
Vol.:(0123456789)1 3

Current Oncology Reports (2023) 25:1161–1174 
https://doi.org/10.1007/s11912-023-01443-z

LUNG CANCER

Cellular Therapy in NSCLC: Between Myth and Reality

Martina Imbimbo1  · Laureline Wetterwald1 · Alex Friedlaender2,3 · Kaushal Parikh4 · Alfredo Addeo2

Accepted: 26 June 2023 / Published online: 30 August 2023 
© The Author(s) 2023

Abstract
Purpose of Review In this paper, we review the current state and modalities of adoptive cell therapies (ACT) in non-small 
cell lung carcinoma (NSCLC). We also discuss the challenges hampering the use of ACT and the approaches to overcome 
these barriers.
Recent Findings Several trials are ongoing investigating the three main modalities of T cell-based ACT: tumor-infiltrating 
lymphocytes (TILs), genetically engineered T-cell receptors (TCRs), and chimeric antigen receptor (CAR) T cells. The lat-
ter, in particular, has revolutionized the treatment of hematologic malignancies. However, the efficacy against solid tumor is 
still sparse. Major limitations include the following: severe toxicities, restricted infiltration and activation within the tumors, 
antigen escape and heterogeneity, and manufacturing issues.
Summary ACT is a promising tool to improve the outcome of metastatic NSCLC, but significant translational and clinical 
research is needed to improve its application and expand the use in NSCLC.

Keywords Adoptive cell therapies · NSCLC · Engineered adoptive cell therapies · TCR  · CAR-T · Tumor-infiltrating 
lymphocytes (TILs)

Introduction

Lung cancer is the second-most diagnosed cancer world-
wide and the leading cause of cancer-related mortality. 
Non-small cell lung cancer (NSCLC) is the most frequent 
subtype, accounting for 85% of cases. Despite advances in 
early diagnosis and local and systemic treatments, overall 
survival is still dismal, with 5-year survival rates of about 
10–30% for metastatic patients [1, 2].

Immune checkpoint inhibitors (ICIs) represent a major 
treatment advance for non-oncogene-addicted NSCLCs, 

which represent the majority of diagnosed cases. However, 
only 15 to 30% of people will derive long-term benefit from 
these treatments given alone or in combination with chemo-
therapies or other ICIs [3–6]. In fact, 80% of people will 
develop a primary or secondary resistance to immunother-
apy, attributable to several factors, including the insufficient 
presence of antitumor T cells (“cold tumors”), disruption of 
antigen presentation machinery, emergence of new inhibitory 
checkpoints, and impaired formation of memory T cells [7, 
8]. Therefore, new therapeutic options are urgently needed.

Cellular therapies, also known as adoptive cell therapies 
(ACT), are personalized immunotherapies that involve the 
generation of artificial tumor-reactive T cells, such as engi-
neered T cells expressing transgenic T cell receptors (TCR) or 
chimeric antigen receptors (CAR), or the infusion of ex vivo 
expanded endogenous T cells such as tumor-infiltrating lym-
phocytes (TILs) (Fig. 1) [9]. ACTs have become promising 
strategies for cancer treatment, mainly in hematologic malig-
nancies, although their application in the management of 
metastatic NSCLC (mNSCLC) is still under investigation.

In this review, we will provide an overview of different 
ACT modalities and their evolving roles in mNSCLC. We 
will also highlight challenges pertaining to the use of ACT 
and strategies to address these obstacles.
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Engineered ACT 

Genetically engineered T cell therapies involve the isolation 
of autologous T lymphocytes from patients’ peripheral blood, 
via leukapheresis. Such processes avoid the need for surgery 
for T cells collection and overcome the limitation of harvest-
ing intratumoral TILs, making it applicable to “cold” tumors.

Antigen-specific TCR or CAR are added to T cells 
principally through retro- or lentiviral transduction which 
is highly efficient but personalized and costly, limiting its 
accessibility. Furthermore, it is impossible to control the site 
of integration of the CAR or TCR-encoding nucleic acid, 
increasing the risk of insertional mutagenesis; furthermore, 
viral vectors could cause infection. More recently, new 
non-viral techniques such as transposome-based transfec-
tion (i.e., CRISPR-Cas9, Sleeping Beauty, and piggyBac) 
or electroporation have been introduced. Their increasing 
efficiency, low cost, and possibility of controlling the site of 
integration make the delivery of genetic information more 
stable, effective, and sustainable.

Engineered T cells are then expanded in vitro and rein-
fused into the patient, following a lymphodepleting chemo-
therapy. Interleukin 2 (IL-2) can be used to increase in vivo 
expansion of cells [10].

A major challenge for engineered ACT is the selection 
of a suitable antigen: the ideal target antigen should be 
broadly expressed on tumor cells, have no or low expres-
sion in healthy tissues, and be sufficiently immunogenic to 
trigger T cell responses.

There are three main classes of tumor antigens: tumor-
associated antigens (TAAs), cancer-germline antigens 
(CGAs), and tumor-specific antigens (TSAs). TAAs 
include overexpressed antigens (e.g., Wilms’ tumor antigen 
1 (WT1)) and cancer differentiation antigens (e.g., mela-
noma-associated antigen recognized by T cells (MART-1) 
and mesothelin). As they are expressed not only by tumor 
cells but also in some normal cells, targeting them can lead 
to an increased risk of toxicity in healthy tissues. CGAs are 
aberrantly expressed in cancer cells, while their expression 
in normal tissue is restricted to germline cells (e.g., New 
York esophageal squamous cell carcinoma-1 (NY-ESO-1) 

Fig. 1  Adoptive cell therapies manufacturing process. For engineered 
ACT, PBMCs are obtained from autologous peripheral blood. CARs 
or TCRs are added through transduction. In the case of TILs, lympho-

cytes are obtained from tumor samples. T cells are expanded in vitro 
before being infused intravenously into the patients. Figure created 
with BioRe nder. com

http://biorender.com
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and melanoma-associated antigen A (MAGE-A), thereby 
representing promising targets for ACT. Finally, TSAs, 
which include viral antigens such as those related to onco-
genic HPV and EBV viruses and neoantigens, are encoded in 
cancer cells but are absent from the genome of healthy cells.

Neoantigens stem from nonsynonymous mutations that 
accumulate in cancer tissue during carcinogenesis and can 
be detected by T cells. Despite the fact that complex, indi-
vidualized methods are required for the identification and 
selection of reactive cells, immunological targeting of neo-
antigens represents a safe and promising strategy for treating 
cancer patients, thanks to its specificity for neoplastic cells.

Driver mutations are particularly interesting as they may 
be expressed homogeneously by cancer cells and shared 
among patients within particular disease subtypes. However, 
most oncogene-addicted NSCLC is characterized by low 
tumor mutation burden (TMB) and neoantigen expression, 
as well as several genetic, epigenetic, and immunometabolic 
features that are responsible for immune exclusion and low 
responsiveness to conventional immunotherapy. Though still 
in the early stages of development, ACT may have a highly 
relevant role in this context.

TCR‑T Cells

Conventional T cells recognize enzymatically cleaved pep-
tides that are presented at the cell surface by MHC mol-
ecules (pMHC) through their TCR, a heterodimer comprised 
of an α and a β chain. Recognition of a specific pMHC by the 
TCRα/β heterodimer leads to the phosphorylation of immu-
noreceptor tyrosine-based activation motifs in intracellular 
regions of the CD3 complex subunits and to the formation 
of a functional receptor, which initiate T cell activation, pro-
liferation, and effector functions, such as cytokine secretion 
and cytolysis, through secretion of granzyme and perforine.

For their use in adoptive therapies, TCR-T cells are edited 
by transducing a specific TCR gene sequence that recognizes 
an intracellular tumor antigen. TCR optimization can be per-
formed to prevent TCRα/β chains mispairing and increase 
TCR expression and stability [11, 12].

Intracellular tumor antigens, such as proteins, represent 
about 85% of cancer-associated antigens, and although 
TCR-T cells could potentially target any of them, the num-
ber of safe and effective identified targets is still limited, 
and most of the T cells are engineered to recognize only 
one antigen, limiting their application in solid tumors where 
heterogeneity is a major challenge.

To date, most clinical trials of TCR-T therapy in 
mNSCLC are targeting CGAs (Table 1), showing good tol-
erability but modest efficacy, with only few trials report-
ing results. In one phase 1 trial with a NY-ESO-1 TCR-T 

cell, one out of 4 patients with mNSCLC reported a par-
tial response (PR), one a stable disease (SD), and none 
had severe toxicity [9]. A trial testing MAGE-A10-specific 
TCR-T cells demonstrated an acceptable safety profile in 
the absence of off-target toxicities: 28% of patients reported 
cytokine-release syndrome (CRS) of any grade, with one 
case of grade 4, reversible with appropriate treatment; 2 
patients reported grade 4 pancytopenia, probably related to 
a higher lymphodepleting regimen. Out of the 11 patients, 
one had a PR and four reported SD [23•].

Personalized and bioinformatics-driven approaches are 
being investigated in this field. IMA101 is a personalized 
multi-target ACT approach in which autologous blood-
derived T cell products are redirected against multiple 
novel defined peptide-HLA cancer targets identified by an 
outsourced platform from a pool of predefined targets. It is 
currently being tested in relapsed or refractory solid tumors 
among patients whose tumors express at least one of the 
most frequent CGAs (MAGEA1, MAGEA4, MAGEA8, 
NY-ESO-1, etc.).

Attempts to broaden the TCR strategy may largely depend 
on the identification and targeting of neoantigens. The next 
step for these platforms is the identification of high-affinity 
neoantigens and TCR engineering toward several of these. 
Clinical trials are currently ongoing to determine the fea-
sibility, safety, and efficacy of these personalized ACTs 
(Table 1).

It is important to highlight that engineered TCRs are 
HLA restricted; hence, they require HLA matching to be 
effective. Many of the products under investigation today 
are restricted to HLA-A*0201, which is under-represented 
in African and Asian populations despite being present in 
up to half of Caucasians [24].

CAR‑T Cells

CAR-T cells have gained lot of attention due to their out-
standing results in hematological malignancies. CARs are 
fully artificial receptors designed to recognize specific anti-
gens without HLA presentation, thus targeting only mem-
brane-bound antigens. Their structure contains an extra-
cellular domain responsible for the antigen recognition, 
a transmembrane domain, and the intracellular signaling 
domain. The extracellular domain is composed of a single-
chain variable fragment (scFv), which is the major element 
of the antigen-binding domain, linked to the transmembrane 
domain by a hinge region. The length of the hinge region 
can be adjusted to optimize the distance between CAR-T 
cells and targeted tumor cells for CAR signal transduction. 
The intracellular domain can contain several functional 
units, with the core component being a CD3ζ chain, which 
is responsible for T cell activation.
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Different generations of CARs have been developed, dif-
fering by the structure of their intracellular domain (Fig. 2). 
First-generation CARs only had a CD3ζ binding site, lead-
ing to insufficient activation signal. Second- and third-
generation CARs were generated by adding one or two co-
stimulatory domains, respectively, to increase proliferation 
and cytotoxicity, such as 4-1BB (also known as CD137) and 
CD28. Interestingly, 4-1BB and CD28 are not equivalent. It 
has been suggested that 4-1BB favors T cell memory-asso-
ciated genes, while CD28 leads to an exhausted phenotype 
more quickly [25]. Fourth-generation CARs are also called 
“T cells redirected for antigen-unrestricted cytokine-initi-
ated killing” (TRUCKs). They are additionally engineered 
to secrete a transgenic cytokine upon CAR signaling in the 
targeted tumor tissue, such as IL-12 or IL-15, to improve 
persistence and cytotoxicity [26].

Fifth-generation CARs are currently under develop-
ment and differ from previous versions for the integration 
of an additional membrane receptor. In fact, they contain a 
truncated cytoplasmic IL-2 receptor β-chain domain with 
a binding site for the transcription factor STAT3. Antigen 
binding to this receptor leads to simultaneous activation of 
triple signaling by CD3ζ, costimulatory molecules, and the 
JAK–STAT3/5 pathway, improving T cell activation, pro-
liferation, and persistence. The fifth-generation CARs are 
also manufactured to have a better safety profile and a wider 

therapeutic window but are still limited by issues of tumor 
trafficking and toxicities.

Several surface antigens in NSCLC such as epidermal 
growth factor receptor (EGFR), carcinoembryonic antigen 
(CEA), human epidermal growth factor receptor 2 (HER2), 
mesothelin (MSLN), disialoganglioside (GD2), receptor 
tyrosine kinase-like orphan receptor 1 (ROR1), mucin 1 
(MUC1), glypican-3 (GPC3), delta-like ligand 3 (DLL3), and 
PD-L1 are currently under investigation for CAR-T thera-
peutics (Table 2). Most of the trials are histology-agnostic 
phase I trials and include heterogeneous cohorts of patients 
diagnosed with different tumor types that share the expres-
sion of a common surface protein. Only a minority of CAR-T 
clinical trials in mNSCLC patients have reported preliminary 
results, describing mostly modest clinical activity (Table 2).

Two phase I clinical trials demonstrated the safety of 
EGFR-targeting CAR-T cell in EGFR-overexpressing 
relapsed/refractory mNSCLC. In the first trial, two out of 11 
patients achieved a partial response (PR) [35•]. In 4 patients 
who underwent biopsies after CAR-T cell treatment, there was 
a pathological eradication of EGFR-positive tumor cells, and 
CAR-EGFR genes were detected in TILs. In the second trial, 
among nine patients treated with a non-viral transposon-based 
gene transfer system of EGFR CAR, one patient achieved 
durable PR that persisted for more than 1 year [36•]. Both 
trials showed good CAR-T expansion in most of the patients.

Fig. 2  Structure of different CAR-T generations. Compared to 
the first generation, that contained only one intracellular compo-
nent, CD3ζ, the second- and third-generation CARs include one or 
two co-stimulatory domains, respectively. The fourth generation of 
CARs is based on second generation with the addition of an induc-

ibly expressed chemokine. The fifth generation is characterized by 
the incorporation of a truncated cytoplasmic domain of IL-2Rβ for 
STAT5 recruitment and a STAT3-binding YXXQ motif allowing acti-
vation of the JAK/STAT signaling after antigen engagement
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EGFR is an antigen expressed in both epithelial cancers 
and healthy epithelial cells; thus, its targeting has raised 
many concerns as regards on-target off-tumor toxicities. 
However, both trials reported mainly grade 1–2 toxicities 
(mostly skin rash and dyspnea), and only 2 grade 3 toxicities 
were reported (increase in pancreatic enzymes and fever), 
both manageable and reversible. These experiences show 
that fine tuning of epitope affinity of CAR may overcome 
this issue, allowing the preferential recognition of target in 
higher-level expressing tumoral cells, although more stud-
ies are needed to confirm this hypothesis. A phase I trial of 
MUC1-targeted CAR-T cells with PD-1 knockout through 
CRISPR-Cas9 for the treatment of mNSCLC patients had 
manageable toxicity with no grade ≥ 3 adverse events. How-
ever, no signs of activity were detected, with ORR of 0% 
and 55% (11/20) of the patients experiencing SD as the best 
response [37]. Early results of a phase I clinical study dem-
onstrated the safety of anti-ROR1 CAR-T cells in mNSCLC 
patients. Yet, only a mixed response was observed in the two 
mNSCLC patients included [38].

HLA class I alterations are the cause of about 30% of 
cases of resistance to ICIs [8••], making CAR-T independ-
ency from HLA presentation an attractive prospect for 
NSCLC. The lack of an HLA subtype constraint would also 
expand the target population; however, due to disease hetero-
geneity and the abundance of intracellular antigens, restrict-
ing CAR recognition to a single and superficially expressed 
antigen is not ideal in advanced NSCLC.

Endogenous ACT 

Tumor‑Infiltrating Lymphocytes (TILs)

TIL-based ACT involves the infusion of a large number of 
cultured cells derived from patient’s TILs, necessitating 
surgery to gather enough material. Cells are cultured in the 
presence of IL-2 and feeder cells and reinfused to the patient 
after a preparatory course of high-dose non-myeloablating 
chemotherapy, typically consisting of cyclophosphamide 
and fludarabine. Subsequently, medium- to high-dose IL-2 
is administered to the patient in order to increase the T cells’ 
in vivo expansion and efficacy.

TILs’ products are highly polyclonal, resulting in a multi-
target T cell attack directed against different and largely 
unknown antigens. In addition, in vivo expansion of TILs 
can release cells from an immunosuppressive microenviron-
ment and reactivate them to target tumors.

Most trials were conducted with “bulk” unselected TILs, 
but significant efforts are being made to improve tumor 
selectivity. Bulk TILs have shown durable responses in 
subsets of metastatic melanoma (MM) patients pretreated 

with approved ICIs. In a recent randomized phase II study, 
TILs were compared to ipilimumab in patients with diseases 
refractory to anti-PD1 treatment, showing significantly 
higher progression-free survival and overall survival and 
30% of complete response (CR), which normally correlate 
with long-term responses to treatment [39••]. Most epithe-
lial tumors have lower T cell infiltration than MM, and their 
T cells are more challenging to expand in vivo. Additionally, 
the high tumor mutational burden (TMB) and emergence 
of neoantigens, as well as a far less immunosuppressive 
microenvironment in MM than NSCLC, are all related to 
the success of TIL-based ACT in MM. Nonetheless, TIL-
based ACT is supported by a growing body of evidence in 
NSCLC. The presence of neoantigen-responsive endogenous 
CD4 and CD8 T cells in wild-type disease and recurrent 
oncogenic mutations offers hope [40, 41].

Bulk TILs have been investigated in a phase Ib study in 
patients affected by mNSCLC [42••]. Twenty patients were 
enrolled regardless of PDL1 expression, TMB, smoking 
status, and the presence of actionable mutations; 4 patients 
harbored an EGFR mutation (2 of which were activating, 
and 2 an ALK translocation). Half of the patients had not 
received any systemic treatment; 20% were chemotherapy 
naïve; and all were immunotherapy naive. Patients were 
treated within the trial with nivolumab in monotherapy for at 
least 4 cycles. Sixteen out of 20 patients progressed on anti-
PD1 monotherapy and proceeded to receive TIL treatment. 
Most of the patients (11/16) experienced tumor regression at 
1 month but then progressed, mainly with the appearance of 
new lesions, indicating a possible resistance due to subclonal 
selection and antigen escape. Two patients reported CR and 
were still in response at the time of the publication. Interest-
ingly, CR was observed in a patient whose tumor harbored 
an EGFR-activating mutation. The analysis of the product 
she received showed that her TIL clonotypes recognized a 
private neoantigen and several MAGE-associated TAAs. 
The same group is conducting a phase I trial in immune-
naïve oncogene-addicted NSCLC with CD40L-expressing 
TILs and nivolumab (NCT05681780). Toxicity was consist-
ent with previous results, mainly related to lymphodeplet-
ing chemotherapy (hematologic toxicities) and high-dose 
IL-2 (chills, fever, and capillary leak syndrome). Most of 
the adverse events were limited to the first 4 weeks after 
infusion. The authors reported 2 toxic deaths related to high 
age and comorbidities, underlying the importance of patient 
selection.

Selection of neoantigen-reactive TILs in solid tumors 
is being investigated in a number of trials (Table 3). The 
Chiron trial is a phase I/IIa study aiming to characterize 
the safety and clinical activity of a personalized clonal neo-
antigen-reactive T cell (cNeT) product in mNSCLC, pro-
gressing after an anti-PD1/PDL1-based treatment. The trial 
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excluded non-smokers and patients with actionable muta-
tions. Clonal neoantigens emerge early in cancer evolution 
and are likely to be shared by most of cells, limiting the 
effects of tumor heterogeneity and antigen escape [43••]. 
Furthermore, manufacturing of cNeT product involves the 
use of dendritic cells cultured with low doses of IL-2, result-
ing in greater IL-2 responsiveness in patients, allowing prod-
uct infusion after lower dose lymphodepletion and IL-2, in 
order to limit associated toxicities and broaden applicability, 
even in the outpatient setting. The resulting treatment was 
well tolerated, with lower chemotherapy and IL-2-associated 
adverse events. Early proof of concept was demonstrated in 
mNSCLC with disease control observed at more than 12 
weeks in 5 of 7 evaluable patients (71%), including one PR 
ongoing at 36 weeks after the treatment.

Challenges and Perspectives

The extensive clinical adoption of T cell-based ACT in solid 
tumors is being constrained by considerably more therapeu-
tic hurdles compared to hematological malignancies. Target 
antigen selection, antigen escape mechanisms, T cell homing 
and tumor infiltration, the immunosuppressive tumor micro-
environment (TME), toxicities, and manufacturing difficul-
ties are some of these challenges (Fig. 3).

Antigen Heterogeneity and Escape

Solid tumors show significant inter- and intra-patient hetero-
geneity in antigen expression [44]. Immune escape through 
antigenic loss is a common problem of T cell therapies and 
results in tumor recurrence [45, 46].

As discussed, TILs are highly polyclonal by nature and 
further selection of clonal neoantigens and tumor-reactive 
clones could improve their efficacy. One solution for engi-
neered ACTs could be to target multiple antigens by using T 
cell clones with different tumor-specific TCRs or CARs. Bi- 
or trispecific CAR-T cells are being tested in solid tumors 
[47–50]. By equipping TCR-T cells and CAR-T cells with 
bispecific T cell engagers (BiTEs), it is possible to achieve 
the same effect by activating bystander T cells as well as the 
endogenous immune system [51, 52].

The further development of ACT or their combina-
tion with immunomodulatory drugs, in order to facili-
tate tumor debulking and release of antigens, followed 
by the activation of an endogenous response to second-
ary tumor antigens, is another potential tactic to oppose 
this tumor escape mechanism. This phenomenon, known 
as epitope spreading, has been shown to be promoted 
by CAR-T cells or TILs (NCT05681780) expressing 
cytokines or CD40L as well as T cells secreting the 
FLT3 ligand [53–55].

HLA Loss

Loss of HLA expression or defects in the antigen-pro-
cessing machinery are a frequent escape mechanisms in 
NSCLC and are associated with decreased T cell infiltra-
tion [8, 46, 56, 57].

In particular, HLA-class I loss of heterozygosity (LOH) 
is a marker that discriminates cancer from healthy cells 
and could be exploited for cancer immunotherapy for 
increasing killing selectivity [58].

Indeed,  TmodTM are logic-gated CAR-T cells engineered 
to express 2 receptors, one being an activator that recognizes 
an antigen present on the surface of healthy and tumor cells, 
and one being a blocker that recognizes a second surface 
antigen from an allele lost only in tumor cells. This creates a 
robust and non-signal integrator capable of killing tumor cells 
while leaving healthy cells intact and thus potentially reduc-
ing toxicity [59]. This technology is being tested in CEA-
expressing tumors with HLA-A02 LOH (NCT05736731).

One other possible strategy to overcome this barrier is 
the use of different immune cells that do not require HLA 
expression to exert their activity, like NK and γδT cells. 
NK cells are naturally cytotoxic against cancer and virus-
infected cells and are not restricted by MHC. Compared to T 
cells, they demonstrate several advantages: NK cells are less 
toxic as they do not trigger cytokine-release syndrome, and 
they retain antitumoral effects through their innate cytotoxic 
activity in case of tumor escape through antigen loss [60]. 
Moreover, they offer the possibility of “off-the-shelf” manu-
facturing as allogeneic NK cells do not cause graft-versus-
host disease [61]. CAR-NK and TCR-NK cells are under 
development with early trials showing promising results 
[62, 63]. γδT cells represent a small subset of CD8-positive 
T cell displaying both innate- and adaptive-like properties 
[64]. γδTcells share many characteristics with their αβT 
cell counterpart, such as cytotoxic effector functions, but 
express a distinct TCR composed of a γ and a δ chain that is 
independent from MHC-I presentation of antigens. Further-
more, these cells can be activated by several innate recep-
tors such as NKG2D, DNAM-1, NKp30, or NKp44 [65]. 
They can be modified using engineering techniques [66], 
but similarly to NK cells, allogenic products have a very 
low risk of GVHD, allowing off-the-shelf formulations. In 
a recent trial, authors demonstrated safety and preliminary 
clinical benefit of allogenic γδT cells in mNSCLC [67].

T Cell Trafficking/Infiltration

T cell migration into tumors is dictated not only by 
chemokines and adhesion molecules, but also by the immu-
nomodulating tumor stroma that is characterized by a highly 
dense extracellular matrix and abnormal vasculature.



1169Current Oncology Reports (2023) 25:1161–1174 

1 3

Ta
bl

e 
3 

 S
el

ec
te

d 
on

go
in

g 
cl

in
ic

al
 tr

ia
l u

si
ng

 T
IL

s A
C

T 
in

 N
SC

LC

TI
Ls

 tu
m

or
-in

fil
tra

tin
g 

ly
m

ph
oc

yt
es

, A
C

T  
ad

op
tiv

e 
ce

ll 
th

er
ap

y,
 N

SC
LC

 n
on

-s
m

al
l c

el
l l

un
g 

ca
rc

in
om

a,
 E

G
FR

 e
pi

th
el

ia
l g

ro
w

th
 fa

ct
or

 re
ce

pt
or

, A
LK

 a
na

pl
as

tic
 ly

m
ph

om
a 

ki
na

se
, H

ER
2 

hu
m

an
 

ep
id

er
m

al
 g

ro
w

th
 fa

ct
or

 re
ce

pt
or

-2
, P

D
1 

pr
og

ra
m

m
ed

 c
el

l d
ea

th
-1

, P
D

L1
 p

ro
gr

am
m

ed
 c

el
l d

ea
th

 li
ga

nd
-1

, I
C

I i
m

m
un

e 
ch

ec
kp

oi
nt

 in
hi

bi
to

rs

N
C

T#
Ph

as
e

Po
pu

la
tio

n
O

th
er

 in
fo

rm
at

io
n

Sp
on

so
r

N
C

T0
56

81
78

0
I/I

I
EG

FR
, A

LK
, R

O
S1

 o
r H

ER
2-

dr
iv

en
 N

SC
LC

, P
D

1-
PD

L1
 n

ai
ve

C
D

40
L-

au
gm

en
te

d 
au

to
lo

go
us

 T
IL

s, 
gi

ve
n 

in
 c

om
bi

na
-

tio
n 

w
ith

 IL
-2

 a
nd

 n
iv

ol
um

ab
H

. L
ee

 M
offi

tt 
C

an
ce

r C
en

te
r a

nd
 R

es
ea

rc
h 

In
sti

tu
te

N
C

T0
56

76
74

9
I

N
SC

LC
 w

ith
ou

t d
riv

er
 m

ut
at

io
ns

, n
o 

pr
ev

io
us

 a
nt

i-P
D

1/
PD

L1
 u

nl
es

s g
iv

en
 fo

r l
oc

al
ly

 a
dv

an
ce

d 
di

se
as

e 
an

d 
>

 
6 

m
on

th
s b

ef
or

e 
en

ro
lle

m
en

t

A
ut

ol
og

ou
s T

IL
s (

C
-T

IL
05

1)
 g

iv
en

 in
 c

om
bi

na
tio

n 
w

ith
 

IL
-2

 a
nd

 p
em

br
ol

iz
um

ab
C

el
lu

la
r B

io
m

ed
ic

in
e 

G
ro

up
, I

nc
.

N
C

T0
46

14
10

3
I

N
SC

LC
 w

ith
ou

t E
G

FR
, A

LK
, R

O
S1

 a
lte

ra
tio

ns
, r

ef
ra

c-
to

ry
 to

 st
ar

da
rd

 p
la

tin
um

 b
as

ed
/IC

I t
re

at
m

en
t

A
ut

ol
og

ou
s T

IL
s (

LN
-1

45
) f

ol
lo

w
ed

 b
y 

hi
gh

-d
os

e 
IL

-2
Io

va
nc

e 
B

io
th

er
ap

eu
tic

s, 
In

c.

N
C

T0
21

33
19

6
II

N
SC

LC
 (i

nc
lu

di
ng

 o
nc

og
en

e-
ad

di
ct

ed
) p

ro
gr

es
si

ng
 

af
te

r fi
rs

t l
in

e 
th

er
ap

y
Yo

un
g 

TI
Ls

 fo
llo

w
ed

 b
y 

hi
gh

-d
os

e 
IL

-2
N

C
I

N
C

T0
53

61
17

4
I

N
SC

LC
 (i

nc
lu

di
ng

 o
nc

og
en

e-
ad

di
ct

ed
), 

pr
og

re
ss

in
g 

w
ith

in
 1

2 
w

ee
ks

 a
fte

r P
D

1 
ba

se
d 

th
er

ap
y

G
en

et
ic

al
ly

 m
od

ifi
ed

 a
ut

ol
og

ou
s T

IL
s (

di
sr

up
tio

n 
of

 
PD

C
D

1,
 P

D
-1

 g
en

e)
 fo

llo
w

ed
 b

y 
IL

-2
Io

va
nc

e 
B

io
th

er
ap

eu
tic

s, 
In

c.

N
C

T0
36

45
92

8
II

N
SC

LC
 (i

nc
lu

di
ng

 o
nc

og
en

e-
ad

di
ct

ed
) P

D
1/

PL
1 

na
iv

e 
or

 p
re

tre
at

ed
 (a

cc
or

di
ng

 to
 c

oh
or

t)
A

ut
ol

og
ou

s T
IL

s L
N

-1
44

 (l
ifi

le
uc

el
)/L

N
-1

45
 in

 c
om

bi
-

na
tio

n 
w

ith
 h

ig
h-

do
se

 IL
-2

 a
nd

 c
he

ck
po

in
t i

nh
ib

ito
rs

 
(ip

ili
m

um
ab

/n
iv

ol
um

ab
 o

r p
em

br
ol

iz
um

ab
) o

r a
ut

ol
o-

go
us

 T
IL

s L
N

-1
44

 (l
ifi

le
uc

el
)/L

N
-1

45
/L

N
-1

45
-S

1 
as

 
a 

si
ng

le
 a

ge
nt

 th
er

ap
y 

fo
llo

w
ed

 b
y 

IL
-2

Io
va

nc
e 

B
io

th
er

ap
eu

tic
s, 

In
c.

N
C

T0
46

43
57

4
I

N
SC

LC
 (i

nc
lu

di
ng

 o
nc

og
en

e-
ad

di
ct

ed
) p

ro
gr

es
si

ng
 

af
te

r fi
rs

t l
in

e 
th

er
ap

y
A

ut
ol

og
ou

s T
IL

s e
nr

ic
he

d 
fo

r t
um

or
 a

nt
ig

en
 sp

ec
ifi

ci
ty

 
(N

eo
TI

L)
 in

 c
om

bi
na

tio
n 

w
ith

 lo
w

 d
os

e 
irr

ad
ia

tio
n 

an
d 

hi
gh

-d
os

e 
IL

-2

C
en

tre
 H

os
pi

ta
lie

r U
ni

ve
rs

ita
ire

 V
au

do
is

N
C

T0
51

41
47

4
I

So
lid

 tu
m

or
s, 

in
cl

ud
in

g 
N

SC
LC

, p
ro

gr
es

si
ng

 a
fte

r I
C

Is
N

eo
an

tig
en

-s
el

ec
te

d 
au

to
lo

go
us

 T
IL

s (
N

EX
TG

EN
TI

L-
A

C
T)

 in
 c

om
bi

na
tio

n 
w

ith
 IL

-2
Va

ll 
d’

H
eb

ro
n 

In
sti

tu
te

 o
f O

nc
ol

og
y

N
C

T0
40

32
84

7
I

N
SC

LC
, s

m
ok

er
s, 

w
ith

ou
t a

ct
io

na
bl

a 
m

ut
at

io
ns

, p
ro

-
gr

es
si

ng
 a

fte
r I

C
Is

A
ut

ol
og

ou
s c

lo
na

l n
eo

an
tig

en
-r

ea
ct

iv
e 

T 
ce

lls
 (c

N
eT

) 
fo

llo
w

ed
 b

y 
lo

w
-d

os
e 

IL
-2

, i
n 

m
on

ot
he

ra
py

 o
r i

n 
co

m
bi

na
tio

n 
w

ith
 p

em
br

ol
iz

um
ab

A
ch

ill
es

 T
he

ra
pe

ut
ic

s U
K

 L
im

ite
d



1170 Current Oncology Reports (2023) 25:1161–1174

1 3

All strategies intended to modulate tumor stroma, such 
as low-dose or high-dose radiotherapy or antiangiogenic 
drugs, could be potentially combined with ACT (NEOTIL), 

although specific T cell engineering with chemokines, 
growth factor receptors, and matrix degrading enzymes 
could obtain the same results in a more tumor-specific 

Fig. 3  Challenges and perspectives of ACT in NSCLC. a Several 
approaches are being developed to overcome tumor antigen heterogene-
ity and escape, such as CAR-T cells or TCR endowed with specificity 
for multiple targets or expressing bispecific T cell engagers. The use of 
NK cells or γδT cells for ACT represents a promising strategy as these 
cells are independent of MHC-presentation, depict innate immune 
activities, and, by secreting IFNγ and TNFα, stimulate bystander T cells. 
b Immune cell trafficking and penetration are limited in solid tumors. 
Cells can be developed with the ability to respond to tumor-associated 
chemokines or to target physical barriers present in the tumor microen-
vironment. Alternatively, immune cells can be directly injected into the 
site of the tumor. Stroma modulation with local radiotherapy can also 
improve immune cell infiltration. c In order to counteract the immu-
nosuppressive TME, T cells can be engineered with constitutionally 

blocked checkpoint receptors. Combination with ICI or lymphodepletive 
chemotherapy is another approach to remodel the TME. d To overcome 
on-target, off-tumor toxicities of CAR-T cells, the tumor specificity can 
be improved by ensuring dependency of activation on the absence of an 
antigen selectively expressed on non-tumoral cells. The suicide gene 
system allows the elimination engineered cells via induction of apopto-
sis in case of systemic toxicity. CAR, chimeric antigen receptor; TCR, 
T cell receptor; BiTE, bispecific T cell engager; PFN, perforin; GzmB, 
granzyme B; FasL, Fas ligand; TRAIL, tumor-necrosis-factor related 
apoptosis inducing ligand; IFNγ, interferon γ; TNFα, tumor necrosis 
factor α; GFR, growth factor receptor; TME, tumor microenvironment; 
iCAR, inhibitory chimeric antigen receptor; ACT, adoptive cell therapy; 
NSCLC, non-small cell lung carcinoma; ICI, immune checkpoint inhibi-
tors. Figure created with BioRe nder. com

http://biorender.com
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fashion, thereby also limiting adverse events. Redirecting 
of T cells against stromal cell-associated antigens in addition 
to classic tumor targeting could also improve local delivery. 
Such strategies are being investigated in solid tumors in the 
context of TIL-based ACT and CAR-T [68, 69].

One solution may be an intratumoral injection of ACT 
or part of T cell products. This has been effective in brain 
tumors and mesothelioma [70–72], but could be more chal-
lenging in intraparenchymal lung lesions and in cases of 
high tumor burden.

Immunosuppressive TME and T Cell Exhaustion

Solid tumor cells are intermixed with suppressive cell popu-
lations such as tumor-associated macrophages (TAMs), mye-
loid-derived suppressor cells (MDSCs), Tregs, and cancer-
associated fibroblasts (CAFs). Tumor and TME cells express 
a broad range of immune checkpoints, including PD-L1 and 
ligands for LAG-3, TIM-3, and TIGIT, and the emergence of 
new immune checkpoints and late exhaustion are common 
resistance mechanisms to immunotherapies.

Combination with ICIs is one of the most studied strate-
gies, with most of new trials with TILs, CAR-T, and TCR 
studying the association of ACT with PD1/PDL1 blockade 
(NCT04032847, NCT03645928). Such an association has a 
strong scientific rationale since the efficacy of ACT might be 
compromised by the expression of suppressive immune check-
points, and conversely, immune checkpoint blockers alone might 
not have an effect in the absence of sufficient immune effec-
tor cells. T cells can also be engineered to have constitutionally 
blocked checkpoint receptors or allow intratumoral secretion of 
specific molecules to obtain the same results (NCT05361174).

Lymphodepletive chemotherapy is used because it alters 
and polarizes the TME, has cytotoxic effects on the host lym-
phoid population, induces the cytokine sink necessary for 
adoptive cell proliferation, and depletes some populations of 
immunosuppressive cells. Further research should be done 
on the use of other chemotherapies like gemcitabine, taxanes, 
and some platinum compounds with ACTs because they are 
linked to immunostimulatory changes in the TME [73].

Manufacturing Issues

Manufacturing autologous ACT can be challenging due to 
invasive procedures, and in particular, the need for surgi-
cal procedures for TILs-based ACT is cause of significant 
patient selection and risk for significant morbidity.

Moreover, prolonged production times prevent some 
patients from receiving the product due to disease progres-
sion; this is even more true in the context of personalized 

approaches that necessitate the processing and analysis of 
tumors with complex platforms.

In this context, “off-the-shelf” approaches are appealing 
and include the use of allogeneic cell-based products. While 
T cell-based approaches can be limited by significant risks 
of GVHD, NK, or γδ-based products harbor a significantly 
lower risk, as already discussed.

In this context, a very attractive alternative to cellular 
therapies is the redirection of T cells through the use of 
bispecific compounds. Bispecific antibodies can target sur-
face-expressed tumor antigens and one effector cell antigen 
(such as CD3 for lymphocytes or CD56 for NK cells) and 
exploit bystander immune cells in order to target tumor cells 
in a MHC-independent fashion, similarly to CAR-engineered 
cells. To target various antigens, the number of antigen-rec-
ognition domains can be increased while modifying affinities 
and efficacy. Similarly, it is possible to create and employ 
TCR-based bispecifics to target intracellular antigens shown 
by the MHC complex. Tebentafusp is approved by the FDA 
for the treatment of metastatic uveal melanoma and proves 
that this approach can be effective in the context of solid 
tumors.

These methods, however, rely on the presence of endog-
enous immune cell infiltration, making them potentially inef-
fective in the event of cold tumors.

Toxicities

Engineered ACT can elicit potent immune responses but are 
at risk of inducing “off-target” and “on-target, off-tumor tox-
icities”, respectively, linked to cross-reactivity or expression 
of tumor-associated antigens in normal tissues. This makes 
antigen selection key in the development of such products.

Using autologous rather than engineered TILs reduces 
the risk of these side effects but requires stringent patient 
selection, as patients must be fit enough to receive high-dose 
chemotherapy and IL-2.

There are many ways to decrease adverse effects, such 
as limiting CAR activity to tumors and incorporating 
inhibitory CARs (iCAR) into T cells to reduce toxicity 
to healthy tissue. iCAR consists of an scFv specific to 
antigens expressed only in normal cells, with potent acute 
inhibitory signaling to restrict T cell activation despite 
concurrent engagement of the activating receptor. Safety 
genes can also be added into the construct. They are also 
called suicide genes and code for molecules expressed 
on CAR-T cells (or less frequently on TILs or TCR-engi-
neered T cells) that lead to their death upon administration 
of a specific drug. Administration of a synthetic molecule 
induces the dimerization of the chimeric protein coded by 
the safety gene, which induces apoptosis.
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Conclusion

In this review, we highlight the most recent developments 
in ACT for the treatment of mNSCLC, examining the ben-
efits, present challenges, and innovative approaches the 
near future may hold.

There has been significant progress, thanks to advance-
ments in the underlying science and production techniques, 
and numerous strategies that take advantage of various 
immune cell types are currently being studied. Promising 
findings from early-phase studies offer a theoretical basis 
for their application in mNSCLCs resistant to conventional 
therapies. However, as resistance mechanisms vastly differ 
among patients, personalized strategies should be used to 
tailor the best ACT strategy for the right patient and ensure 
that it can be used in routine practice.

Significant translational and early- and late-phase clini-
cal research are required before these treatments can be 
made available to patients with mNSCLC. Currently, many 
hurdles still exist, including biological or fitness restric-
tions, optimizing therapeutic efficacy, further understand-
ing the implications of combination treatments, and reduc-
ing costs and toxicities.
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