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Abstract
Purposeof Review In this review, we will summarize the effects of these perioperative anesthetics and anesthetic interven-
tions on the immune system and tumorigenesis as well as address the related clinical evidence on cancer-related mortality 
and recurrence.
Recent Findings Cancer remains a leading cause of morbidity and mortality worldwide. For many solid tumors, surgery is 
one of the major therapies. Unfortunately, surgery promotes angiogenesis, shedding of circulating cancer cells, and suppresses 
immunity. Hence, the perioperative period has a close relationship with cancer metastases or recurrence. In the perioperative 
period, patients require multiple anesthetic management including anesthetics, anesthetic techniques, and body temperature 
control. Preclinical and retrospective studies have found that these anesthetic agents and interventions have complex effects 
on cancer outcomes. Therefore, well-planned, prospective, randomized controlled trials are required to explore the effects 
of different anesthetics and techniques on long-term outcomes after cancer surgery.
Summary Due to the conflicting effects of anesthetic management on cancer recurrence, further preclinical and clinical 
trials are required and beneficial to the development of systemic cancer therapies.
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Introduction

Cancer is a major contributor to global morbidity and mor-
tality despite advances in prevention, diagnosis, and treat-
ment. According to the World Health Organization and the 
American Medical Association, cancer is becoming a major 
global health concern since it is the second leading cause of 
death after cardiovascular disease, resulting in 10 million 
deaths in 2020 [1], and the overall incidence of new can-
cer cases is almost 19.3 million worldwide [2]. Moreover, 

many patients experienced delayed diagnosis and treatment 
(including surgery) because of the unprecedented impacts 
of the COVID-19 pandemic on public health care sys-
tems. These delays may have a significant effect on cancer 
prognosis.

Despite advances in chemotherapy, radiotherapy, and 
immunotherapy, surgery (under anesthesia) is still an 
important component of modern cancer treatment that 
helps millions of people live healthier, more productive 
lives. However, the relationship between anesthesia and 
cancer recurrence remains a controversial issue because 
surgical stress and intraoperative anesthesia can impair 
the host immune system [3]. A number of theories explain 
how the surgical procedure may promote cancer recurrence 
after excision and the adverse impact of surgical stress on 
the body’s innate tumor defense mechanisms [4, 5] and the 
inadvertent seeding of tumor cells during the perioperative 
period [6, 7••, 8]. Anesthetics can also suppress the immune 
response by directly affecting cell-mediated immunity (CMI) 
or by activating the hypothalamic–pituitary–adrenal axis 
(HPA) and the sympathetic nervous system (SNS) [9]. The 
impairment of CMI may reactivate micrometastases that are 
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already disseminated at the time of surgery [10], increasing 
the frequencies of cancer recurrence and distant metastasis. 
The stimulation of the HPA induces the release of neuroen-
docrine mediators, such as catecholamines, prostaglandin E2 
(PGE2), cytokines, and cortisol, which in turn attenuate the 
activity of immune cells [11•]. Other neuroendocrine media-
tors, such as IL-6 and matrix metalloproteinases (MMPs), 
are also secreted and play critical roles in the regulation of 
tumor growth and angiogenesis [10].

The role of anesthesia in cancer recurrence has received 
considerable attention in recent decades, and there have 
been a number of retrospective studies and much preclinical 
research into this topic. An increasing number of preclinical 
findings suggest that general anesthetics have the potential 
to influence critical hallmarks of cancer that are involved in 
tumorigenesis and metastasis [12]. For example, intravenous 
anesthetics, such as propofol, and inhalational volatile anes-
thetics, such as sevoflurane, are two major classes of general 
anesthetics often utilized in clinical practice. Sevoflurane 
has been demonstrated to promote proliferation, migration, 
invasion, and angiogenesis in a variety of cancer cell types, 
whereas propofol may antagonize these same pathways 
[13–15]. Several retrospective studies have demonstrated an 
association between inhalational anesthesia and lower rates 
of recurrence-free survival in cancer patients who undergo 
elective surgery than in those who receive propofol-based 
anesthesia [16, 17]. Additionally, perioperative anesthetic 
management, including different anesthetic techniques and 
body temperature management, also has a close relationship 
with cancer prognosis [18•, 19••]. Based on current pre-
clinical findings, every component of these procedures has 
a possible link to the development of immune dysfunctions 
that influence cancer metastasis and recurrence. However, 
only some small-scale retrospective studies have investigated 
the association between perioperative anesthetic manage-
ment and cancer recurrence, which highlights the need for 
further prospective and randomized controlled trials (RCTs).

With the aim of optimizing the current clinical strategy 
and unraveling the controversial findings on exactly how sur-
gery/anesthetics/anesthetic intervention-induced immuno-
suppression leads to an increase in cancer-related recurrence 
during the perioperative period, we provide a comprehensive 
review of the important role of the perioperative period in 
cancer treatment and the profound influence of anesthesia 
on cancer recurrence.

Effects of the Immune System on Cancer 
Recurrence

To understand the effects of surgery and anesthetics on can-
cer recurrence, the first step is to understand the basics of 
cancer biology. The microenvironment of tumors consists 

of cancer cells, different kinds of inflammatory cells, and 
inflammatory mediators. Both tumor and inflammatory cells 
secrete a complex array of chemical and protein signaling 
molecules that promote cancer development and metasta-
sis in both an autocrine and paracrine manner. It should be 
emphasized that the immune cells that have been recruited 
may not have the typical protective response that leads to 
tumor cell eradication. The secretion of proinflammatory 
cytokines by these immune cells and the tumor itself may 
shift the balance in favor of tumor progression [20]. As a 
result, a tumor can be viewed as an organism that establishes 
its own complex physical and chemical connections with 
the host immune system. The majority of the molecular and 
cellular processes involved in this process remain to be fully 
elucidated.

Both the regression and development of cancer cells are 
influenced by the immune system. The innate and adaptive 
systems form the functional and effective immune system. 
Epithelial barriers, granulocytes, macrophages, natural 
killer (NK) cells, and dendritic cells make up the innate 
immune system, which is the first-line defense against invad-
ing organisms and tumor cells. The adaptive immune sys-
tem serves to eliminate threats that have evaded the innate 
immune system. It comprises humoral immunity, antibody-
mediated response, and CMI [21]. CMI, which is medi-
ated by numerous kinds of T cells, is the principal defense 
against tumor cell invasion among these three components of 
immunity. Activated T cells are categorized by the cytokines 
that they secrete. The cytokines released by T-helper (Th) 
1 cells promote inflammation, stimulate B cells, activate 
macrophages, and promote the development of cytotoxic T 
cells. IgE production and eosinophil are both stimulated by 
the cytokines that are secreted by Th2 cells [22]. Another 
important proinflammatory cytokine is IL-1, which is gen-
erated mostly by monocytes and macrophages. It is also a 
key regulator of inflammation and immune responses [23].

It has long been recognized that cancer can occur at 
sites of inflammation and injury caused by surgery, and it 
is known that inflammatory cells and mediators play a key 
role in cancer recurrence. Inflammatory cells, including leu-
kocytes (neutrophils, monocytes, eosinophils, and basophils) 
and lymphocytes (T cells, B cells, and NK cells), are pre-
sent early in the neoplastic process and play an important 
role in the tumor microenvironment by secreting an array of 
cytokines and chemokines, including IL-6, TNF-α, IL-1β, 
and PGE2. During the “elimination phase,” when a cancer-
free state should be achieved, they are the essential players 
in recognizing and eliminating cancer cells [24••]. If tumor 
cells survive after the “elimination phase,” they may enter 
an “equilibrium” state, in which the host’s adaptive immune 
response keeps them dormant and prevents further tumor 
progression. In the final stage, called the “escape phase,” 
tumor cells exhibit apparent clinical growth as they evade 
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the control of the host’s immunity and its capacity to create 
an immunosuppressive state by producing various cytokines, 
such as vascular endothelial growth factor (VEGF) and 
transforming growth factor-β (TGF-β) [25]. Moreover, DNA 
damage and somatic mutations may lead to cancer forma-
tion, which is a process that has been termed “initiation”; 
this process can persist in cells indefinitely until a second 
injury or “trigger” occurs. Inflammation, injury, irritants, 
or a host of other exposures may all act as “triggers.” This 
kind of “trigger”-related process results in the recruitment of 
inflammatory cells and finally constitutes a positive feedback 
loop, which leads to decreased cellular proliferation [26•].

The Perioperative Period as a Critical 
Window for Cancer Recurrence

The perioperative period is divided into three phases: the 
preoperative period (a few preoperative hours), the intraop-
erative period, and the postoperative period (several days 
after surgery). During the intraoperative period, general 
anesthesia consists of the administration of intravenous 
anesthetics (e.g., thiopental or propofol) for induction, fol-
lowed by muscle relaxants and endotracheal intubation, then 
volatile anesthetics (e.g., sevoflurane) and opioids, which are 
applied for maintenance and pain control. The perioperative 
period triggers significant physiologic disruptions because it 
is a time of maximum vulnerability for patients with cancer. 
In the setting of perioperative inflammation, immunosup-
pression, and increased concentrations of catecholamines 
and angiogenesis, the seeding of circulating cancer cells in 
distant organs, as well as the growth of dormant tumors and 
micrometastasis, can be facilitated [27].

Given the critical role of the perioperative period of sur-
gery, it is necessary to clarify its impact on cancer recur-
rence. It was first hypothesized a century ago that surgery 
promotes local recurrence and the distant spread of cancer 
[28]. Several theories have been proposed to explain this 
phenomenon, the most notable of which involve minimal 
levels of residual disease, the dissemination of tumor cells 
at the time of surgery, and, possibly, a switch from tumor 
dormancy to proliferation [29, 30]. Recent studies have 
investigated the possible influence of the metabolic, neu-
roendocrine, inflammatory, and immunological changes that 
occur perioperatively and are connected to or induced by 
anesthesia. Indeed, there is some evidence that anesthetics 
and other perioperative factors have the potential to affect 
long-term outcomes after cancer surgery [31]. According 
to these findings, general anesthetics, except propofol, can 
impair various immune functions of macrophages, den-
dritic cells, T lymphocytes, and NK cells [32]. Addition-
ally, although opioid analgesia is the foundation of cancer 
pain relief, it can also promote tumor growth by inhibiting 

immune function and increasing angiogenesis [33]. As a 
result, opioid-sparing analgesia may be used to maintain 
the normal function of NK cells and reduce the metastatic 
spread of cancer [34]. As regional anesthesia (RA)/analgesia 
can block both afferent neural transmissions from the central 
nervous system and the descending efferent signals, it may 
attenuate surgery-stimulated adverse effects by minimizing 
the neuroendocrine stress response induced by SNS activa-
tion. Furthermore, regional analgesia inhibits the release of 
endogenous opioids; thus, the occurrence of opioid-induced 
immune suppression may be reduced [35]. With the combi-
nation of regional and general anesthesia (GA)/analgesia, the 
amount of general anesthetics required can be significantly 
reduced, which is probably accompanied by reduced immu-
nosuppression as well as lower requirements for the use of 
opioids for postoperative pain relief [3]. However, further 
RCTs are required to substantially verify this theory.

Mechanisms of Cancer Recurrence 
in the Perioperative Period

The mechanisms underlying postsurgical cancer recurrence 
are complicated and poorly understood. Following the 
intended curative surgical resection of a primary tumor, can-
cer may recur at several sites due to a variety of mechanisms 
[18•]. There are four possible mechanisms that can cause 
cancer recurrence. The first is local recurrence at the tumor 
resection site, which occurs due to the proliferation of resid-
ual cells. The second is lymph node metastasis caused by the 
release of tumor cells into the lymphatic system before or 
during the procedure. The third method involves the seeding 
of distant organs by circulating tumor cells (CTCs) released 
before or during the procedure. The last involves seeding 
within a body cavity (e.g., peritoneal spread) [36].

The risk that individual cancer cells will seed in tissue 
and that the cancer will progress to a clinically significant 
metastatic disease is partly influenced by intraoperative 
dissemination, potentially by anesthesia and other perio-
perative events [37]. To survive in the hostile circulatory 
system by avoiding detection and elimination by margin-
alized leukocytes, few CTCs exist in the “slow circulation 
points” of the pulmonary and hepatic capillaries so that a 
complex tissue microenvironment involving the interrela-
tions of surrounding noncancerous stromal cells, immune 
system cells, extracellular matrix, chemokines, cytokines, 
and myriad other factors may be established [38, 39]. Once 
immune escape is accomplished, inflammatory mediators 
can boost the efficiency of local colonization by aiding in 
the destruction of the endothelial glycocalyx, combined with 
endothelial denudation resulting in the formation of a prem-
etastatic niche [40]. This precursor state comprises clusters 
of bone marrow-derived cells that populate and precondition 
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the extracellular environment, allowing subsequent CTC 
infiltration and colony expansion [41]. Hypoxic environ-
ments established at the surgical resection sites, as well as 
the activation of platelets that release chemokines that attract 
bone marrow-derived cells, may also aid in the development 
of the premetastatic niche [42]. These pathological changes 
can drive the process known as “epithelial-to-mesenchymal 
transition,” whereby epithelial cancer cells develop a mesen-
chymal phenotype facilitating cellular motility and thus trig-
gering angiogenic and metastatic cascades [43]. Therefore, 
dissemination, immune escape, and angiogenesis form an 
entire pathological process that finally induces cancer recur-
rence. We will further discuss each process below.

Intraoperative Dissemination: a Trigger 
for Cancer Recurrence

The intraoperative dissemination of tumor cells can occur 
through the lymphatic, hematogenous, and/or transcoelomic 
(a route of tumor metastasis across a body cavity or organ 
surface including the pleural or peritoneal surfaces) routes. 
CTCs are detectable in the majority of patients with solid 
tumors [44], and an increased number of CTCs has been 
confirmed to be linked with a poor prognosis in patients with 
a variety of tumor types [45, 46]. In particular, it has been 
demonstrated that CTC numbers increase following surgery 
for breast [47], lung [48], and colorectal [49] cancers. Thus, 
although the evidence that high numbers of CTCs corre-
late with inferior patient outcomes across all tumor types is 
currently inconclusive [50], there are reasonable concerns 
that tumor cell release after surgery leads to metastatic 
colonization.

Even after the removal of the primary tumor, dissemi-
nated cancer cells may survive and retain the ability to 
invade via lymphatic vessels because of surgical disruption, 
which has been observed by real-time fluorescence imag-
ing [51]. For example, the number of CTCs was detected 
to increase fourfold on average in the sentinel lymph nodes 
of a cohort of 414 patients following breast cancer surgery 
[52]. By analyzing mouse models and tissue samples from 
patients with pancreatic ductal adenocarcinoma, it was 
shown that dormant disseminated cancer cells that lacked 
a cell surface molecule that elicits T-cell-mediated attacks 
account for both quiescence and resistance to immune 
elimination since they are unable to relieve endoplasmic 
reticulum stress [53•]. Accordingly, the outgrowth of dis-
seminated cells into macrometastases requires not only high 
levels of surgical stress but also the suppression of systemic 
immunity [53•]. Additionally, the dissemination of tumor 
cells can be induced directly by surgical procedures. For 
example, the use of laparoscopic ports can result in port-
site recurrences that may cause intra-abdominal spread. This 

phenomenon has been reported following surgery for gas-
trointestinal [41], gynecological [54], urological [55], and 
thoracic [56] malignancies and, alarmingly, was reported to 
occur in more than 10% of patients following the resection 
of incidentally diagnosed gall bladder cancer [57].

Anesthetics used during surgery also have a potential role 
in promoting metastatic dissemination. In murine models 
of breast cancer, sevoflurane led to significantly more lung 
metastasis than propofol [58]. Interestingly, sevoflurane can 
increase IL-6 levels, which in turn leads to the activation of 
signal transducer and activator of transcription (STAT)-3 as 
well as the subsequent infiltration of myeloid cells into the 
lung [58]. According to this finding, anesthetics can promote 
cancer metastasis by altering the tumor microenvironment 
through cytokines [59].

Immune Escape: a Maladaptive Immune 
Response for Cancer Recurrence

A number of studies in both preclinical models and patient 
samples have converged on the theme that primary cancers 
and metastases apply a range of strategies to avoid detection 
and destruction by the immune system, and the majority 
of which are activated in the aftermath of surgery. Tissue 
damage is usually accompanied by localized inflammation, 
hypoxia, and acidosis, which can also influence infiltrat-
ing immune cells by promoting the activity of protumor 
M2-like macrophages and by suppressing antitumor immune 
responses [60] under the influence of inflammatory media-
tors, such as PGE2. PGE2 is a lipid mediator, and its action 
is mediated by PGE2 receptors (EP1-4). Both EP2 and EP4 
are Gs-coupled receptors that signal through adenylate 
cyclase-dependent cAMP/PKA/CREB pathways [61]. The 
effects of PGE2 related to immunosuppression include the 
inhibition of neutrophil, NK, and T-cell mitogenesis [62]. 
Tumor cells can shed cell surface ligands to evade recog-
nition by immune cells, including NK cells, with the con-
sequent impairment of NK-cell-mediated cytolytic activity 
[63]. Such mechanisms reveal the temporary development 
of a tumor-promoting milieu surrounding the surgical wound 
or at sites of micrometastases that might increase the risk of 
recurrence [64, 65].

Following surgery, there is a protracted period of immu-
nosuppression. This counterbalancing phenomenon, referred 
to as the resolution phase of inflammation, has evolved to 
contain the intensity of the acute inflammatory response but 
might also contribute to perioperative vulnerability to cancer 
recurrence. Accordingly, a compensatory anti-inflammatory 
response aroused by the surgical response can also lead to 
the dysregulation of CMI with subsequent immunosuppres-
sion [66]. Furthermore, prostaglandin signaling regulates 
lymphatic vessel dilatation and, therefore, may enable cancer 
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metastasis [67]. This cytokine-mediated imbalance results 
in a shift toward the protumoral Th2 profile, which favors 
tumor growth by disrupting CMI [68].

The secretion of cortisol and catecholamines is also a 
major trigger caused by surgical stress and anesthetics [69]. 
The action of cortisol is to diffuse through the cellular mem-
brane to bind the intracellular glucocorticoid receptor. This 
complex translocates into the cell nucleus, where it inter-
acts with glucocorticoid-responsive elements to transcribe 
different factors, such as NF-κB, which enable cortisol to 
inhibit or promote the production of inflammatory cytokines 
directly [70]. β-adrenoreceptors have been found in breast, 
prostate, lung, esophageal, and liver cancer cells [71–75]. 
Once epinephrine or norepinephrine activates β-adrenergic 
signaling, the intracellular concentration of cyclic adenosine 
monophosphate (cAMP) is increased to directly modulate 
cancer cell growth, proliferation, invasiveness, angiogen-
esis, and metastasis [76]. One critical characteristic of can-
cer cells is the formation of invadopodia, which are used to 
degrade and facilitate migration through the extracellular 
matrix [77]. The activation of β-adrenoreceptors promotes 
an increase in the number of invadopodia, which correlates 
with enhanced tumor invasion in breast cancer models [78]. 
Hence, minimizing surgical stress and limiting subsequent 
immunosuppression might reduce patient vulnerability and 
hamper cancer metastasis after surgery.

Epithelial‑to‑Mesenchymal Transition: 
a Major Cellular Mechanism of Cancer 
Recurrence

It has been shown that metastatic cancer cells migrate 
individually both in vivo and in vitro [79]. In humans, it is 
believed that seeding requires the joint action of a cluster of 
tumor cells moving together [80], which involves epithelial-
mesenchymal transition (EMT). EMT is the transdifferen-
tiation process through which transformed epithelial cells 
obtain the capacity to invade, resist stress, and disseminate 
[81]. Specifically, cancer cell clusters can retain and require 
epithelial gene expression and can transition between dis-
tinct epithelial differentiation states to accomplish the pro-
liferative versus migratory components of metastasis. The 
transition from one state to another is governed by several 
kinds of growth factors [82] and signaling pathways [83]. 
Spontaneous EMT in primary tumor cells shifts among dif-
ferent intermediate stages with different invasive, metastatic, 
and differentiation characteristics [84]. Tumor cells with a 
combination of epithelial and mesenchymal phenotypes are 
more effective in circulation and colonization at the second-
ary site, which favors the development of metastasis [84].

The initiation of the EMT process is considered respon-
sive to specific environmental stimuli during cancer surgery 

[85]. Moreover, recent studies have implicated that using 
anesthetics can induce EMT and facilitate tumor metastasis 
during the perioperative period. Ischemia/reperfusion injury 
(IRI) often occurs during surgeries involving hepatocellular 
carcinoma (HCC) and liver transplantation [86, 87]. Hypoxia 
and inflammation can upregulate lipocalin2 (LCN2) levels 
to induce EMT in many cancers, which promotes tumor 
cell survival, proliferation, and metastasis [88, 89]. Latent 
EMT programs can be activated through the crosstalk that 
occurs between various immune cells that accumulate dur-
ing the surgery and neighboring carcinoma cells. For exam-
ple, CD8 + cytotoxic T cells are typically involved in the 
immunosurveillance and immunoediting of carcinomas. 
Moreover, pancreatic ductal epithelial cells lose the expres-
sion of E-cadherin following coculture with activated T cells 
in vitro, resulting in a spindle-shaped mesenchymal mor-
phology accompanied by the expression of vimentin and 
ZEB1 [90]. In cancer patients, EMT programs are impor-
tant for tissue regeneration and repair during wound healing 
after surgery. With the help of EMT, nonmotile epithelial 
cells are able to migrate across a wound site, proliferate, 
and then revert to the epithelial state to restore the integrity 
of the epithelial barrier as part of a process known as “re-
epithelialization” [91, 92]. However, when the deregulated 
activity of EMT is induced by the overexpression of SLUG 
in human keratinocytes in vitro, it can cause the increased 
levels of desmosomal disruption and tumor spreading that 
are typically observed during local recurrence [93]. Regard-
ing anesthetics, propofol was found to normalize EMT by 
inhibiting SLUG expression, resulting in an increase in the 
occurrence of apoptosis and a reduction in the growth and 
invasion of pancreatic cancer cells [94•].

The Perioperative Effects of Anesthetics 
on Cancer Recurrence

Inhalational Anesthetics

Volatile anesthetics are widely used during oncological sur-
gery. Preclinical research suggests that volatile agents can 
promote cancer progression by direct and indirect mecha-
nisms. First, volatile anesthetics can directly modify intracel-
lular signals involved in key aspects of cancer cell behavior, 
including proliferation, invasion, migration, and sensitivity 
to chemotherapeutic agents. For example, isoflurane at 1.2% 
has been found to promote proliferation and migration while 
reducing levels of apoptosis in glioblastoma stem cells by 
promoting the overexpression of hypoxia-inducible factor 
(HIF) [95••, 96]. In non-small cell lung cancer, isoflurane (at 
1%, 2%, and 3%) promoted proliferation in a concentration-
dependent manner and invasion and invasiveness via Akt-
mTOR signaling [97]. Desflurane at 10.3% induces EMT 
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and metastasis through dysregulation of a well-known tumor 
suppressor called the miR-34/LOXL3 axis in a colorectal 
cancer cell line [98]. Using 2% sevoflurane for 6 h in vitro 
can increase the survival of breast cancer cells via modula-
tion of intracellular Ca2 + homeostasis [99]. Second, sevo-
flurane can suppress CMI, which indirectly promotes tumor 
cell proliferation and angiogenesis. Sevoflurane, isoflurane, 
and desflurane induce the apoptosis of T lymphocytes and 
upregulate the expression of HIF-1α both in vitro and in vivo 
[100, 101]. It has also been shown that sevoflurane increases 
the levels of MMP-3 and MMP-9 in patients undergoing 
breast cancer surgery [102]. Third, inhalation anesthetics 
may cause distant metastasis by the activation of the HPA 
axis and the SNS by releasing neuroendocrine mediators, 
such as cortisol, catecholamines, and PGE2 [103].

In addition to these preclinical findings cited above, ret-
rospective clinical studies have also widely discussed the 
effects of volatile and propofol-based anesthesia on cancer 
outcomes. Nevertheless, these studies have either shown that 
inhalational anesthetics are associated with an increased risk 
of cancer recurrence and the decreased overall survival (OS) 
or have shown no difference in different cancer outcomes 
between the two groups that were analyzed [16, 17, 104, 
105•, 106, 107].

In summary, volatile anesthetics regulate important func-
tions of cancer cells. The conflicting results of the pro and 
antitumoral effects on cancer cells might be explained by 
differences in experimental conditions, such as type of cell 
line, incubation time (range from 30 min to 6 h), type, and 
especially the concentration of volatile anesthetics (range 
between 0.5 and 10%). For instance, some studies treated 
cancer cells with extremely high concentrations that are 
unlikely to be employed in clinical practice, and perhaps, 
the “antitumortumoural” effect is related to the use of toxic 
concentrations of volatile anesthetics [108].

Intravenous Anesthetics

Similar to inhaled anesthetics, propofol is hypothesized 
to have both antitumor and tumor-promoting effects [109, 
110]. Propofol inhibits the invasion and migration of breast 
tumors directly by altering the expression of MMPs, which 
are enzymes that play important roles in the degradation 
of extracellular proteins and EMT [111], by inhibiting the 
NF-κB pathway in vitro [112]. In another in vitro study, 
propofol inhibited the migration, but not the proliferation, 
of both ER-positive and ER-negative breast cancer cells 
mediated by decreasing the expression of neuroepithelial 
transforming gene-1, which is important for enhanced 
migration [113]. Tumor endothelial cells (TECs) [114], 
which are located in the inner surface of the blood vessels 
of the tumor stroma, have close associations with tumor 
progression in angiogenesis, metastasis, and colonization 

[115]. Propofol can reduce the expression of adhesion 
molecules (E-selectin, ICAM-1, and VCAM-1) and gly-
colysis proteins (GLUT1, HK2, and LDHA) in TECs, lead-
ing to an inhibitory effect on tumor metastasis [116]. It 
has also been found that aerobic glycolysis in colorectal 
cancer cells can be directly disrupted by propofol via inac-
tivation of the NMDAR-CAMKII-ERK pathway [117]. 
The antitumoral effects of propofol on cancer progression 
also entail indirect mechanisms underlying immunosup-
pression, such as the potentiation of NK-cell cytotoxicity 
and reduced activation of the inflammatory response. For 
instance, in the peripheral blood of patients with colon 
cancer, propofol increased the expression levels of acti-
vated p30 and p44 in NK cells, which can promote the 
activation and proliferation of NK cells [118]. Addition-
ally, in the peripheral blood of patients with esophageal 
squamous cell carcinoma, propofol enhanced the expres-
sion of cytotoxic effector molecules, such as granzyme B 
and IFN-γ, indicating enhanced NK cytotoxicity [119]. 
Regarding the cytokine profile, propofol downregulates the 
levels of proinflammatory cytokines, such as IL-1β, IL-6, 
and TNF-α [120], and inhibits PGE2 and COX activity 
[121]. Surprisingly, propofol can decrease NET forma-
tion through the inhibition of p-ERK without disrupting 
neutrophil killing capacity [122, 123].

Regarding tumor-promoting effects, in vitro studies have 
shown that propofol significantly promotes apoptosis in 
breast cancer cells followed by the downregulation of miR-
24 expression, upregulation of p27 expression, and cleaved 
caspase-3 expression [124]. The expression levels of pro-
apoptotic proteins, such as Bax, Bak, and cytochrome C, 
are increased, followed by the activation of the caspase cas-
cades via an intrinsic apoptotic signaling pathway induced 
by propofol [125]. In addition, HIF-1 activation and the 
activation of related downstream genes, such as VEGF, 
were suppressed by propofol in an in vitro study using mac-
rophage cells. This process is expected to inhibit the sys-
temic inflammatory response to surgery [126]. In particular, 
propofol has a causal link with breast cancer recurrence. 
Propofol can accelerate the migration of breast cancer cells 
in association with the activation of the  GABAA receptor 
[127] and promote the proliferation of human breast cancer 
cells related to the inhibition of p53 and activation of nuclear 
factor E2-related factor-2 in vitro [128].

Consistent with these preclinical data, the findings of ret-
rospective studies that are presented in Table 1 are contradic-
tory. However, recently, an increasing number of retrospec-
tive studies have shown that improved survival associated 
with propofol anesthesia is more pronounced in gastric can-
cer surgery. Nevertheless, further large-scale, high-quality 
RCTs are warranted to confirm the relationship between 
different anesthetic choices and cancer outcomes. Recent 
basic and clinical evidence raises the possibility that total 
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Table 1  Summary of clinical studies comparing TIVA vs. inhalational anesthesia with respect to cancer outcomes

Ref Year Study type Cancer type Patients Outcomes

[214] 2022 Retrospective Oral n = 1347 No difference in RFS (HR 1.11, 95% 
CI 0.85–1.45, p = 0.439) or OS (HR 
1.10, 95% CI 0.84–1.45, p = 0.527)

[215] 2021 Retrospective Gastric n = 2827 Increased OS (HR 0.65; 95% CI 
0.46–0.94, p < 0.01) in TIVA group

[216] 2021 Retrospective Glioblastoma n = 50 Increased OS (HR 0.51; 95% 
CI 0.30–0.85, p = 0.011) and 
decreased recurrence (HR 0.60; 
95% CI 0.37–0.98, p = 0.040) in 
TIVA group

[217] 2020 Retrospective Digestive n = 196,303 No difference in RFS (HR 0.99, 95% 
CI 0.96–1.03, p = 0.59) or OS (HR 
1.02, 95% CI 0.98–1.07, p = 0.28)

[218] 2020 Retrospective Gastric n = 408 Increased OS (HR 0.56; 95% CI 
0.41–0.78, p < 0.001) in TIVA 
group

[219] 2020 Retrospective Bladder n = 231 Increased RFS (HR 3.4; 95% CI 
1.5–7.7, p < 0.01) in TIVA group

[220] 2020 Retrospective Pancreatic n = 68 Increased OS (HR 0.63; 95% 
CI 0.40–0.97, p = 0.037) and 
decreased recurrence (HR 0.55; 
95% CI 0.34–0.90, p = 0.028) in 
TIVA group

[221] 2020 MA Breast, gastric, colon, liver, glioma, 
lung

n = 23,489 Increased OS (HR 0.79; 95% CI 
0.66–0.94, p = 0.008) in TIVA 
group. No difference in RFS (HR 
0.81; 95% CI 0.61–1.07, p = 0.137)

[197••] 2019 RCT Breast n = 2108 No difference in cancer recurrence 
(HR 0.97, 95% CI 0.74–1.28; 
p = 0.84)

[222] 2019 Retrospective Appendiceal n = 373 No difference in RFS (HR 1.45, 95% 
CI 0.94–2.22, p = 0.093) or OS (HR 
1.66, 95% CI 0.86–3.20, p = 0.128)

[223] 2019 Retrospective Cholangiocarcinoma n = 70 Increased OS (HR 0.51; 95% 
CI 0.28–0.94, p = 0.032) and 
decreased metastasis (HR 0.36; 
95% CI 0.15–0.88, p = 0.025) in 
TIVA group. No difference in 
cancer recurrence (HR 1.17, 95% 
CI 0.46–2.93; p = 0.746)

[224] 2019 Retrospective Gastric n = 1538 No difference in RFS (HR 0.91, 95% 
CI 0.5–1.67, p = 0.764) or OS (HR 
0.92, 95% CI 0.52–1.64, p = 0.774)

[225] 2019 Retrospective Breast n = 5331 No difference in RFS (HR 0.96; 95% 
CI 0.69–1.32, p = 0.782) or OS (HR 
0.96, 95% CI 0.69–1.33, p = 0.805)

[226] 2019 Retrospective Liver n = 492 Increased OS (HR 0.47; 95% 
CI 0.38–0.59, p < 0.001) and 
decreased local recurrence (HR 
0.31; 95% CI 0.26–0.37, p < 0.001) 
and distant metastasis (HR 0.13; 
95% CI 0.08–0.20, p < 0.001) in 
TIVA group

[227] 2019 Retrospective Breast, gastric, colon, liver, lung n = 2496 No difference in OS (HR 1.26, 95% 
CI 0.88–1.79, p = 0.21)
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intravenous anesthesia with propofol is appropriate for use 
as the standard anesthetic agent for all cancer surgeries.

Opioids

Opioid analgesics, as the fundamental pain relief approach, 
are commonly used within the perioperative period to sup-
plement general anesthetic agents in both the induction and 
maintenance of anesthesia. There is some conflicting evi-
dence from experimental studies investigating the role of 
opioids in tumor growth and metastasis. Most animal studies 
have found that certain opioids cause immunosuppression 
and, in turn, increase tumor recurrence postoperatively. In 
particular, morphine has largely been shown to suppress NK-
cell cytotoxicity and T-cell proliferation [129, 130]. Simi-
larly, it has been shown that fentanyl suppresses the activity 
of NK cells and promotes the apoptosis of lymphocytes and 
macrophages [131, 132]. However, other studies resulted in 
contradictory findings and instead proposed the effects of 
morphine on resistance to tumor metastasis by the downreg-
ulation of the reciprocal proangiogenic interaction between 
macrophages and breast cancer cells [133, 134]. A recent 
retrospective cohort clinical study of 1679 patients with 
stage I–III colorectal cancer showed no association between 
fentanyl use and oncological recurrence [135]. Alternatively, 
tramadol has been shown to have immunostimulatory prop-
erties by enhancing NK-cell cytotoxicity [136].

The mu-opioid receptors (MORs) are the major sub-
type of opioid receptors. MORs have been shown to be 
overexpressed in certain cancers. Mathew and colleagues 
in their report supported the fact that MOR is linked with 
tumor metastasis and found that there was less growth pro-
gression of lung carcinoma in MOR knockout mice [137]. 
Morphine has been found to not stimulate tumor initiation; 
however, it was found to stimulate the growth of existing 
breast tumors via MOPs in an experimental study [138]. 
Furthermore, the investigators concluded that patients 
who were given propofol anesthesia had a higher level of 
NK-cell expression than patients given general anesthesia 
with opioid analgesia. Conclusively, this report implies 
that opioids may modulate immune function mediated by 
MORs in breast cancer tissue [139]. Previous clinical evi-
dence shows that the expression of MOR is associated with 
tumor grade and prognosis. Prostate cancer tissue exhibits 
more intense expression of MOR during staining, and in 
turn, patients with higher expression have worse onco-
logic outcomes [140]. MOR is also expressed at low lev-
els in patients with low-grade (G1, G2) or low-stage (T1, 
T2) hepatocellular carcinoma [141], which is consistent 
with the results of a long-term retrospective study [142•]. 
Therefore, it is reasonable that there are several retrospec-
tive and prospective studies showing that intraoperative 
administration of high-dose opioids, including morphine 
and sufentanil, significantly reduced the survival rate and 

RCT, randomized controlled trial; TIVA, total intravenous anesthesia; OS, overall survival; RFS, recurrence-free survival; MA, meta-analysis; 
HR, hazard ratio

Table 1  (continued)

Ref Year Study type Cancer type Patients Outcomes

[228] 2019 MA Breast, esophageal, lung n = 18,778 Increased OS (HR 0.76; 95% CI 
0.63–0.92, p < 0.01) and RFS (HR 
0.78; 95% CI 0.65–0.94, p < 0.01) 
in TIVA group

[229] 2018 RCT (not powered for RFS and OS) Breast n = 8 No difference in RFS and OS
[230] 2018 Retrospective Gastric n = 2856 Increased OS (HR 0.63; 95% CI 

0.56–0.70, p < 0.001) in TIVA 
group

[105•] 2018 Retrospective Colorectal n = 1363 Increased OS (HR 0.27; 95% CI 
0.22–0.35, p < 0.001) in TIVA 
group

[231] 2018 Retrospective Lung n = 943 No difference in RFS (HR 1.31, 95% 
CI 0.84–2.04, p = 0.233) or OS (HR 
0.90, 95% CI 0.64–1.27, p = 0.551)

[17] 2017 Retrospective Esophageal n = 922 Increased OS (HR 1.58; 95% CI 
1.24–2.01, p < 0.001) and RFS (HR 
1.42; 95% CI 1.11–1.89, p = 0.006) 
in TIVA group

[232] 2017 Retrospective Glioblastoma n = 378 No difference in RFS (HR 1.07, 95% 
CI 0.85–1.37, p = 0.531) or OS (HR 
1.13, 95% CI 0.86–1.48, p = 0.531)

[233] 2017 RCT (not powered for RFS and OS) Lung n = 120 No difference in RFS and OS
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the median survival length in prostate cancer patients 
[143–145].

Local Anesthetics (LAs)

Several theories regarding the possible mechanisms of the 
observed potential beneficial effects of the LA results are 
stated below. First, it is well known that using RAs and LAs 
can reduce the use of opioids or volatile anesthetics during 
the perioperative period [146], which indirectly prevents the 
possible negative effects of general anesthetics on cancer 
recurrence. Second, there is strong evidence that LAs and 
RAs are able to reduce perioperative inflammation and the 
stress response induced by surgery [147, 148] and preserve 
the function of NK cells as one of the most important factors 
for the detection and destruction of CTCs [149, 150]. This 
systemic effect of the LA has a possible positive impact on 
perioperative processes leading to antitumor micrometasta-
ses by reducing the levels of CTCs in peripheral circulation, 
thus allowing prolonged (at least recurrence-free) survival. 
Third, lidocaine, bupivacaine, and ropivacaine, as usually 
used in LA, have been found to reduce mesenchymal stem 
cell proliferation in vitro, and the activation of transcription 
pathways related to the initiation of neoplasia and metastasis 
was also found to be inhibited [151]. It has been shown that 
the cytotoxic effects of T-lymphoma cells can be regulated 
by LAs in vitro, which is correlated with their lipophilicity 
and potency [152]. Apoptosis was also observed at lower 
concentrations of LAs, while necrosis was seen at higher 
concentrations. LAs have also been reported to alter the 
DNA methylation status of certain cancer cell types in a 
time- and dose-dependent manner to eventually reactivate 
tumor suppressor genes [153].

Recently, a systematic review showed that LAs, including 
lidocaine, ropivacaine, and levobupivacaine, present promis-
ing and consistent results regarding the anticancer influence 
of LAs on breast cancer [154•]. Therefore, regardless of the 
LA applied to avoid the possible pro-tumor effects of sur-
gical stress response and general anesthesia, they can also 
reduce cancer recurrence involving the prevention of can-
cer cell proliferation, migration, and invasion. The etiology 
of these effects is likely multifactorial. In vitro and in vivo 
studies have proposed numerous mechanisms centered on 
NaV1.5 channels [155], Ras homolog gene family member 
A [156, 157], the cell cycle [158], endothelial growth fac-
tor receptor [159], calcium influx [160, 161], microRNA 
and mitochondria, in combination with hyperthermia and 
transient receptor potential melastatin 7 channels [162, 163]. 
Lidocaine has a shorter half-life than other LAs and is less 
toxic. As a result, it is the only amide LA compatible with 
intravenous administration. Interestingly, some findings in 
laboratory conditions have raised the possibility that intra-
venous infusion of lidocaine may be a safe and inexpensive 

way to provide significant benefits in long-term cancer 
outcomes [164]. It can potentially affect multiple biologi-
cal pathways to act as an anti-inflammatory agent, immune 
cell modulator, and/or direct inhibitor of cancer cells [164]. 
Based on the promising laboratory data, accumulating 
prospective and retrospective clinical trials also support 
the beneficial anticancer effects of perioperative lidocaine 
treatment. In a recent retrospective study of 2239 patients 
undergoing resection of pancreatic carcinomas conducted by 
Zhang et al., those who received perioperative i.v. lidocaine 
exhibited significantly better OS at 1 and 3 years, while 
disease-free survival was unaffected [165••].

Others

Although intravenous and inhalational anesthetics have 
profound effects on cancer outcomes, we cannot ignore the 
effects of some perioperative anesthetic adjuvants. Ketamine 
is an NMDA receptor antagonist widely used in cancer treat-
ment during the perioperative period due to its strong anal-
gesic effects at subanesthetic doses. Increasing numbers of 
findings indicate that ketamine can modulate immune func-
tion through three major mechanisms [166]. First, ketamine 
has anti-inflammatory effects mediated by the inhibition of 
the expression of proinflammatory cytokines, such as IL-6 
and TNF-α, during the early postoperative period [167]. Sec-
ond, similar to other analgesics, ketamine significantly inter-
feres with NK-cell cytotoxicity, thus increasing the suscepti-
bility to tumor metastasis [14]. Third, ketamine can disrupt 
the balance of different T-cell populations, which inhibits 
antitumor immune function and is associated with cancer 
recurrence and poor survival in a dose-dependent manner 
[168]. A retrospective study also showed that ketamine is 
not associated with improved oncological outcomes [169].

Given that nonsteroidal anti-inflammatory drugs 
(NSAIDs) have opioid-sparing properties, they are another 
important adjuvant frequently administered in the periop-
erative period for analgesia. As COX inhibitors, NSAIDs 
decrease the expression of both cyclooxygenase-1 (COX-
1) and COX-2 enzymes. Therefore, the overexpression of 
COX-2 increases the amount of PGE2, which further upreg-
ulates the expression levels of immunosuppressive IL-10. 
Similar to other oncogenes, COX-2 is overexpressed in colo-
rectal carcinomas and adenomas as well as mammary tumors 
and plays a carcinogenic role [170, 171]. Indeed, COX-2 
inhibitors are actively used in breast cancer [172], and 
overexpression of COX-2 favors breast tumor growth and 
increases the risk of cancer relapse by stimulating epithelial 
cell proliferation, inhibiting apoptosis, stimulating angiogen-
esis, suppressing immunity, and increasing the production 
of mutagens [173]. Three clinical studies have indicated that 
the use of NSAIDs may decrease the risk of cancer recur-
rence and increase disease-free survival. In a retrospective 
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study of 327 women, a lower cancer recurrence rate was 
shown when ketorolac was given before cancer surgery than 
when other opioid-based analgesics were used [169]. In a 
follow-up study of the same patient population, it was found 
that the use of ketorolac could extend disease-free survival 
in the first few years after surgery with nearly no occurrence 
of relapse within the early months [174]. In another retro-
spective study of 720 breast cancer patients from a single-
center cohort, the intraoperative use of NSAIDs (ketorolac 
or diclofenac) was associated with improved disease-free 
survival and overall survival [175]. As a result, the favorable 
antitumor effects of NSAIDs suggest their broader applica-
tion to cancer treatment.

Dexmedetomidine (DEX) is becoming widely used to 
attenuate the stress response and reduce opioid require-
ments. DEX is a highly selective α2 adrenoreceptor agonist 
and has multiple pharmacologic effects, including hypnosis, 
analgesia, sedation, and anxiolysis. α2 adrenergic receptors 
are expressed on both immune cells and tumors, which indi-
cates that DEX may affect the balance of the immune system 
and tumorigenesis [176, 177]. According to a meta-analysis 
of patient studies by Wang et al., the intraoperative use of 
DEX infusion increases the numbers of NK cells, B cells, 
and CD4 + T cells and the ratios of CD4 + /CD8 + and Th1/
Th2 cells, while the number of CD8 + T cells is significantly 
decreased [178]. These data indicated that DEX can protect 
the immune function of surgical patients. This indication 
corroborates a previous study, which showed that DEX did 
not significantly inhibit T-cell proliferation or IL-2 produc-
tion [179]. A recent study also showed that perioperative 
DEX had no favorable impacts on NK-cell activity or inflam-
matory responses in uterine cancer surgery patients [180]. 
However, Levon et al. tested the effects of DEX on tumor 
growth and found that the size of breast, lung, and colon can-
cer was significantly larger in mice that received DEX [181, 
182•, 183]. Consistent with the animal study, the study of 
1404 patients by Cata et al. showed that intraoperative dex-
medetomidine administration was associated with worsened 
overall survival after surgery for non-small cell lung cancer 
[184]. However, a randomized controlled study should be 
conducted to confirm the results of these studies.

Tramadol is an atypical opioid analgesic that has shown 
antitumor effects in breast cancer cells in vitro and in vivo 
[185•, 186]. The mechanism by which tramadol exerts these 
effects involves suppression of colony formation, cell cycle 
arrest, and the induction of apoptosis via extracellular sig-
nal-regulated kinases by decreasing 5-hydroxytryptamine 
2B receptor and transient receptor potential vanilloid-1 
expression, as demonstrated by in vitro experiments [185•]. 
In vivo, tramadol administration decreased the expression of 
inflammatory cytokines, such as IL-6 and TNF-α, which are 
involved in tumor growth and invasion [186]. Additionally, 
tramadol functions similarly to morphine but may produce 

the opposite effect and instead increase the activation of NK 
cells in patients undergoing surgical tumor resection [33, 
187]. Furthermore, a retrospective analysis of 2588 patients 
showed that tramadol use was associated with decreased 
rates of breast cancer recurrence and improved survival after 
breast cancer surgery [185•].

The Effects of Anesthetic Techniques 
on Cancer Recurrence

Whether anesthetic techniques during potentially curative 
intraoperative periods influence cancer recurrence is a ques-
tion that needs to be addressed to reveal the associations 
between different anesthetic managements and cancer out-
comes. There are two major anesthetic approaches that may 
potentially affect cancer recurrence risk: (1) the use of RA, 
including neuraxial (epidural or spinal) and paravertebral 
blocks, and (2) the use of general anesthesia, including intra-
venous and inhalation anesthesia. Over the past decade, RA 
has been hypothesized to lower the surgical stress response 
and immunosuppression, reduce the need for volatile anes-
thesia, and minimize pain and opioid needs in the periopera-
tive period, hence decreasing the activation of pro-tumor 
pathways and enhancing long-term oncological outcomes. 
Additionally, RA preserves the function of the immune sys-
tem and has a direct inhibitory effect on cancer cells [188, 
189]. For example, when comparing the use of regional tech-
niques with the use of general anesthesia in cancer patients 
in RCTs, substantially lower levels of NK-cell and T-cell 
activity were observed in those who received both than in 
individuals who only received general anesthesia [190, 191]. 
As a result, several retrospective studies and meta-analyses 
have shown that the application of RA to supplement GA is 
closely associated with better OS than the use of GA plus 
opioid analgesia, at least during the treatment of certain 
types of cancer, such as breast, colon, lung, and prostate 
cancers [192–196].

In this review, we summarized over 5 years of clinical 
evidence regarding the effects of various RAs on cancer out-
comes. This review is almost exclusively from retrospective 
studies (Table 2). Interpretation of retrospective analyses 
should be inherently cautious because of potential selec-
tion bias. According to this summary, retrospective findings 
are not enough to prove the positive effects of RA due to 
conflicting results, while all the RCTs have reached simi-
lar conclusions. Specifically, some RCTs investigating RA 
and cancer recurrence enrolled more than 2100 women with 
primary breast cancer. Patients were randomly assigned to 
receive either RA (preferentially paravertebral block) with 
propofol sedation or sevoflurane/opioid-based general 
anesthesia. It has been shown that there is no difference 
in disease-free survival or cancer recurrence [197••]. The 
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effect of combined epidural-general was also investigated in 
a large multicenter RCT including patients (n = 1712) with 
major noncardiac thoracic or abdominal surgery. The median 
follow-up time was after 5 years, and the combined epidural-
general anesthesia and general anesthesia group had similar 
rates of mortality, cancer-specific survival, and relapse-free 
survival (RFS) [198]. The most recent RCT included 400 
patients who were undergoing video-assisted thoracoscopic 
lung cancer resection and compared the effects of the use of 
combination epidural-general anesthesia against the use of 
general anesthesia alone. The primary outcome was RFS. 
Secondary outcomes were OS and cancer-specific survival. 
The median follow-up time was 32 months. The results indi-
cated that the use of epidural anesthesia during major lung 
surgery did not result in better RFS, cancer-specific survival, 
or OS than the use of general anesthesia alone [199]. Other 
RCTs focusing on the effects of RA on colon and prostate 
cancer surgery also failed to demonstrate any benefits in 
cancer outcomes [200, 201]. Given that these studies are 
appropriately powered and the results seem compelling, the 
influence of RA on cancer recurrence might be negligible or 
not existent. It can be speculated that RA probably fails to 
produce a robust immunomodulatory or anti-inflammatory 
effect or that the concentrations of LAs in micrometastatic 

niches are too low to produce significant antitumor effects 
[102, 202]. Although there is insufficient evidence to support 
the use of regional techniques at this time for their perceived 
benefit in terms of cancer recurrence, RA continues to play a 
fundamental role in the developing subspecialty of oncology 
anesthesia, which is focused on individualized, perioperative 
management in an attempt to minimize morbidity, accelerate 
recovery, and promote the progression to the next stage of 
oncological therapy.

The Effects of Perioperative Body 
Temperature on Cancer Recurrence

Body temperature is a sensitive indicator of whether the inter-
nal environment of the body is in a stable state. Body tem-
perature acts as a critical regulator to influence the response 
to cancer. However, the mechanisms have only recently been 
investigated. Increasing in vitro and in vivo studies found that 
elevated temperatures can generally promote the activation, 
function, and delivery of immune cells, while reduced tem-
peratures inhibit these processes [203]. In particular, adap-
tive immunity can be modulated by temperature, including 
antigen-presenting cells and CD4 + /CD8 + T cells [203]. 

Table 2  Summary of clinical studies assessing the effects of different regional anesthetic techniques on cancer outcomes

RCT, randomized controlled trial; PVB, paravertebral block; OS, overall survival; RFS, recurrence-free survival; HR, hazard ratio

Ref Year Study type Intervention Cancer type Patients Outcomes

[199] 2021 RCT Epidural Lung n = 400 No difference in RFS (HR 0.9, 95% CI 0.60–1.35, p = 0.61) or 
OS (HR 1.12, 95% CI 0.64–1.96, p = 0.70)

[234] 2021 RCT Epidural Thoracic, Abdominal n = 1802 No difference in RFS (HR 0.97, 95% CI 0.84–1.12, p = 0.69) or 
OS (HR 1.09, 95% CI 0.93–1.28, p = 0.29)

[197••] 2019 RCT PVB Breast n = 2132 No difference in cancer recurrence (HR 0.97, 95% CI 0.74–1.28, 
p = 0.84)

[235] 2019 Retrospective Epidural Colon n = 225 Decreased RFS (HR 0.73; 95% CI 0.54–0.99, p = 0.028) in 
epidural group

[236] 2018 Retrospective Epidural Colon n = 999 No difference in RFS (HR 1.06, 95% CI 0.87–1.29, p = 0.92) or 
OS (HR 0.9, 95% CI 0.68–1.20, p = 0.48)

[237] 2018 Retrospective Spinal Bladder n = 231 Increased cancer recurrence (HR 2.06, 95% CI 1.14–3.74, 
p = 0.017) in GA group. No difference in OS

[238] 2018 Retrospective Epidural Ovarian n = 648 Increased OS (HR 1.67; 95% CI 1.36–2.04, p < 0.001) and RFS 
(HR 1.33; 95% CI 1.11–1.59, p = 0.021) in epidural group

[239] 2018 Retrospective Scalp block Glioblastoma n = 808 No difference in RFS (HR 0.98, 95% CI 0.80–1.20, p = 0.89) or 
OS (HR 1.02, 95% CI 0.82–1.26, p = 0.85)

[240] 2017 RCT PVB Breast n = 180 No difference in metastasis (HR 0.79, 95% CI 0.21–2.96, 
p = 0.88) or OS (HR 0.66, 95% CI 0.11–3.97, p = 0.15)

[241] 2017 Retrospective Epidural Gastrectomy n = 4218 Improved OS in epidural group (HR 0.65, 95% CI 0.58–0.73, 
p < 0.001)

[242] 2017 Retrospective Spinal Bladder n = 876 Decreased cancer recurrence (HR 0.636, p < 0.001) in spinal 
group

[243] 2017 Retrospective PVB Lung n = 1729 Increased OS (HR 0.60; 95% CI 0.45–0.79, p = 0.002) in PVB 
group. No difference in RFS

[244] 2017 Retrospective Scalp block Glioblastoma n = 119 Increased RFS (HR 0.31; 95% CI 0.07–0.21, p < 0.001) in scalp 
block group
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Moreover, in patients undergoing open surgery for gastric 
cancer, Yi Yang et al. found that maintaining a body tempera-
ture close to normal could preserve immune functions [204]. 
Accordingly, the picture that is emerging is that temperature 
can have varying impacts on cancer outcomes. Given that 
perioperative systemic hypothermia is commonly encountered 
and even a few degrees of perioperative hypothermia can have 
immunosuppressive consequences, it is necessary to explore 
the association between hypothermia and cancer recurrence. 
In a rat model of colon cancer, tumor retention was found to 
be promoted by perioperative hypothermia [205], and severe 
hypothermia (3–7 °C decrease from the normal body tempera-
ture) markedly suppressed NK-cell activity and jeopardized 
host resistance to experimental mammary metastasis [206]. 
However, these results have not been replicated in human 
studies. In a reanalysis of data from a previous cohort of 852 
patients, where intraoperative core body temperature was 
defined as a median intraoperative temperature of < 36 °C, 
consistent with the existing consensus definition [207], there 
was no significant increase in the incidence of cancer recur-
rence or death from metastasis following radical cystectomy. 
Yucel et al. also drew a similar conclusion [208•]. However, 
there are several conflicting findings that demonstrate the 
causal relationship between hypothermia and cancer progno-
sis. For example, intraoperative hypothermia may be a signifi-
cant predictor of recurrence and survival in muscle-invasive 
bladder cancer [209] and rectal cancer [210].

According to a clinical study by Zheng et al. of stage III 
gastric cancer patients, a high postoperative body tempera-
ture could significantly reduce the 5-year disease-free survival 
[211]. Therefore, treating hyperthermia (also called thermal 
therapy or thermotherapy) is becoming one of the cancer 
treatment methods used to reduce cancer recurrence. Indeed, 
accumulating evidence indicates that physiological responses 
to high body temperature can enhance the microenvironment’s 
ability to resist tumors through temperature-sensitive check-
points that regulate tumor vascular perfusion and metabolism 
[212]. In contrast to prior research, a recent in vitro study 
indicated that cancer cells can resist higher temperatures than 
normal cells by not activating caspase 3 [213]. As a result, the 
influence of thermal stimuli on the tumor environment and the 
antitumor immune response remain incompletely understood.

Conclusion and Future Perspectives

Recently, many of the retrospective clinical trials highlighted in 
this review have definitively demonstrated the profound impacts 
of perioperative events on cancer recurrence. For example, most 
retrospective trials have found that TIVA is a better anesthetic 
choice for cancer surgery according to the increased OS and 
RFS. However, several RCTs have shown that epidural and par-
avertebral nerve blocks are unable to modify cancer prognosis. 

For other anesthetic agents/techniques, there is still a critical 
lack of clinical evidence confirming the association with cancer 
recurrence during the perioperative period. The preclinical and 
clinical studies provided in this review exhibited conflicting 
findings on the effects of anesthesia on the immune response 
and cancer growth. Therefore, large-cohort prospective clinical 
trials are required to explore the effects of different anesthetics 
and techniques on long-term outcomes after cancer surgery. 
Furthermore, such trials will be beneficial to the development 
of systemic cancer therapies, which will enable us to optimize 
perioperative cancer treatment.
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