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Abstract
Purpose of Review Clonal hematopoiesis (CH) refers to the expansion of hematopoietic stem cell clones and their cellular 
progeny due to somatic mutations, mosaic chromosomal alterations (mCAs), or copy number variants which naturally 
accumulate with age. CH has been linked to increased risk of blood cancers, but CH has also been linked to adverse cardio-
vascular outcomes.
Recent Findings A combination of clinical outcome studies and mouse models have offered strong evidence that CH muta-
tions either correlate with or cause atherosclerosis, diabetes mellitus, chronic kidney disease, heart failure, pulmonary 
hypertension, aortic aneurysm, myocardial infarction, stroke, aortic stenosis, poor outcomes following transcatheter aortic 
valve replacement (TAVR) or orthotopic heart transplant, death or need of renal replacement therapy secondary to cardio-
genic shock, death from cardiovascular causes at large, and enhance anthracycline cardiac toxicity. Mechanistically, some 
adverse outcomes are caused by macrophage secretion of IL-1β and IL-6, neutrophil invasion of injured myocardium, and 
T-cell skewing towards inflammatory phenotypes.
Summary CH mutations lead to harmful inflammation and arterial wall invasion by bone marrow-derived cells resulting in 
poor cardiovascular health and outcomes. Blockade of IL-1β or JAK2 signaling are potential avenues for preventing CH-
caused cardiovascular morbidity and mortality.
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Introduction

Somatic mutations and mosaic chromosomal alterations 
(mCAs) accumulate in hematopoietic stem cells (HSCs) 
and their cellular progeny as individuals age. When these 

genetic lesions lead to clonal expansion of a population in 
the absence of a malignancy or cytopenia, it is referred to 
as CH. CH of indeterminate potential (CHIP) is a subset 
of CH and is generally restricted to somatic mutations in 
genes associated with hematologic malignancy (DNMT3A, 
TET2, ASXL1, JAK2, TP53, etc.) with a minimum variant 
allele frequency (VAF) of 2% [1]. CH has been primarily 
viewed as a precursor to myeloid malignancies such as acute 
myeloid leukemia or myelodysplastic syndrome, though it 
is recognized that some clonal expansions can predispose 
individuals to lymphoid malignancies as well, leading to 
the characterization of some mutations and mCAs as either 
myeloid or lymphoid CH [2].

Beyond increasing the risk of primary or secondary 
malignancies, clinical outcomes in other disease pro-
cesses tend to be negatively affected by the presence of CH 
although there are some identified exceptions. Responses 
to chimeric antigen receptor T-cell efficacy are likely 
enhanced by the presence of CH, albeit with increased 
rates of cytokine release syndrome and neurotoxicity [3–6]. 
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Moreover, the presence of CH has been associated with 
improved overall survival (OS) in patients with metastatic 
colorectal cancer and with a reduction in the risk of develop-
ing Alzheimer’s disease [7, 8]. Some CH mutations in the 
donor of allogeneic hematopoietic stem cell transplants are 
protective in the recipient and lead to reduced relapse risk 
and improved OS [9].

These benefits are firmly outweighed in quantity by the 
known negative health impacts of CH, likely mediated by 
excessive IL-6 and IL-1β driven inflammation [1]. CH is 
associated with chronic obstructive pulmonary disease in 
multiple studies, and mouse models suggest CH mutations 
can be causative [10, 11]. CH is associated with excessive 
osteoclast activity and resulting osteoporosis [12]. CH cor-
relates with post-transplant, non-relapse mortality in patients 
receiving stem cell transplants for multiple myeloma and 
lymphoma [3, 4]. In a cohort of myeloma patients that had 
undergone autologous stem cell transplants, the presence 
of CH was also associated with decreased progression 
free survival and decreased OS regardless of whether the 
patients were treated with immune modulating drugs [13]. 
The immune system’s response to infections also appears 
impaired by the presence of CH as CH is associated with 
severe COVID-19 outcomes, as well as with Clostridium 
Difficile and Enterococcal/Streptococcal infections in solid 
tumor patients [14]. Diabetes is more common in patients 
with CH [15]. As will be reviewed here, the evidence impli-
cating CH in poor cardiovascular outcomes is extensive, 
which is likely a primary driver for the association of CH 
with decreased OS in the general population [16]. The rela-
tionship between CH and coronary artery disease (CAD) 
was the first non-oncologic outcome to be recognized [15], 
with further cardiologic studies also linking CH to progres-
sion of heart failure [17–20], aortic aneurysm [21], pul-
monary hypertension [22], deterioration from cardiogenic 
shock [23], aortic stenosis [24], poor outcomes after TAVR 
[25] or orthotopic heart transplantation [26], and increased 
sensitivity to cardiotoxic chemotherapy [27]. Here we will 
review the evidence connecting CH to cardiovascular out-
comes, mechanistic explanations, potential practice changes, 
and future research directions.

A Shot Through the Heart, CH Realized 
as a Risk Factor for Vascular Disease

Atherosclerosis is the result of inflammation in the blood 
vessel wall, and myeloid cells such as monocyte-derived 
macrophages are known to mediate this inflammation 
[28–30]. In CH, lineage restriction can occur leading to 
“myeloid bias” with mutated myeloid progeny cells that 
are more prone to causing atherosclerosis [31]. CH was 
first implicated in cardiovascular disease on a population 

level by Jaiswal et  al. after performing whole-exome 
sequencing of peripheral blood from 17,182 individuals. 
Mutations in genes associated with blood cancers were 
frequently found in DNMT3A, TET2, and ASXL1, and 
individuals with such mutations were found to be at an 
increased risk for all-cause mortality (HR 1.4; 1.1 to 1.8 
95% CI), CAD (HR 2.0; 1.2 to 3.4 95% CI), and ischemic 
stroke (HR 2.6; 1.4 to 4.8 95% CI) [15]. A second land-
mark case–control study using whole-exome sequencing of 
4,726 participants with CAD and 3,529 controls found that 
rates of CH were 1.9 × greater in individuals with CAD 
[32]. Causality was also demonstrated by modeling CH 
with atherosclerosis-prone mice and a low-density lipo-
protein receptor knockout mutation and engrafting them 
with bone marrow from Tet2 control or heterozygous or 
homozygous knockout mice and then feeding them a high-
fat, high-cholesterol diet. Loss of Tet2 was associated with 
higher atherosclerotic burden in the aorta, as well as with 
macrophage expression of cytokines and chemokines asso-
ciated with atherosclerosis, including Cxcl1, Cxcl2, Cxcl3, 
Pf4, Il-1b, and Il-6 [32]. Together, these two studies pro-
vide strong evidence not only that CH is associated with 
atherosclerotic disease, but that CH mutations can cause 
atherosclerosis likely in part through macrophage recruit-
ment of monocytes and other blood cells to the arterial 
intima. CH mutations may also contribute to the premature 
cardiovascular disease in people with HIV, as CH muta-
tions are more common in individuals with HIV and in 
this patient population CH mutation carriers tend to have 
greater coronary atherosclerosis burden [33].

CH is also associated with the consequences of ath-
erosclerosis. A prospective cohort study involving 78,752 
individuals examined the association of CH with the risk 
of different types of stroke, and found CH to be associated 
more with hemorrhagic stroke (HR 1.24; 1.01 to 1.54 95% 
CI) than with ischemic stroke (HR 1.11; 0.98 to 1.25 95% 
CI) [34]. TET2 mutations conferred the strongest associa-
tion with stroke overall and with ischemic stroke among 
the 74 genes sequenced [34, 35]. CH is also prevalent in 
patients with ST-segment elevation myocardial infarction 
(STEMI) and correlates with poor outcomes following 
STEMI. DNMT3A or TET2 CH mutations have been found 
in 12.4% of STEMI patients, and patients harboring these 
mutations have a much higher incidence of death (30.9% vs 
15.5%, p = 0.001) or major cardiac events (44.5% vs 21.8%, 
p < 0.001) over a median 3-year follow-up after STEMI [36]. 
In patients with cardiogenic shock secondary to myocar-
dial infarction, having a CH mutation is associated with an 
increased risk of death or requiring renal replacement ther-
apy independent of age or renal function [23]. In summary, 
CH mutations appear to cause accelerated atherosclerosis 
and likely lead to the subsequent sequelae of atherosclerotic 
burden including stroke and myocardial infarction.
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Molecular Mechanisms of CH‑Mediated 
Cardiotoxicity

Myeloid CH gene mutations (such as TET2 or DNMT3A) 
as a class have been strongly associated with all-cause 
mortality (HR = 1.6, p < 0.001) and an increased risk of 
CAD (HR = 1.35, p = 0.005) whereas lymphoid CH gene 
mutations as a class are not associated with either [2]. 
mCAs have been associated with all-cause mortality but 
are not associated with increased risk of CAD [2]. Thus, 
we will emphasize mutations in myeloid CH genes, like 
TET2. An abundance of literature has been developed 
around TET2 and has delineated a mechanistic link with 
adverse cardiovascular outcomes. The TET2 gene is one 
of three TET genes and resides at 4q24 where it encodes 
the Ten-eleven translocation 2 protein. TET proteins 
catalyze the production of cytosine derivatives and may 
be involved in the demethylation of CpG dinucleotides 
[37–39]. Murine Tet2 knockouts demonstrate that loss or 
heterozygosity of Tet2 leads to myeloid progenitor cell 
and multipotent progenitor cell expansion, and that hemat-
opoietic stem cells harboring Tet2 loss can outcompete 
wildtype hematopoietic stem cells in competitive engraft-
ment experiments [40–44]. TET2 mutations are frequently 
found in myeloid neoplasms but also in angioimmunob-
lastic T-cell lymphoma and in peripheral T-cell lymphoma 
not otherwise specified [39, 45–48].

TET2 has been firmly implicated in the development 
of atherosclerosis and subsequent myocardial infarction 
through the NLRP3 inflammasome-mediated secretion of 
IL-1β. As mentioned previously, murine data demonstrates 
that Tet2 loss enhances macrophage cytokine secretion of 
Il-1β leading to plausible recruitment of monocytes, plate-
lets, and other cell types to the arterial wall [32]. Simi-
larly, Tet2 deficiency in Ldl receptor null mice fed a high 
fat diet leads to markedly accelerated atherosclerosis that 
can be rescued by NLRP3 inhibition [49]. Tet2 is also a 
master regulator of vascular smooth muscle cell plasticity 
and Tet2 activation also promotes vascular smooth muscle 
proliferation and intimal hyperplasia, which may further 
contribute to accelerated atherosclerosis [50–54].

Murine models also suggest a role for myocardial Tet2 
in CH-associated heart failure. Tet2 deficiency wors-
ens cardiac remodeling and function after left anterior 
descending artery ligation or transverse aortic constriction, 
and increases Il-1β expression in the remodeling heart tis-
sue [55]. Moreover, blocking Il-1β production by inhibit-
ing the NLRP3 inflammasome has an enhanced protective 
effect following myocardial injury in Tet2 deficient mice 
[55]. Infusion of Tet2 mutant bone marrow cells induces 
clonal expansion of Tet2 deficient Ccr2 + macrophages 
that infiltrate the mouse heart provoking age-related 

cardiac hypertrophy and fibrosis [56]. Similar results 
have been found using CRISPR-mediated gene editing of 
stem cells [57]. Loss of Tet2 also leads to cardiomyocyte 
hypertrophy through hyperactivation of ERK 1/2 suggest-
ing that the hypertrophic phenotype of Tet2 null mice may 
arise from both clonal populations of infiltrating cells and 
cardiomyocyte-autonomous effects [58]. Asxl1 CH muta-
tions have also been shown to have similar negative effects 
on cardiac remodeling with similar enhancement of mac-
rophage Il-1β production [59].

There is some evidence in humans implicating TET2-reg-
ulated IL-1β secretion as pathogenic as well. In the Canaki-
numab Anti-inflammatory Thrombosis Outcomes Trial 
(CANTOS), participants with a prior myocardial infarction 
and an elevated hs-CRP level were randomized to placebo 
or escalating doses of canakinumab: an anti-IL-1β mono-
clonal antibody [60•]. Higher doses of canakinumab led to 
a 15% relative risk reduction in the combined end points 
of myocardial infarction, stroke, and cardiovascular-related 
death (major adverse cardiac events, MACE). A follow-up 
study identified patients as having CH or not having CH 
mutations using a 74 gene panel, and found that 8.6% of 
participants in CANTOS had CH mutations, with TET2 gene 
mutations being the most common variant [60•]. Patients 
that harbored a TET2 mutation had higher rates of major 
cardiac events than those that did not, as well as a stati-
cally significant response to canakinumab, whereas patients 
without a TET2 mutation had no significant effect in major 
myocardial events after treatment with canakinumab [60•]. 
Together with the data from mouse models, these results 
strongly implicate TET2 dysfunction as driving the produc-
tion of IL-1β and causing vascular disease as manifested by 
higher rates of myocardial infarction, stroke, and cardiovas-
cular-related death.

DNMT3A is another CH gene, which like TET2 regu-
lates the methylation of CpG dinucleotides. In fact, mende-
lian randomization studies have identified subsets of DNA 
methylation sites that likely cause the increased risk of CAD 
associated with these two mutations [61]. In a study of 485 
patients with STEMI, those that harbored either a DNMT3A 
or TET2 mutation had an increased risk of death or MACE 
and had higher levels of plasma IL-1β and IL-6, but not 
higher levels of TNFβ or IFNγ [36]. Extensive evidence 
supports a pathogenic role for IL-6 in numerous forms of 
cardiovascular disease and the IL-6 antagonist ziltivekimab 
was associated with favorable atherothrombotic outcomes 
in a recent phase 2 clinical trial [62, 63]. Patients with 
CH defined by DNMT3A or TET2 mutations have higher 
rates of cardiovascular disease and this effect is greater in 
patients with high VAF (> 10%), but this effect is abrogated 
in patients with congenital deficiency in IL-6 signaling that 
carry the IL6R p.Asp358Ala germline mutation [64]. In a 
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macaque model of TET2 CH, macrophages with a TET2 
loss-of-function mutation expressed higher levels of IL-6 
and IL-1β, and treating the macaques with tocilizumab 
slowed TET2-mutated clone expansion, suggesting that 
IL-6 may enable the selective advantage of TET2-mutated 
clones [65•].

Another commonly mutated CH gene is JAK2, which 
has now been implicated in the development of pulmonary 
hypertension: a cause of right heart failure [22]. In a pro-
spective clinical cohort, JAK2V617F-positive CH was more 
common in patients with pulmonary hypertension than in 
healthy controls [22]. Extending this finding into mice for 
mechanistic insight, transgenic mice harboring Jak2V617F 
had exacerbated pulmonary hypertension and pulmonary 
arterial remodeling after being exposed to chronic hypoxia. 
This was accompanied by increased neutrophil invasion of 
the pulmonary arterial regions and increases in neutrophil-
derived elastase activity [22]. Inhibiting Alk1/2, which is 
upregulated by Jak2V617F, completely stopped the develop-
ment of pulmonary hypertension in Jak2V617F mice [22]. 
JAK2V617F may also cause venous thromboembolism and 
pulmonary embolism further contributing to pulmonary 
hypertension [66–69]. One demonstrated mechanism for 
thromboembolism caused by JAK2 mutations is through 
enhanced production of neutrophil extracellular traps: large 
structures that are web-like, pro-thrombotic and made of 
cytosolic and granule proteins stuck together on a scaffold 
of decondensed chromatin [69, 70]. Interestingly, because 
JAK2 can be inhibited by ruxolitinib, this may be a therapy 
for pulmonary hypertension in the future. TET2 has also 
been implicated in pulmonary hypertension as germline 
mutations are disproportionately found in patients with 
pulmonary hypertension, as circulating TET2 expression is 
reduced in this disease, and as TET2 knockout mice spon-
taneously develop pulmonary hypertension which can be 
reversed by Il-1β blockade [71].

Returning to JAK2, JAK2 mutations have been associ-
ated with cardiovascular outcomes other than pulmonary 
hypertension. Jak2V617F mice are predisposed to devel-
oping aortic aneurysms, suggesting vascular effects beyond 
the pulmonary arterial bed [21]. Jak2V617F bone mar-
row transplanted into wildtype mice show increased bone 
marrow-derived hematopoietic cells invading the aorta, 
and this translocation can be blocked by ruxolitinib [21]. 
JAK2V617F also accelerates atherosclerosis in part through 
activation of the AIM2 inflammasome, by promoting neutro-
phil invasion into early atherosclerotic lesions, and by caus-
ing defective macrophage erythrophagocytosis [72•, 73].

Adaptive immune mechanisms have been implicated in 
poor cardiac outcomes due to CH as well. Patients with TET2 
or DNMT3A mutations had significantly reduced OS after 
undergoing TAVR [25]. No differences in cytokine serum 
levels were found between patients with and without CH 

mutations, but patients with TET2 or DNMT3A mutations did 
have elevated Th17 / Treg ratios on flow cytometry, sugges-
tive of increased systemic T-cell driven inflammation [25].

Patients with CH mutations have higher rates of diabetes 
mellitus at baseline (21.2% vs 33.3%, p = 0.035) [36]. This 
observation corresponds with evidence from mice showing 
that Tet2 deficiency modeled through bone marrow trans-
plants enhances insulin resistance in aged mice as well as 
obese mice while increasing Il-1β production from bone 
marrow-derived macrophages in adipose tissue [74]. Like 
in the murine models of heart failure and atherosclerosis, 
these effects could be rescued through NLRP3 inflamma-
some inhibition [74]. Large population studies have also 
found higher rates of diabetes mellitus type 2 in patients 
with CH [15]. Investigation into the incidence or progression 
of diabetic kidney disease have not found an association with 
CH but there is evidence that CH promotes the development 
of chronic kidney disease at large, especially in the context 
of myeloid CH mutations and myeloid mCAs [75, 76]. Thus, 
aggravation of cardiac risk factors like diabetes and chronic 
kidney disease is an additional mechanism through which 
CH mutations are able to impact cardiovascular outcomes. 
Moreover, other established cardiovascular risk factors 
may cause CH. Smoking may mediate some of its negative 
cardiovascular effects through promoting the development 
of CH. Some studies have shown an association between 
smoke exposure and somatic CH mutations and others have 
shown an association with mCAs [10, 77, 78]. Unhealthy 
diets, defined as being low in fruits and vegetables and high 
in red meat, processed food, and added salt, have also been 
associated with a higher prevalence of CH [79]. The cardio-
vascular effects of CH with the corresponding mechanisms 
are summarized in Fig. 1.

Saving the Heart or the Blood Within It, CH 
Enhances Therapy‑Related Cardiac Toxicity

Human studies have demonstrated clear evidence that can-
cer therapy can influence the development of CH and hence 
influence cardiovascular risk longitudinally [80]. Anthracy-
clines are chemotherapeutic agents employed against a wide 
variety of solid and liquid malignancies. Anthracyclines 
inhibit topoisomerase 2β and in doing so kill tumor cells 
but also cause cardiomyocyte injury, leading to left ventricu-
lar dysfunction [81]. In a mouse model of therapy-related 
CH in which TP53 heterozygous deficient hematopoietic 
stem and progenitor cells (HSPCs) were transferred to mice 
treated with doxorubicin, doxorubicin treatment promoted 
the expansion of TP53 deficient HSPCs [27]. Furthermore, 
mice harboring the TP53 heterozygous HSPCs had acceler-
ated doxorubicin cardiac toxicity as measured by decreased 
capillary density, decreased fractional shortening, decreased 
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left ventricular posterior wall thickness diameter, increased 
left ventricular end-systolic diameter, and decreased left 
ventricular mass. While cardiac monocyte and macrophage 
population sizes were not affected by TP53 deficiency, car-
diac neutrophil counts were increased and depleting neutro-
phils with α-Ly6G antibody rescued the cardiotoxic effects 
of doxorubicin. These murine results demonstrate that TP53-
mediated CH enhances neutrophil invasion and damage of 
cardiac tissue after treatment with doxorubicin.

While CH is classically driven by the age-related accu-
mulation of somatic mutations, CH can also be caused 
by the selection of HSPCs and genotoxic stress produced 
by cancer directed therapy and will be referred to as 
therapy-related CH (t-CH). Mutations in DNA-damage 
response pathways are common following chemotherapy 
or radiotherapy, specifically in PPM1D and in TP53 [82, 
83]. PPM1D is another myeloid CHIP gene[2], and muta-
tions in PPM1D are seen in up to 20% of patients with 
therapy-related myeloid neoplasms [84]. In mice with 
Ppm1d HSPC mutations introduced by CRISPR-Cas9, 
Ppm1d mutations caused adverse ventricular remodeling 
and contractile dysfunction in mice challenged with an 
angiotensin II infusion [82]. Similar to the studies on 
Tet2, Ppm1d mutations caused higher levels of Il-1β and 
the cardiac remodeling effects noted were prevented by 
NLRP3 inflammasome inhibition suggesting that Ppm1d 
mutations mediate cardiac toxicity at least in part through 

the same cytokine pathway as Tet2 mutations [82]. Addi-
tionally, Ppm1d-mutated macrophages exhibited impaired 
DNA damage repair pathways, higher reactive oxygen 
species levels, and increased Il-18 secretion [82]. Thus, 
chemotherapy and radiotherapy can cause t-CH via muta-
tions in Ppm1d, which subsequently shifts macrophage 
polarization towards a pro-inflammatory phenotype (M1), 
contributing to cardiomyocyte injury that synergizes with 
the direct cardiotoxicity of prior chemotherapy or radio-
therapy. These preclinical findings, that CH mutations 
enhance anthracycline cardiac toxicity, are corroborated 
in human studies: within adult lymphoma patients treated 
with anthracyclines, TET2 mutations markedly increased 
the risk of developing anthracycline-induced cardiotoxic-
ity (odds ratio: 5.15, 1.10–24.05 95% CI) [85].

Conclusions

• Available data extensively implicate CH as a cardiovas-
cular risk factor in the settings of atherosclerosis, heart 
failure, aortic stenosis/TAVR, orthotopic heart trans-
plantation, pulmonary hypertension, aortic aneurysm, 
and stroke. CH may potentiate cardiac risk via asso-
ciations with smoking, diabetes mellitus, and chronic 
kidney disease.
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• CH due to mutations in myeloid genes but not lymphoid 
genes or mCAs is associated with CAD. Evidence that 
TET2 mutations are causative is especially strong.

• TET2, DNMT3A, and ASXL1 mutations cause macrophages 
to secrete higher levels of cytokines and chemokines, 
including IL-1β and IL-6, which contribute to accelerated 
atherosclerosis, heart failure, and diabetes mellitus type 
2. Canakinumab, a monoclonal antibody that neutralizes 
IL-1β as secondary myocardial infarction prophylaxis, has 
enhanced efficacy in patients that carry a TET2 mutation.

• CH mutations, specifically in TP53 and TET2, can 
increase myocardial toxicity from anthracycline chemo-
therapy in part through enhanced trafficking of neutro-
phils to the injured myocardium.

• PPM1D t-CH is common in both patients with solid 
tumors and myeloid malignancies. Similar to TET2, 
PPM1D CH promotes non-ischemic heart failure in mice 
through IL-1β inflammation.

Future Research Directions

• Generate prospective evidence that canakinumab can lead 
to improved cardiovascular outcomes in patients harbor-
ing myeloid CH mutations. Similarly, evaluate whether 
inhibiting JAK2V617F with ruxolitinib can treat pulmo-
nary hypertension patients harboring the V617F mutation.

• More rigorously assess mechanisms alternative to IL-1β 
production, such as IL-6 or IL-18 production or T-cell 
driven inflammation for contributions to cardiovascular 
toxicity of CH mutations.

• Expand research into uncharacterized CH mutations and 
mCAs, and into their effects on the cardiovascular sys-
tem. mCAs as a class have not been implicated in cardiac 
outcomes, and understanding the effects of individual 
mCAs remains unknown.
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