Skip to main content

Advertisement

Log in

Opportunities and Challenges for a Histology-Agnostic Utilization of Trastuzumab Deruxtecan

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review delves into the prospects and challenges offered by a potential pan-histological utilization of trastuzumab deruxtecan (T-DXd) in patients with advanced solid tumors.

Recent Findings

The HER2-targeted antibody-drug conjugate (ADC) T-DXd has shown broad activity across cancer types, with current indications for patients with biomarker-selected breast, gastric, and non-small-cell lung cancer and relevant activity observed in multiple histology-specific trials. Moreover, two recently reported phase 2 trials (DESTINY-Pantumor02 and HERALD) have supported the potential for a pan-cancer utilization of this ADC in patients with advanced cancers expressing HER2 or with HER2 amplifications.

Summary

By improving the delivery of cytotoxic chemotherapy, ADCs have allowed for meaningful clinical advantages in broad populations of cancer patients, often leading to survival advantages over conventional chemotherapy. Notably, the broad spectrum of activity of certain ADCs has led to the hypothesis of a histology-agnostic utilization based on detecting specific biomarkers, similar to what is already established for certain targeted treatments and immunotherapy. To date, T-DXd has shown the broadest activity across cancer types, with current approvals in breast, gastric, and lung cancer, and relevant antitumor activity observed in a multiplicity of additional cancer types. The optimization of the drug dose, identification of predictive biomarkers, and clarification of mechanisms of resistance will be critical steps in view of a pan-histological expansion in the use of T-DXd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non–small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.

    Article  CAS  PubMed  Google Scholar 

  2. Stewart JSW, Cohen EEW, Licitra L, Van Herpen CML, Khorprasert C, Soulieres D, et al. Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck. JCO. 2009;27(11):1864–71.

    Article  CAS  Google Scholar 

  3. Seligson ND, Knepper TC, Ragg S, Walko CM. Developing drugs for tissue-agnostic indications: a paradigm shift in leveraging cancer biology for precision medicine. Clin Pharmacol Ther. 2021;109(2):334–42.

    Article  CAS  PubMed  Google Scholar 

  4. Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  5. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10. https://doi.org/10.1200/JCO.19.02105.

  6. Marcus L, Fashoyin-Aje LA, Donoghue M, Yuan M, Rodriguez L, Gallagher PS, et al. FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors. Clin Cancer Res. 2021;27(17):4685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. FDA Grants Tissue-Agnostic Approval to Dostarlimab for dMMR Tumors | MedPage Today [Internet]. [cited 2023 Mar 23]. Available from: https://www.medpagetoday.com/hematologyoncology/othercancers/94094

  8. Research C for DE and. FDA approves entrectinib for NTRK solid tumors and ROS-1 NSCLC. FDA [Internet]. 2019 Dec 20 [cited 2023 Mar 23]; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc

  9. Research C for DE and. FDA approves larotrectinib for solid tumors with NTRK gene fusions. FDA [Internet]. 2019 Dec 20 [cited 2023 Mar 23]; Available from: https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions

  10. FDA approves dabrafenib–trametinib for BRAF-positive cancers - NCI [Internet]. 2022 [cited 2023 Mar 23]. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2022/fda-dabrafenib-trametinib-braf-solid-tumors

  11. Research C for DE and. FDA approves selpercatinib for locally advanced or metastatic RET fusion-positive solid tumors. FDA [Internet]. 2022 Sep 21 [cited 2023 Mar 23]; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-selpercatinib-locally-advanced-or-metastatic-ret-fusion-positive-solid-tumors

  12. Indini A, Rijavec E, Grossi F. Trastuzumab deruxtecan: changing the destiny of HER2 expressing solid tumors. Int J Mol Sci. 2021;22(9):4774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. JCO. 2018;36(20):2105–22.

    Article  CAS  Google Scholar 

  14. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  CAS  PubMed  Google Scholar 

  16. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med. 2017;377(2):122–31.

    Article  Google Scholar 

  18. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–43.

    Article  CAS  PubMed  Google Scholar 

  19. Saura C, Oliveira M, Feng YH, Dai MS, Chen SW, Hurvitz SA, et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: phase III NALA Trial. J Clin Oncol. 2020;38(27):3138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin M, Holmes FA, Ejlertsen B, Delaloge S, Moy B, Iwata H, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(12):1688–700.

    Article  CAS  PubMed  Google Scholar 

  21. Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med. 2020;382(7):597–609.

    Article  CAS  PubMed  Google Scholar 

  22. Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22(3):351–60.

    Article  CAS  PubMed  Google Scholar 

  23. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617–28.

    Article  Google Scholar 

  25. • Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610–21. This study's findings led to the US FDA approval of T-DXd in December 2019

    Article  CAS  PubMed  Google Scholar 

  26. Hurvitz SA, Hegg R, Chung WP, Im SA, Jacot W, Ganju V, et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial. Lancet. 2023;401(10371):105–17.

    Article  CAS  PubMed  Google Scholar 

  27. • Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med. 2022;387(1):9–20. This landmark trial led to the FDA approval of T-DXd for HER2-low advanced breast cancer

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Research C for DE and. FDA approves fam-trastuzumab deruxtecan-nxki for HER2-positive gastric adenocarcinomas. FDA [Internet]. 2021 Jun 11 [cited 2023 Mar 23]; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-fam-trastuzumab-deruxtecan-nxki-her2-positive-gastric-adenocarcinomas

  29. Research C for DE and. FDA grants accelerated approval to fam-trastuzumab deruxtecan-nxki for HER2-mutant non-small cell lung cancer. FDA [Internet]. 2022 Aug 16 [cited 2023 Mar 25]; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-fam-trastuzumab-deruxtecan-nxki-her2-mutant-non-small-cell-lung

  30. Tsurutani J, Iwata H, Krop I, Jänne PA, Doi T, Takahashi S, et al. Targeting HER2 with trastuzumab deruxtecan: a dose-expansion, phase I Study in multiple advanced solid tumors. Cancer Discov. 2020;10(5):688–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siena S, Bartolomeo MD, Raghav K, Masuishi T, Loupakis F, Kawakami H, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2021;22(6):779–89.

    Article  CAS  PubMed  Google Scholar 

  32. Taniguchi H, Yagisawa M, Satoh T, Kadowaki S, Sunakawa Y, Nishina T, et al. Tissue-agnostic efficacy of trastuzumab deruxtecan (T-DXd) in advanced solid tumors with HER2 amplification identified by plasma cell-free DNA (cfDNA) testing: results from a phase 2 basket trial (HERALD/EPOC1806). JCO. 2023;41(16_suppl):3014–4.

    Article  Google Scholar 

  33. • Enhertu showed clinically meaningful and durable responses across multiple HER2-expressing tumour types in DESTINY-PanTumor02 Phase II trial [Internet]. 2023 [cited 2023 Mar 23]. Available from: https://www.astrazeneca.com/media-centre/press-releases/2023/enhertu-destiny-pantumor02-shows-positive-results.html: Trial currently looking at utility of the TDXD in other solid tumors.

  34. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. JCO. 2013;31(31):3997–4013.

    Article  Google Scholar 

  35. Wolff AC, Somerfield MR, Dowsett M, Hammond MEH, Hayes DF, McShane LM, et al. Human epidermal growth factor receptor 2 testing in breast cancer: ASCO–College of American Pathologists Guideline Update. J Clin Oncol. 2023;41(22):3867–72. https://doi.org/10.1200/JCO.22.02864.

  36. Fernandez AI, Liu M, Bellizzi A, Brock J, Fadare O, Hanley K, et al. Examination of low ERBB2 protein expression in breast cancer tissue. JAMA Oncol. 2022;8(4):1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abrahao-Machado LF, Scapulatempo-Neto C. HER2 testing in gastric cancer: an update. World J Gastroenterol. 2016;22(19):4619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Valtorta E, Martino C, Sartore-Bianchi A, Penaullt-Llorca F, Viale G, Risio M, et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod Pathol. 2015;28(11):1481–91.

    Article  CAS  PubMed  Google Scholar 

  39. Li BT, Ross DS, Aisner DL, Chaft JE, Hsu M, Kako SL, et al. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J Thorac Oncol. 2016;11(3):414–9.

    Article  PubMed  Google Scholar 

  40. Riudavets M, Sullivan I, Abdayem P, Planchard D. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open. 2021;6(5):100260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirsch FR, Varella-Garcia M, Franklin WA, Veve R, Chen L, Helfrich B, et al. Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung carcinomas. Br J Cancer. 2002;86(9):1449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. • Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, et al. DS-8201a, A novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–108. Explains the mechanism of action and the bystander effect that could explain the efficacy of T-DXd in HER2-low and HER2-heterogenous tumors.

    Article  CAS  PubMed  Google Scholar 

  43. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021 Jun;18(6):327–44.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nakada T, Sugihara K, Jikoh T, Abe Y, Agatsuma T. The latest research and development into the antibody-drug conjugate, [fam-] Trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chem Pharm Bull(Tokyo). 2019;67(3):173–85.

    Article  CAS  PubMed  Google Scholar 

  45. Rahmati M, Nikmanesh Y, Abshorshori N, Johari B. Investigating the cytotoxic and anti-proliferative effects of trastuzumab on MDA-MB-453 and MDA-MB-468 breast cell lines with different levels of HER2 expression. J Appl Biotechnol Rep. 2020;7(2):87–92.

    CAS  Google Scholar 

  46. Powell CA, Modi S, Iwata H, Takahashi S, Smit EF, Siena S, et al. Pooled analysis of drug-related interstitial lung disease and/or pneumonitis in nine trastuzumab deruxtecan monotherapy studies. ESMO Open. 2022;7(4):100554. https://doi.org/10.1016/j.esmoop.2022.100554.

  47. Tamimi F, Mittal A, Valiente CM, Iorio MD, Al-Showbaki L, Nadler M, et al. Abstract P4-07-02: Toxicity profile of single agent trastuzumab deruxtecan in solid tumors: a meta-analysis. Cancer Res. 2023;83(5_Supplement):P4–07–02.

    Article  Google Scholar 

  48. Swain SM, Nishino M, Lancaster LH, Li BT, Nicholson AG, Bartholmai BJ, et al. Multidisciplinary clinical guidance on trastuzumab deruxtecan (T-DXd)–related interstitial lung disease/pneumonitis—focus on proactive monitoring, diagnosis, and management. Cancer Treat Rev. 2022;1(106):102378.

    Article  Google Scholar 

  49. Tarantino P, Tolaney SM. Detecting and managing T-DXd-related interstitial lung disease: the Five “S” rules. JCO Oncol Pract. 2023;19(8):526–7. https://doi.org/10.1200/OP.23.00097.

  50. Rugo HS, Bianchini G, Cortes J, Henning JW, Untch M. Optimizing treatment management of trastuzumab deruxtecan in clinical practice of breast cancer. ESMO Open. 2022;7(4):100553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Staff TAP. T-DXd yields superior outcomes over chemotherapy-based regimens in patients previously treated with T-DM1 DESTINY-Breast02 - the ASCO Post [Internet]. [cited 2023 Mar 24]. Available from: https://ascopost.com/news/december-2022/t-dxd-yields-superior-outcomes-over-chemotherapy-based-regimens-in-patients-previously-treated-with-t-dm1-destiny-breast02/

  52. Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386(12):1143–54.

    Article  PubMed  Google Scholar 

  53. Enhertu approved in the US for patients with HER2-positive metastatic breast cancer treated with a prior anti-HER2-based regimen [Internet]. 2022 [cited 2023 Mar 24]. Available from: https://www.astrazeneca.com/media-centre/press-releases/2022/enhertu-approved-in-us-for-2l-her2-positive-breast-cancer.html

  54. Pérez-García JM, Vaz Batista M, Cortez P, Ruiz-Borrego M, Cejalvo JM, de la Haba-Rodriguez J, et al. Trastuzumab deruxtecan in patients with central nervous system involvement from HER2-positive breast cancer: the DEBBRAH trial. Neuro-Oncol. 2023;25(1):157–66.

    Article  PubMed  Google Scholar 

  55. Bartsch R, Berghoff AS, Furtner J, Marhold M, Bergen ES, Roider-Schur S, et al. Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: a single-arm, phase 2 trial. Nat Med. 2022;28(9):1840–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tarantino P, Hamilton E, Tolaney SM, Cortes J, Morganti S, Ferraro E, et al. HER2-low breast cancer: pathological and clinical landscape. JCO. 2020;38(17):1951–62.

    Article  CAS  Google Scholar 

  57. Research C for DE and. FDA approves fam-trastuzumab deruxtecan-nxki for HER2-low breast cancer. FDA [Internet]. 2022 Aug 5 [cited 2023 Mar 24]; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-fam-trastuzumab-deruxtecan-nxki-her2-low-breast-cancer

  58. AstraZeneca. Phase III study of trastuzumab deruxtecan (T-DXd) with or without pertuzumab versus taxane, trastuzumab and pertuzumab in HER2-positive, first-line metastatic breast cancer (DESTINY-Breast09) [Internet]. https://clinicaltrials.gov/; 2023 Feb [cited 2023 Mar 23]. Report No.: NCT04784715. Available from: https://clinicaltrials.gov/ct2/show/NCT04784715

  59. Daiichi Sankyo, Inc. A phase 3, multicenter, randomized, open-label, active-controlled study of trastuzumab deruxtecan (T-DXd) versus trastuzumab emtansine (T-DM1) in participants with high-risk HER2-positive primary breast cancer who have residual invasive disease in breast or axillary lymph nodes following neoadjuvant therapy (DESTINY-Breast05) [Internet]. https://clinicaltrials.gov/; 2022 Jan [cited 2022 Feb 23]. Report No.: NCT04622319. Available from: https://clinicaltrials.gov/ct2/show/NCT04622319

  60. AstraZeneca. A phase 3, randomized, multi-center, open-label study of trastuzumab deruxtecan (T-DXd) versus investigator's choice chemotherapy in HER2-low, hormone receptor positive breast cancer patients whose disease has progressed on endocrine therapy in the metastatic setting (DESTINY-Breast06) [Internet]. https://clinicaltrials.gov/; 2023 Mar [cited 2023 Mar 23]. Report No.: NCT04494425. Available from: https://clinicaltrials.gov/ct2/show/NCT04494425

  61. AstraZeneca. A Phase 1b Multicentre, Open-label, modular, dose-finding and dose-expansion study to explore the safety, tolerability, pharmacokinetics and anti-tumour activity of trastuzumab deruxtecan (T-DXd) in combination with other anti-cancer agents in patients with metastatic HER2-low breast cancer (DESTINY-Breast08) [Internet]. https://clinicaltrials.gov/; 2023 Mar [cited 2023 Mar 23]. Report No.: NCT04556773. Available from: https://clinicaltrials.gov/ct2/show/NCT04556773

  62. AstraZeneca. A phase 1b/2 multicentre, open-label, modular, dose-finding and dose-expansion study to explore the safety, tolerability, and anti-tumour activity of trastuzumab deruxtecan (T-DXd) in combination with other anti-cancer agents in patients with HER2-positive metastatic breast cancer (DESTINY-Breast07) [Internet]. https://clinicaltrials.gov/; 2023 Feb [cited 2023 Mar 23]. Report No.: NCT04538742. Available from: https://clinicaltrials.gov/ct2/show/NCT04538742

  63. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97. https://doi.org/10.1016/S0140-6736(10)61121-X. Erratum in: Lancet. 2010;376(9749):1302.

  64. Makiyama A, Sukawa Y, Kashiwada T, Kawada J, Hosokawa A, Horie Y, et al. Randomized, phase II study of trastuzumab beyond progression in patients with HER2-positive advanced gastric or gastro-esophageal junction cancer: WJOG7112G (T-ACT Study). J Clin Oncol. 2020;38(17):1919–27.

    Article  CAS  PubMed  Google Scholar 

  65. Thuss-Patience PC, Shah MA, Ohtsu A, Van Cutsem E, Ajani JA, Castro H, et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017;18(5):640–53.

    Article  CAS  PubMed  Google Scholar 

  66. Tabernero J, Hoff PM, Shen L, Ohtsu A, Shah MA, Cheng K, et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018;19(10):1372–84.

    Article  CAS  PubMed  Google Scholar 

  67. Hecht JR, Bang YJ, Qin SK, Chung HC, Xu JM, Park JO, et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastro-esophageal adenocarcinoma: TRIO-013/LOGiC--a randomized phase III trial. J Clin Oncol. 2016;34(5):443–51.

    Article  CAS  PubMed  Google Scholar 

  68. • Shitara K, Bang YJ, Iwasa S, Sugimoto N, Ryu MH, Sakai D, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382(25):2419–30. This trial led to the FDA approval of TDXD for metastatic gastric cancer

    Article  CAS  PubMed  Google Scholar 

  69. Research C for DE and. FDA approves fam-trastuzumab deruxtecan-nxki for HER2-positive gastric adenocarcinomas. FDA [Internet]. 2021 Jun 11 [cited 2023 Mar 25]; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-fam-trastuzumab-deruxtecan-nxki-her2-positive-gastric-adenocarcinomas

  70. van Cutsem E, Bartolomeo MD, Smyth E, Chau I, Park H, Siena S, et al. LBA55 Primary analysis of a phase II single-arm trial of trastuzumab deruxtecan (T-DXd) in western patients (Pts) with HER2-positive (HER2+) unresectable or metastatic gastric or gastro-esophageal junction (GEJ) cancer who progressed on or after a trastuzumab-containing regimen. Ann Oncol. 2021;32:S1332 (suppl_5): S1283–S1346. https://doi.org/10.1016/annonc/annonc741.

  71. Janjigian YY, Oh DY, Rha SY, Lee KW, Steeghs N, Chao Y, et al. Dose-escalation and dose-expansion study of trastuzumab deruxtecan (T-DXd) monotherapy and combinations in patients (pts) with advanced/metastatic HER2+ gastric cancer (GC)/gastro-esophageal junction adenocarcinoma (GEJA): DESTINY-Gastric03. JCO. 2022;40(4_suppl):295–5.

    Article  Google Scholar 

  72. Daiichi Sankyo, Inc. A phase 3, multicenter, 2-arm randomized, open-label study of trastuzumab deruxtecan in subjects with HER2-positive metastatic and/or unresectable gastric or gastro-esophageal junction (GEJ) adenocarcinoma subjects who have progressed on or after a trastuzumab-containing regimen (DESTINY-Gastric04) [Internet]. https://clinicaltrials.gov/; 2023 Mar [cited 2023 Mar 23]. Report No.: NCT04704934. Available from: https://clinicaltrials.gov/ct2/show/NCT04704934

  73. Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. JCO. 2022;40(6):611–25.

    Article  CAS  Google Scholar 

  74. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non–small-cell lung cancer with PD-L1 tumor proportion score ≥ 50%. JCO. 2021;39(21):2339–49.

    Article  CAS  Google Scholar 

  75. de Castro G Jr, Kudaba I, Wu YL, Lopes G, Kowalski DM, Turna HZ, et al. Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and programmed death ligand-1 tumor proportion score ≥ 1% in the KEYNOTE-042 study. J Clin Oncol. 2023;41(11):1986–91. https://doi.org/10.1200/JCO.21.02885.

  76. Kinoshita I, Goda T, Watanabe K, Maemondo M, Oizumi S, Amano T, et al. A phase II study of trastuzumab monotherapy in pretreated patients with non-small cell lung cancers (NSCLCs) harboring HER2 alterations: HOT1303-B trial. Ann Oncol. 2018;29:viii540.

    Article  Google Scholar 

  77. De Grève J, Moran T, Graas MP, Galdermans D, Vuylsteke P, Canon JL, et al. Phase II study of afatinib, an irreversible ErbB family blocker, in demographically and genotypically defined lung adenocarcinoma. Lung Cancer. 2015;88(1):63–9.

    Article  PubMed  Google Scholar 

  78. Dziadziuszko R, Smit EF, Dafni U, Wolf J, Wasąg B, Biernat W, et al. Afatinib in NSCLC with HER2 mutations: results of the prospective, open-label phase II NICHE Trial of European Thoracic Oncology Platform (ETOP). J Thorac Oncol. 2019;14(6):1086–94.

    Article  CAS  PubMed  Google Scholar 

  79. Peters S, Curioni-Fontecedro A, Nechushtan H, Shih JY, Liao WY, Gautschi O, et al. Activity of afatinib in heavily pretreated patients with ERBB2 mutation-positive advanced NSCLC: findings from a global named patient use program. J Thorac Oncol. 2018;13(12):1897–905.

    Article  CAS  PubMed  Google Scholar 

  80. Hotta K, Aoe K, Kozuki T, Ohashi K, Ninomiya K, Ichihara E, et al. A phase II study of trastuzumab emtansine in HER2-positive non-small cell lung cancer. J Thorac Oncol. 2018;13(2):273–9.

    Article  CAS  PubMed  Google Scholar 

  81. Peters S, Stahel R, Bubendorf L, Bonomi P, Villegas A, Kowalski DM, et al. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing metastatic non-small cell lung cancer: efficacy, safety, and biomarkers. Clin Cancer Res. 2019;25(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  82. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-trastuzumab emtansine for patients with HER2-Mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36(24):2532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. • Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazières J, et al. Trastuzumab deruxtecan in HER2 -mutant non–small-cell lung cancer. N Engl J Med. 2022;386(3):241–51. Led to approval of TDXD for lung cancer HER 2 mutant NCLC.

    Article  CAS  PubMed  Google Scholar 

  84. ESMO Congress 2022 - Conference Calendar - ESMO Congress 2022 [Internet]. [cited 2023 Mar 25]. Available from: https://cslide.ctimeetingtech.com/esmo2022/attendee/confcal/show/session/170

  85. Goto K, Sang-We K, Kubo T, Goto Y, Ahn MJ, Planchard D, et al. LBA55 Trastuzumab deruxtecan (T-DXd) in patients (Pts) with HER2-mutant metastatic non-small cell lung cancer (NSCLC): interim results from the phase 2 DESTINY-Lung02 trial. Ann Oncol. 2022 Sep;1(33):S1422.

    Article  Google Scholar 

  86. AstraZeneca. An open-label, randomized, multicenter, phase 3 study to assess the efficacy and safety of trastuzumab deruxtecan as first-line treatment of unresectable, locally advanced, or metastatic NSCLC harboring HER2 exon 19 or 20 mutations (DESTINY-Lung04) [Internet]. https://clinicaltrials.gov/; 2023 Mar [cited 2023 Mar 23]. Report No.: NCT05048797. Available from: https://clinicaltrials.gov/ct2/show/NCT05048797

  87. Scherrer E, Kang A, Bloudek LM, Koshkin VS. HER2 expression in urothelial carcinoma, a systematic literature review. Front Oncol. 2022;12:1011885. https://doi.org/10.3389/fonc.2022.1011885.

  88. Kiss B, Wyatt AW, Douglas J, Skuginna V, Mo F, Anderson S, et al. Her2 alterations in muscle-invasive bladder cancer: patient selection beyond protein expression for targeted therapy. Sci Rep. 2017;16(7):42713.

    Article  Google Scholar 

  89. Albarrán V, Rosero DI, Chamorro J, Pozas J, San Román M, Barrill AM, et al. Her-2 targeted therapy in advanced urothelial cancer: from monoclonal antibodies to antibody-drug conjugates. Int J Mol Sci. 2022;23(20):12659.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Galsky MD, Del Conte G, Foti S, Yu EY, Machiels JPH, Doger B, et al. Primary analysis from DS8201-A-U105: a phase 1b, two-part, open-label study of trastuzumab deruxtecan (T-DXd) with nivolumab (nivo) in patients (pts) with HER2-expressing urothelial carcinoma (UC). JCO. 2022;40(6_suppl):438–8.

    Article  Google Scholar 

  91. Ahcene Djaballah S, Daniel F, Milani A, Ricagno G, Lonardi S. HER2 in colorectal cancer: the long and winding road from negative predictive factor to positive actionable target. Am Soc Clin Oncol Educ Book. 2022;42:219–32.

    Article  Google Scholar 

  92. Strickler JH, Ng K, Cercek A, Fountzilas C, Sanchez FA, Hubbard JM, et al. MOUNTAINEER:open-label, phase II study of tucatinib combined with trastuzumab for HER2-positive metastatic colorectal cancer (SGNTUC-017, trial in progress). JCO. 2021;39(3_suppl):TPS153–3.

    Article  Google Scholar 

  93. Research C for DE and. FDA grants accelerated approval to tucatinib with trastuzumab for colorectal cancer. FDA [Internet]. 2023 Jan 19 [cited 2023 Mar 25]; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-tucatinib-trastuzumab-colorectal-cancer

  94. Daiichi Sankyo, Inc. A phase 2, multicenter, randomized, study of trastuzumab deruxtecan in participants with HER2-overexpressing locally advanced, unresectable or metastatic colorectal cancer (DESTINY-CRC02) [Internet]. https://clinicaltrials.gov/; 2023 Feb [cited 2023 Mar 23]. Report No.: NCT04744831. Available from: https://clinicaltrials.gov/ct2/show/NCT04744831

  95. Raghav KPS, Siena S, Takashima A, Kato T, Van Den Eynde M, Di Bartolomeo M, et al. Trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-overexpressing/amplified (HER2+) metastatic colorectal cancer (mCRC): primary results from the multicenter, randomized, phase 2 DESTINY-CRC02 study. JCO. 2023;41(16_suppl):3501–1.

    Article  Google Scholar 

  96. Meric-Bernstam F, Anoka C, Dobrowolska A, Chaudhry A, Rowbottom J, Gustavson M, et al. A phase 2, multicenter, open-label study evaluating trastuzumab deruxtecan (T-DXd) for the treatment of select human epidermal growth factor receptor 2 (HER2)-expressing solid tumors (DESTINY-PanTumor02). JCO. 2022;40(4_suppl):TPS623–3.

    Article  Google Scholar 

  97. Thomson TA, Hayes MM, Spinelli JJ, Hilland E, Sawrenko C, Phillips D, et al. HER-2/neu in breast cancer: interobserver variability and performance of immunohistochemistry with 4 antibodies compared with fluorescent in situ hybridization. Mod Pathol. 2001;14(11):1079–86.

    Article  CAS  PubMed  Google Scholar 

  98. Moutafi M, Robbins CJ, Yaghoobi V, Fernandez AI, Martinez-Morilla S, Xirou V, et al. Quantitative measurement of HER2 expression to subclassify ERBB2 unamplified breast cancer. Lab Investig. 2022;102(10):1101–8.

    Article  CAS  PubMed  Google Scholar 

  99. Fujii S, Magliocco AM, Kim J, Okamoto W, Kim JE, Sawada K, et al. International harmonization of provisional diagnostic criteria for ERBB2-amplified metastatic colorectal cancer allowing for screening by next-generation sequencing panel. JCO Precis. Oncol. 2020;4:6–19.

    Article  PubMed  Google Scholar 

  100. Cenaj O, Ligon AH, Hornick JL, Sholl LM. Detection of ERBB2 amplification by next-generation sequencing predicts HER2 expression in colorectal carcinoma. Am J Clin Pathol. 2019;152(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  101. Tibau A, Molto C, Borrell M, Del Paggio JC, Barnadas A, Booth CM, et al. Magnitude of clinical benefit of cancer drugs approved by the US Food and Drug Administration based on single-arm trials. JAMA Oncol. 2018;4(11):1610–1.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gyawali B, Hey SP, Kesselheim AS. Assessment of the clinical benefit of cancer drugs receiving accelerated approval. JAMA Intern Med. 2019;179(7):906–13.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hunter FW, Barker HR, Lipert B, Rothé F, Gebhart G, Piccart-Gebhart MJ, et al. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer. 2020;122(5):603–12.

    Article  CAS  PubMed  Google Scholar 

  104. • Mosele MF, Lusque A, Dieras V, Deluche E, Ducoulombier A, Pistilli B, et al. LBA1 Unraveling the mechanism of action and resistance to trastuzumab deruxtecan (T-DXd): Biomarker analyses from patients from DAISY trial. Ann Oncol. 2022;1(33):S123. Phase 2 study looking at HER 2 negative metastatic breast cancer

    Article  Google Scholar 

  105. Mosele MF, Lusque A, Dieras VC, Deluche E, Ducoulombier A, Pistilli B, et al. LBA72 Unraveling the mechanism of action and resistance to trastuzumab deruxtecan (T-DXd): Biomarker analyses from patients from DAISY trial. Ann. Oncol. 2022;1(33):S1440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Tarantino.

Ethics declarations

Conflict of Interest

SMT has served as an advisor/consultant to Novartis, Pfizer, Merck, Lilly, Nektar, NanoString Technologies, AstraZeneca, Puma Biotechnology, Genentech/Roche, Eisai, Sanofi, Bristol Myers Squibb, Seattle Genetics, Odonate Therapeutics, OncoPep, Kyowa Hakko Kirin, Samsung Bioepis, CytomX Therapeutics, Daiichi Sankyo, Athenex, Gilead, Mersana, Certara, Chugai Pharma, Ellipses Pharma, Infinity, 4D Pharma, OncoSec Medical Inc., BeyondSpring Pharmaceuticals, OncXerna, Zymeworks, Zentalis, Blueprint Medicines, Reveal Genomics, and ARC Therapeutics, and has received institutional research funding from Genentech/Roche, Merck, Exelixis, Pfizer, Lilly, Novartis, Bristol Myers Squibb, Eisai, AstraZeneca, NanoString Technologies, Cyclacel, Nektar, Gilead, Odonate Therapeutics, Sanofi, and Seattle Genetics. PT served as advisor/consultant for AstraZeneca, Daiichi Sankyo, Gilead, Genentech, Roche, and Eli Lilly. All other authors report no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, N., Thapa, S., Bhattarai, A. et al. Opportunities and Challenges for a Histology-Agnostic Utilization of Trastuzumab Deruxtecan. Curr Oncol Rep 25, 1467–1482 (2023). https://doi.org/10.1007/s11912-023-01469-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01469-3

Keywords

Navigation