/
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If signs and symptoms of DILI emerge, treatment should 
be interrupted. If severe DILI is confirmed, treatment must 
be stopped [11, 12].

The drug interactions of olaparib, particularly with 
CYP3A inhibitors or inducers, demand careful consid-
eration. Avoiding these interactions is preferred, but dose 
adjustments according to clinical guidelines are required if 
necessary [11, 12]. Similarly, when prescribing talazoparib, 
it is recommended to stop any P-glycoprotein inhibitors 
where possible. Where this is not feasible, talazoparib dose 
reduction according to guidelines is recommended [14, 30].

Certain special populations require specific counselling 
surrounding PARPi treatment. PARPis cause embryofoetal 
toxicity in laboratory studies and therefore carry significant 
risk if taken during pregnancy [11, 14]. Two reliable forms 
of contraception are strongly advisable for women of child-
bearing age while on treatment and should be continued 
for 6 months after. Similar advice must be offered to male 
patients and their female partners; however, contraception 
needs to be continued for only 3 months after completion 
of treatment [11, 14]. Lactating women should be advised 
against breastfeeding while on treatment and for 1 month 
afterward due to the risk of adverse reactions in infants [11, 
14]. Dose adjustment is recommended for both drugs in 
renal impairment; however, olaparib is unstudied in severe 
renal disease [11, 12, 14, 30].

Managing patients on olaparib or talazoparib involves 
a proactive approach, with regular monitoring and patient 
education paramount. Effective communication between 
healthcare providers and patients about symptom manage-
ment and seeking timely medical advice is essential. Pro-
vision of patient information leaflets and access to support 
groups enable patients to be more involved in their own 
care. A careful balance of vigilant monitoring and person-
alized care plans is integral in maximizing the therapeutic 
benefits while minimizing the risks associated with PARPi 
treatment (Table 2).

Resistance

The evolution of resistance to PARPis poses a signifi-
cant problem in cancer therapeutics. Various mechanisms 
contribute to this resistance, as depicted in Fig. 2, such 
as increased drug expulsion via ABC (ATP Binding Cas-
sette) transporters, decreased PARP1 trapping, and reac-
tivation of HRR in HRD cells, among others. These can 
occur through different biological routes, including the 
reactivation of BRCA1/2, loss of 53BP1, and stabilization 
of stalled replication forks. Notably, HRD tumors, while 
initially more susceptible to DNA-damaging agents, may 

exhibit cross-resistance to PARPis and platinum-based 
chemotherapy, as observed in ovarian cancer studies [38].

ABC Transporters

ABC transporters are a family of proteins that exploit 
ATP hydrolysis to transport various drugs across cellular 
membranes and hence play a significant role in multidrug 
resistance (MDR) in cancer by reducing intracellular drug 
accumulation and effectiveness. Emerging evidence sug-
gests that ABC transporters are involved in developing 
resistance to PARPis in specific cancer cells. For exam-
ple, one particular study demonstrated that overexpressing 
ABCB1 contributed to olaparib resistance in BRCA-defi-
cient mouse mammary tumors [39]. In addition, a recent 
study revealed that overexpressing ABCB1 in ovarian can-
cer cell lines promoted resistance to niraparib [40]. These 
studies provide evidence that ABC transporters, such as 
ABCB1, can contribute to PARPi resistance in specific 
cancer cells by reducing the intracellular concentration 
of the drug. However, no clinical trials currently involve 
ABC inhibitors and PARPis. Therefore, further research 
is needed to identify strategies to overcome this resist-
ance mechanism, such as using combination therapies and 
developing new or chemically modifying current PARPis 
that are not substrates for ABC transporters.

Decreased PARP Trapping

Another common mechanism behind PARPi resistance is 
decreased PARP trapping, as PARPis’ efficacy is partly 
due to their ability to trap PARP proteins. Decreased PARP 
trapping is mainly credited to the alterations in the PARP 
enzymes or their interacting partners, resulting in reduced 
drug effectiveness. For example, one study demonstrated 
that the potency of PARPis in trapping PARP enzymes cor-
relates with their cytotoxicity [41]. Moreover, the first clini-
cal evidence of a functional link between PARP trapping and 
PARPi resistance was proposed by Pettitt et al. [42]. They 
identified a PARP-1 mutation (R591C) commonly observed 
in PARPi-resistant patient tumor samples, which was associ-
ated with diminished trapping of PARP-1 on DNA, resulting 
in PARPi resistance [42]. This finding suggests that PARP-1 
mutations can decrease DNA trapping and induce PARPi 
resistance.

Reactivating Homologous Repair

The reactivation of HRR in HRD cells is closely associated 
with resistance to PARPis, countering the therapeutic strat-
egy these inhibitors target. This resistance often arises from 
reversion mutations—secondary mutations in BRCA1 or 
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BRCA2 genes that reinstate HRR functionality—observed 
in patients who have developed resistance to PARPis [43]. 
A study on olaparib’s effectiveness in BRCA-mutated ovar-
ian cancer revealed a higher clinical benefit in platinum-
sensitive tumors (69.2%) compared to platinum-resistant 
(45.8%) and platinum-refractory tumors (23.1%) [44]. Fur-
thermore, an exploratory analysis of the ARIEL2 trial dem-
onstrated that platinum-sensitive, BRCA-mutated ovarian 
cancer patients treated with rucaparib experienced a median 
progression-free survival (PFS) of 9.4 months, in contrast 
to 7.2 months for those with platinum-resistant or refractory 
disease [45]. Conversely, the SOLO2 trial, which focused on 
the maintenance of olaparib in patients with BRCA-mutated, 
platinum-sensitive, relapsed ovarian cancer, found that dis-
ease progression post-maintenance therapy was less likely 
to respond to platinum-based chemotherapy in those treated 
with PARPis compared to those who were not [46]. This 
resistance is likely a consequence of shared mechanisms 

between PARPis and platinum-based chemotherapy, such 
as the reverse mutations of BRCA1/2, which restore the cod-
ing sequence of the BRCA genes, allowing for functional 
BRCA protein production and HRR reactivation [47]. The 
upregulation of HRR-associated genes like RAD51 can also 
play a role in overcoming the loss of BRCA function, thus 
contributing to resistance against PARPis. Such upregu-
lation has been detected in BRCA-deficient cell lines and 
patient-derived tumor xenografts following treatment with 
PARPis [8]. Additionally, epigenetic modifications, includ-
ing changes in DNA methylation or histone configurations, 
can re-establish HRR activity in HRD cells. For instance, 
the loss of the methyltransferase complex MLL3/4 (PTIP) in 
BRCA1-mutated cells can shield against DNA damage and 
is pivotal in developing resistance to PARPis [48]. Interest-
ingly, the partial restoration of HRR and resistance to DNA-
damaging agents have also been linked to the loss of 53BP1 
in BRCA-deficient cells [49].

Fig. 2   Common mechanisms behind PARP inhibitor resistance. A 
ABCB1 transporter overexpression leads to increased drug efflux. 
B PARP1 trapping is one of the mechanisms PARP inhibitors cause 
damage to cells; decreased PARP trapping, therefore, is a cause of 
resistance. C Restoration of HRR leads to tumor cells being able 

to repair the double-strand breaks caused by the PARP inhibitor. D 
Increased replication fork stability, for example, due to decrease 
in PTIP or EZH2, leads to increased cell survival and resistance to 
PARP inhibitors. Created with https://​www.​biore​nder.​com/

https://www.biorender.com/
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Increased Replication Fork Stability

Replication fork stabilization has recently been identified 
as a suitable compensatory PARPi resistance mechanism 
without restored HRR. Recent evidence showed that the 
degradation of stalled replication forks is associated with 
PARPi sensitivity even in tumor cells without BRCA1/2 
mutations [50]. In addition, the same study revealed how 
PARPi resistance is related to the loss of 53BP, which led 
to restoring RAD51 foci formation and increased replica-
tion fork stability [50]. Moreover, the loss of PTIP [48] and 
EZH2 [51] has contributed to PARPi resistance. Therefore, 
targeting restored HRR and fork protection may help combat 
PARPi resistance with combination therapy.

Future Outlooks

There is much room for expanding the utility and licensing 
of PARPis for breast cancer patients. Three future perspec-
tives will be discussed in this section: the use of PARPis in 
non-BRCA HRD, the use of PARPis alongside other agents 
to tackle resistance, and the use of PARPis in combination 
with new novel treatments.

PARPis are licensed in breast tumors with HRD with 
only a germline BRCA mutation status. HRR is an impor-
tant DNA damage repair pathway that uses sister chromatids 
during the late S to G2 phase for the high-accuracy repair 
of double-stranded breaks. It is considered one of the only 
error-free double-stranded break repair mechanisms [52]. 
This pathway involves multiple proteins, including BRCA1, 
BRCA2, proteins of the MRN complex, CtIP, RAD51, ATM, 
H2AX, PALB2, RPA, RAD52, and proteins of the Fanconi 
anemia pathway [53].

When cells have HRD, they undergo double-stranded 
DNA break repair using the NHEJ pathway, which is highly 
error-prone, leading to the accumulation of mutations. The 
most common causes discovered thus far are loss of func-
tion mutations in BRCA1, BRCA2, RAD51C, RAD51D, 
PALB2, and promoter hypermethylation of BRCA1 [54].

With the evolving knowledge of HRD, the scope of use 
for PARPis might be expanded. For example, the PARPi 
rucaparib has been shown to have a clinical response in ovar-
ian cancer patients with RAD51C mutations or methylation 

in phase II clinical trial Ariel 2 part 1 [55]. In addition, the 
phase II trial TBCRC 048 showed that PARP inhibition is an 
effective treatment for metastatic breast cancer patients with 
germline PALB2 or somatic BRCA mutations [56]. There-
fore, while further studies are needed to prove the exact 
mechanism and gene targets, the use of PARPis in breast 
cancer can perhaps be expanded beyond germline BRCA 
mutations, increasing their utility. Various genes and path-
ways to enhance PARPi sensitivity are displayed in Table 3. 

The improved understanding of the mechanism of PARPi 
resistance has enabled several studies to evaluate methods 
for overcoming it. As previously mentioned, the increased 
expression of ABC causes PARPi resistance by increasing 
drug efflux. A recent study has found that the co-admin-
istration of the P-glycoprotein inhibitor ondansetron can 
reverse this [39]. Another found that the ABCB1 inhibitors 
verapamil and elacridar reverse resistance in ovarian cancer 
cell lines overexpressing ABCB1 [40]. Another potential 
strategy is the combination of a PARPi with anti-CSF-1R, 
as it was shown to overcome resistance in BRCA1-deficient 
triple-negative breast cancer [57]. Therefore, while further 
investigation and clinical trials are necessary, the ability to 
reduce resistance to PARPis is both promising and evident.

Currently, PARPis are licensed in HER2-negative breast 
cancer only; however, aside from its role in DNA repair, 
PARP1 is known to influence tumor proliferation and HER2 
resistance by co-activation of NF-κB [58]. NCT03368729 
is a phase Ib/II study of niraparib and trastuzumab in 
HER2-positive, BRCA wildtype breast cancer [59]. This 
trial resulted from prior research by the same group which 
identified that HER2-positive tumors overexpress PARP1 
and that PARPis induced tumor apoptosis in HER2-positive 
animal and cell line models irrespective of mutational status 
[60]. The trial is currently recruiting and includes patients 
who have had disease progression after receiving at least one 
anti-HER2 therapy in the metastatic setting [59].

Lastly, many other trials are investigating the efficacy 
of PARPis in combination with other drugs (summarized 
in Table 4). For example, the BROCADE3 trial tested the 
combination of veliparib with carboplatin and paclitaxel in 
patients with BRCA-mutated advanced breast cancer and 
found a significant improvement in progression-free sur-
vival [61]. Moreover, this is not limited to chemotherapeutic 
agents; immune checkpoint inhibitors (ICIs) have already 
demonstrated efficacy when combined with chemotherapy 
in triple-negative breast cancer in the KEYNOTE-522 
clinical trial [62]. Immune checkpoint inhibition, such as 
programmed death (PD)-1 and PD-ligand 1 (PD-L1) path-
way blockade, has led to significant clinical advances in 
the treatment of solid tumors [63]. However, one of the 
major challenges of this approach is the limited single-
agent activity in many cancers, leaving the opportunity to 
test combinations [63]. Combining ICIs and PARPis is an 

Table 3   List of studies that have shown PARPi sensitivity beyond 
germline BRCA mutations

Study name Gene mutation PARPi Cancer type

Ariel 2 part 1 [55] RAD51c Rucaparib Ovarian cancer
TBCRC 048 [56] Germline PALB2 

and somatic 
BRCA​

Olaparib Breast cancer
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area of potential research to exploit their different mecha-
nisms of action and enhance the overall effectiveness of the 
therapy. Ongoing clinical trials are investigating the safety, 
efficacy, and optimal dosing strategies for combining these 
two classes of drugs to maximize their therapeutic poten-
tial. The TOPACIO/KEYNOTE-162 trial demonstrated that 
combining the PARPi niraparib and the ICI pembrolizumab 
effectively treated patients with advanced TNBC, suggest-
ing an enhanced immune response against cancer cells with 
DNA damage [64]. Moreover, an early-phase clinical trial 
revealed that combining the PARPi olaparib and the PD-L1 
inhibitor durvalumab was considered tolerable and demon-
strated clinical activity in patients with advanced women’s 
cancers, signifying potential synergy between PARPis and 
ICIs in overcoming PARPi resistance [65]. One previous 
study showed that PARPis treatment in BRCA1-deficient 
tumors could stimulate an immune response against cancer 
cells by activating the STING pathway. Therefore, ICIs can 
enhance this immune activation, leading to more effective 
anti-tumor responses [66].

Conclusion

Overall, PARPis are an effective and well-tolerated treatment 
option for certain breast cancers. The improved understand-
ing of HRD, increased ability to target resistance, and com-
bination of PARPis with other novel agents will continue to 
expand their use. In addition, the results of ongoing trials 

may allow PARPis to become an even more pivotal thera-
peutic option in treating breast cancer [10, 13, 16, 20, 39, 
40, 55–57, 61, 64–68].
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