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Abstract
Purpose of Review  Accurate imaging is crucial for correct diagnosis, staging, and therapy of neuroendocrine neoplasms 
(NENs). The search for the optimal imaging technique has triggered rapid development in the field. This review aims at 
giving an overview on contemporary imaging methods and providing an outlook on current progresses.
Recent Findings  The discovery of molecular targets due to the overexpression of specific peptide hormone receptors on the 
NEN’s surface has triggered the development of multiple radionuclide imaging modalities. In addition to the established 
imaging technique of targeting somatostatin receptors, several alternative radioligands have been developed. Targeting the 
glucagon-like peptide-1 receptor by exendin-4 has a high sensitivity in localizing insulinomas. For dedifferentiated NENs, 
new molecular targets such as the C-X-C motif chemokine-receptor-4 have been evaluated. Other new targets involve the 
fibroblast activation protein and the cholecystokinin-2 receptors, where the ligand minigastrin opens new possibilities for 
the management of medullary thyroid carcinoma.
Summary  Molecular imaging is an emerging field that improves the management of NENs.

Keywords  Neuroendocrine neoplasms · Peptide hormone receptors · Somatostatin receptor antagonist · GLP-1 receptor 
imaging · CCK2-receptor imaging

Introduction

Neuorendocrine neoplasms (NENs) are rare tumors with 
increasing prevalence deriving from neuroendocrine cells 
localized mainly in the intestine, pancreas and lung [1, 2]. 
In about half of the patients, the diagnosis is established at 
a non-resectable stage due to unspecific clinical syndromes 

and slow tumor growth with late symptomatic manifestation. 
However, incidental detection at an early stage of disease 
has been reported due to improved diagnostic procedures 
[3]. The classification of NENs depends on their origin and 
extension, with the grading being based on histological dif-
ferentiation [4]. Well-differentiated NENs are classified as 
grade 1, 2, or 3 neuroendocrine tumors (NETs), based on 
the mitotic counts and Ki67 index, while poorly differenti-
ated NENs are categorized as grade 3 neuroendocrine car-
cinomas (NEC) [5•]. A further distinction—in about 25% 
of patients—involves the ability of the tumors to secrete 
hormones leading to specific symptoms, separating them 
into functioning and non-functioning tumors [6]. Treatment 
is as diverse as these tumors, dependent on stage, grade, and 
clinical presentation and involves surgery, imaging-guided 
local ablative or vascular therapy, radionuclide therapy, tar-
geted treatment, biotherapy, and chemotherapy.

Accurate and informative imaging is crucial for correct 
diagnosis, staging, and treatment decision. However, a stand-
ardized approach is difficult due to the diversity of primary 
tumor sites and metastases. Accordingly, the search for the 
optimal imaging technique has triggered rapid development 
and improvement of this field. One of the most revolutionary 
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improvements was the discovery of molecular imaging tar-
gets due to the overexpression of specific peptide hormone 
receptors on the cell surface of NENs [7].

This review aims at giving an overview on the most com-
monly used imaging modalities to diagnose and stage NENs 
today, but also providing an outlook into new developments 
and future techniques. Figure 1 summarizes the molecular 
targets currently used.

Conventional Morphological Imaging

Computed Tomography

Computed tomography (CT) is the main modality used for 
the evaluation of NENs due to its wide availability, speed, 
and low cost [8•]. Multidetector CT scanners, generating 
hundreds of thin transversal images, allow for detailed evalu-
ation through reconstructed images. Through the administra-
tion of intravenous (i.v.) contrast, multiphasic or dynamic 
imaging is performed, which is essential for the evaluation 
of various structures.

The importance of having a contrast-enhanced image is 
best shown for the assessment of the liver, which includes 
non-contrast images, arterial phase for the imaging of 
hepatic and mesenteric arteries, portal venous phase for 
the visualization of hepatic and mesenteric veins as well as 
the hepatic parenchyma and lastly delayed phase for addi-
tional characterization of possible liver lesions. However, 
the standardized evaluation of liver lesions can be difficult. 
While many NEN lesions are hypervascular and therefore 
best seen on arterial phase images, an analysis of NEN liver 
metastasis revealed 16% hypovascular lesions, which are 
best seen in the delayed phase images [9]. Multiphasic CT 
is also important for the evaluation of treatment response. 

Here, treatment-specific effects should be taken into consid-
eration, since some can influence the enhancement patterns 
of NEN liver metastases as seen with the mTOR inhibitor 
everolimus [10].

When CT is used together with functional imaging as 
positron emission tomography (PET), often only a low-dose 
CT is performed in order to enable anatomical correlation 
of the PET findings. However, since small (< 5 mm) lesions 
may be missed by PET, i.v. contrast-enhanced CT of liver 
and pancreas in late arterial phase and whole body in venous 
phase are preferred in these indications.

CT shows a high-detection sensitivity for the majority 
of NENs and is the recommended morphological imaging 
technique [8•, 11]. However, gastric, duodenal, colonic, and 
rectal NET are often diagnosed by endoscopy or endoscopic 
ultrasound. Accordingly, CT imaging in gastric NEN is only 
required for large (> 2 cm) or invasive tumors. Diagnosis of 
duodenal NENs can be challenging and distension of the 
duodenum with water as well as imaging during i.v. con-
trast enhancement is recommended to localize these small 
contrast-enhancing tumors.

For the evaluation of small intestinal lesions, CT-enterog-
raphy can be considered, which helps detecting those usually 
contrast-enhancing small tumors. Often diagnosed at a late 
stage, small intestinal NENs can present with mesenteric 
metastases. These show as an irregular soft tissue mass on 
CT, including sometimes radiating fibrotic strands and cal-
cifications [12]. The description of the involved arterial ves-
sels is crucial if a surgical intervention is considered.

Pancreatic NENs are typically hypervascular masses with 
enhancement in the arterial phase [8•]. Contrast enhance-
ment patterns were described to correlate with tumor grade, 
with higher-grade tumors showing venous and delayed phase 
enhancement [13]. Additional signs for more aggressive 
tumors are ill-defined margins, vascular invasion, tumor size, 

Fig. 1   Overview of cur-
rently used molecular tar-
gets for imaging of NENs. 
CCK2-R = cholecystokinin-2 
receptor, CXCR4 = C-X-C 
motif chemokine-receptor-4, 
FAP = fibroblast activation 
protein, FDG = fluorodeoxyglu-
cose, F-DOPA = fluoro-dopa, 
GLP1R = GLP-1-receptor, 
MIBG = metaiodobenzygluani-
dine, NEN = neuroendocrine 
neoplasm, SSTR = somatostatin 
receptor
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and pancreatic duct dilation [14]. Insulin-secreting pancre-
atic NENs (insulinomas) are typically small (0.5–2 cm) and 
hypervascular on early and late postcontrast images, while 
non-functional pancreatic NENs tend to be larger, can be 
cystic, or show necrotic changes [8•]. Liver metastases from 
insulinomas can present with perilesional steatosis on CT.

CT has only a minor role in the diagnosis of colonic or 
rectal NENs, which are better staged by magnetic resonance 
imaging (MRI) or endoscopic ultrasound, but its use is rec-
ommended for the evaluation of distant metastases.

For thoracic NENs, i.v. contrast-enhanced chest CT is 
the morphological imaging technique of choice [15]. Thin 
section CT chest scanning is useful to establish localization 
and metastatic spread [16].

Magnetic Resonance Imaging

For soft tissue characterization, MRI has a superior detec-
tion rate than CT [17]. However, this difference is often not 
considered clinically relevant due to the longer examina-
tion time and availability of MRI. The better tissue con-
trast is particularly important for the evaluation of the liver, 
pancreas, bone, and brain [18, 19]. A recent comparison of 
pancreatic lesions of 73 multiple endocrine neoplasia type 
1 (MEN1) patients with MRI, CT, and endoscopic ultra-
sound, showed MRI to be the most sensitive imaging tech-
nique (89% vs 86% vs 75%) according to agreement and 
reliability measures [20]. For liver imaging, MRI has the 
additional advantage of an available hepatocyte-specific 
contrast medium. Furthermore, it does not expose patients 
to radiation, which makes it an especially attractive imaging 
tool for regular surveillance in younger patients.

MRI protocols should include T1-(T1W) and T2-weighted 
(T2W) MR sequences, dynamic three-dimensional (3D) 
sequence before and after intravenous administration of a 
gadolinium chelate with multi-arterial, venous, and delayed 
acquisition and diffusion-weighted (DWI) sequences [21]. 
A typical NEN appears as a dark lesion in T1W and bright 
lesions in T2W images. Otherwise, contrast enhancement 
and morphological characteristics are often similar to CT; 
however, MRI is more likely to detect small lesions due to its 
better soft tissue contrast. MRI also has superior diagnostic 
accuracy and sensitivity compared to CT in enterography 
[22–24].

DWI is a valuable tool to enhance lesion-to-background 
contrast. In a recent retrospective analysis on 45 pancreatic 
NENs [25], DWI, and T2W sequences were the most accu-
rate to detect the lesions. Confirmation of this data would 
enable a shorter test protocol without contrast medium 
administration. MRI also plays a role perioperatively, where 
MR cholangiopancreatography can be helpful to evaluate the 
pancreatic duct and biliary system.

Molecular Imaging

Somatostatin Receptor Imaging

Somatostatin receptors (SSTRs) are expressed on the 
surface of the majority of well-differentiated NENs with 
the expression density decreasing in poorly differentiated 
NENs [26]. Evaluating the SSTR expression in a NEN 
patient improves tumor localization and staging, but also 
opens new treatment options with peptide receptor radio-
nuclide therapy (PRRT) in patients with sufficient expres-
sion [27]. Patients with no or insufficient SSTR expres-
sion on the other hand have been shown to have inferior 
prognosis with shorter survival time [28, 29]. While the 
SSTR subtype 2 has been the sole focus for imaging and 
therapy for a long time, the subtypes 3 and 5 have recently 
gained importance.

Somatostatin Receptor Scintigraphy

111Indium-pentetreotide (Octreoscan) was the first commer-
cially approved technique for the diagnosis and staging of 
SSTR-expressing tumors and the gold standard technique 
for many years [27]. 111Indium (In) is a γ-emitting isotope, 
which is linked to the somatostatin analog (SSA) octreotide 
using the chelator DTPA (Diethylene-triaminepentaacetic 
acid) resulting in 111In-DTPA-octreotide or better known 
as 111In-pentetreotide. This radiotracer binds preferably to 
SSTR subtypes 2 and 5 on the cell surface of NENs and 
can be detected with a gamma camera [27]. The anatomical 
localization was improved after the development of single-
photon emission computed tomography (SPECT), and more 
so with SPECT/CT fusion technique [30].

A downside of the Octreoscan is its—compared to cur-
rent techniques—poorer resolution, high-radiation dose 
and lengthy process for injection and scanning. Having a 
half-life of 2.8 days, images are optimally obtained 4 h and 
24 h after injection which is cumbersome for the patients 
[31]. 111In-pentetreotide is cleared almost entirely over the 
kidneys and patient radiation dose is around 12 mSV [27].

Overall, it has a lower tumor-to-normal-tissue contrast 
and also a poorer sensitivity for liver metastases and multi-
focal primary [32–34] and low detection rate for medullary 
thyroid cancer and insulinoma, since those show variable 
expression of SSTR2 [35].

68Gallium‑SSTR Imaging

Due to its greater spatial resolution, lower radiation dose 
and improved diagnostic accuracy as well as patients 
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convenience, 68Gallium-SSTR-PET has replaced SSTR 
scintigraphy as the standard imaging technique for NEN 
staging [8•].

Using the chelator DOTA (tetra-zacyclododecane-tetra-
acetic acid), the radiometal 68Gallium (Ga) is conjugated 
with an SSA peptide. While 68Ga-DOTATOC and -NOC 
use octreotide (Tyr-3/1-Nal3) with affinity for the SSTR sub-
types 2, 3, and 5, 68Ga -DOTATATE uses octreotate which 
has an enhanced affinity for the SSTR subtype 2 [36]. Clini-
cally, there is no real difference between 68Ga-DOTATOC- 
and 68Ga-DOTATATE-based PET imaging [37, 38], their 
respective use often depends on the availability of the cent-
ers. The dosage for PET imaging is 2 MBq of 68Ga-DOTA-
SSA per kg body weight (up to 200 MBq) i.v. and a PET-CT 
is run 60 min after injection. Good hydration of patients 
before the application is recommended. 68Ga-DOTA-SSA 
is excreted through the kidneys. Patient radiation dosage 
is around 2.9 mSv [8•], thereby approximately 25% of the 
radiation burden of 111In-pentetreotide.

68Ga-SSTR-PET/CT has a high sensitivity of 88–93% and 
specificity of 88–95% [39, 40] for most well-differentiated 
NENs. Sensitivity for gastrinoma and NEN of unknown pri-
mary however is much lower with 68% and 52% respectively 
[41]. As benign insulinomas are often small (0.5–2 cm) and 
have usually low expression of SSTR, correct localization is 
not always possible using 68Ga-SSTR-PET/CT [42]. Further-
more, since 68Ga-SSTR-PET/CTs show an inverse correla-
tion with tumor grade and differentiation, 18F-Fluorodeoxy-
glucose (18FDG-PET/CT) is recommended for the evaluation 
of dedifferentiated and high-grade NENs [43] (details on 
18FDG PET see Sect. 3.3 below). 68Ga-DOTATATE can also 
be utilized for the diagnosis and staging of lung NETs [32]. 
However, lower detection rates were described in atypical 
lung carcinoids, which often demonstrate a marked 18FDG-
PET uptake [44]. Staging of patients with pheochromo-
cytoma or paraganglioma using 68Ga-SSTR-PET shows a 
superiority for evaluation of metastatic disease compared to 
131metaiodobenzygluanidine (MIBG)-scans and 18FDG-PET 
[45, 46]. Patients with medullary thyroid carcinoma show 
adequate SSTR receptors for imaging only in < 30% of cases 
(Reubi and Waser 2003). Therefore, diagnostic sensitivity 
with 68Ga-SSTR-PET/CT can be limited in those tumors.

While most NENs show a high affinity for 68Ga-SSTR-
PET, it is important to keep in mind that other neoplasms 
like renal cell carcinoma, melanoma or meningioma, or 
systematic inflammatory diseases like sarcoidosis and lym-
phoma are also known to express SSTR which can lead to 
false-positive findings [47].

In summary, 68Ga-SSTR-PET/CT provides high diagnos-
tic sensitivity for most NEN types and is recommended as 
the standard molecular imaging technique for patients with 
NEN.

SSTR Antagonist

While 68Ga-DOTATOC/-TATE and -NOC use somatostatin 
agonists, an alternative approach is the use of SSTR antago-
nists. SSTR agonists are characterized by internalization and 
intracellular retention following their binding to the SSTR 
and therefore depend on active receptors. SSTR antagonists, 
however, are not limited to the active receptors, leading to a 
several fold more binding sites and consequently increased 
tumor uptake [48]. This resulted in a higher tumor-to-
background ratio, a longer tumor retention time, and higher 
tumor uptake for the SSTR antagonist in ex vivo autoradi-
ography of human NEN samples [49]. These findings were 
confirmed with the developed PET-tracer 68Ga-OPS202 [50] 
which showed a higher tumor uptake than 68Ga-DOTATATE 
in murine studies. The superiority of the SSTR antagonist 
was confirmed clinically by Nicolas et al. [51•], showing a 
higher lesion-based overall sensitivity and higher detection 
rate of liver metastasis [52].

Taken together, while detection and staging of NENs with 
an SSTR-antagonist PET/CT is promising and might become 
the new standard, further clinical studies confirming the cur-
rent data are needed.

Copper‑SSTR Imaging

Another alternative to 68Ga-based SSTR imaging lies in the 
use of copper radioisotopes in combination with SSTR ago-
nists or antagonists. To date, 64Cu seems to have the most 
potential to make its way into clinical practice. This is on the 
one hand due to its longer half-life of around 13 h which is 
convenient in clinical practice as it opens the scanning win-
dow to up to 3 h [53]. In addition, its ability to build stable 
complexes to different chelators and its potential for higher 
spatial resolution due to its decay mode is an advantage.

In 2012, the first in human study with 64Cu-DOTATATE 
involving 14 NEN patients and comparing the results to 
SPECT/CT was published [54]. The results indeed showed 
high image quality and spatial resolution, documenting addi-
tional lesions in 43% of patients. A later head-to-head com-
parison with 111In-DTPA-Octreotide in 112 NEN patients 
[55] confirmed the superior sensitivity and diagnostic accu-
racy of 64Cu over 111In (97% and 97% versus 87% and 88%, 
respectively). A direct comparison of 64Cu-DOTATATE 
with 68Ga-DOTATOC in 59 patients showed a sensitivity 
of 100% and specificity of 90% for both scans to diagnose 
NEN disease [56]. While in this study radiation dose was 
significantly higher for the 64Cu-DOTATATE compared to 
the 68Ga-DOTATOC (5.7–8.9 mSv vs 2.8–4.6 mSv), a recent 
dose-ranging study determined the optimal dose at 4.0 mSv 
to obtain high-quality diagnostic imaging [57].

Accordingly, 64Cu-SSTR-PET might become a diagnostic 
alternative for NEN centers without access to 68Ga.
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Alternatives to Somatostatin Receptor Imaging

Currently Available Imaging Techniques

18F‑FDG PET  118F-FDG is established as a diagnostic option 
for patients with negative lesions on SSTR-PET/CT. As 
tumors such as poorly differentiated grade 3 NENs have a 
high-glucose turnover rate, they can be visualized by 18F-
FDG PET/CT [58]. Using a dosage of 4 MBq 18FDG per kg 
body weight, PET scan is performed 60 min after adminis-
tration. 18FDG-PET has a high spatial resolution (4–6 mm) 
and can be hybridized with CT or MRI. Patient radiation 
dose for 18FDG is around 3.5 mSv [8•].

While 18F-FDG has a poor sensitivity for low-grade lesions 
due to the limited tracer uptake, it has diagnostic and prog-
nostic value in higher-grade lesions [58–60]. An evaluation 
of 69 pancreatic NEN patients showed the clinical useful-
ness of 18F-FDG PET/CT in identifying progression of dis-
ease with unfavorable clinical outcome with a high diagnos-
tic accuracy [61]. 18F-FDG PET also showed high uptake for 
SDHx-related pheochromocytoma or paraganglioma [62].

In the last years, the combined use of SSTR PET/CT and 
FDG PET/CT imaging has been proposed for the thorough 
evaluation of patients with NENs [28, 63]. Although this 
dual approach is complementary, it is currently rarely used 
due to financial and radiation constraints.

18F‑DOPA  Fluorine F-18 fluoro-dihydroxyphenylalanine 
(18fluorodopa or 18F-DOPA) is the amino acid analog fluoro-
dopa (FDOPA) labelled with fluorine F18, a positron-emit-
ting isotope. 18F-DOPA is taken up into the cells via the 
neutral amino acid transporter. 18F-DOPA is an alternative 
PET tracer for countries where 68Ga-SSTR imaging is not 
available, as it showed superior diagnostic sensitivity to 
SSTR-scintigraphy [64]. However, when compared to 68Ga-
SSTR-PET, 18F-DOPA was inferior and comes at a higher 
radiation dose and cost [65, 66].

However, there is a place for 18F-DOPA imaging in 
SSTR-negative NENs, especially in medullary thyroid can-
cer (MTC) where it showed a predictive value [67]. In a 
study evaluating 60 patients with MTC 6 months after sur-
gery, 27 showed abnormal findings while 33 scans remained 
unremarkable [68]. The patients with the unremarkable 
scans had a longer disease-specific survival rate.

Another possible role has been described in the diagnosis 
of nesidioblastosis in the differential diagnosis of endog-
enous hyperinsulinemia [69] as well as for the evaluation of 
pheochromocytoma and paraganglioma [70]. Overall, how-
ever, 18F-DOPA PET is more of a second line modality and 
68Ga-SSTR-PET should be used first, if available.

GLP‑1 Receptor Imaging  The glucagon-like peptide-1 recep-
tor (GLP-1R) is another targetable peptide hormone recep-
tor and is mainly localized on pancreatic beta cells [65]. 
This makes GLP-1R interesting for imaging of insulinomas, 
which are challenging to diagnose due to their small size and 
anatomical proximity to the kidneys. Furthermore, nesidi-
oblastosis is a rare differential diagnosis of endogenous 
hyperinsulinemic hypoglycemia, which needs a different 
therapeutic approach [71]. Importantly, insulinoma usually 
express a low number of SSTR resulting in a low detection 
rate using SSTR imaging. However, GLP-1R are expressed 
with a high incidence and at high density in insulinomas 
[72].

As the natural GLP-1 ligand is rapidly degraded by dipep-
tidyl-peptidase-4 (DPP4) [73], the DPP4-resistant GLP-1 
analogue exendin-4 was developed. Using the radioisotope 
Indium-111, exendin-4 was then coupled via the chelator 
DTPA, leading to the radiotracer 111In-DTPA-exendin-4 
[74, 75]. The initial promising proof-of-principle data [75, 
76] were later confirmed in a multicentre study [77]. In 
this study of 30 insulinoma patients, 111In-DTPA-exendin-
4-SPECT/CT showed superior diagnostic sensitivity to 
conventional MRI. The final break-through was achieved, 
when exendin-4 was coupled to 68Ga-DOTA allowing for 
PET imaging [78]. In a prospective study evaluating 52 
patients with suspected benign insulinoma, 68Ga-DOTA-
exendin-4 PET/CT showed a higher diagnostic accuracy of 
94% compared to 68% with 111In-DOTA-exendin-4 SPECT/
CT and standardized 3-Tesla-MRI (Fig. 2) [79•]. Further-
more, 68Ga-DOTA-exendin-4 PET/CT also proved useful in 
the evaluation of the usually multiple pancreatic lesions in 
patients with multiple endocrine neoplasms type 1 (MEN-1) 
patients [80].

With its additional advantage of having a shorter inves-
tigation time with a lower radiation burden, 68Ga-DOTA-
exendin-4 PET/CT was proposed the diagnostic method of 
choice for suspected insulinoma negative on conventional 
imaging, thereby avoiding the cumbersome selective intra-
arterial calcium stimulation and venous sampling test. As 
DOTA-exendin-4 can induce hypoglycemia, a concomitant 
glucose-infusion is recommended. Transient nausea and 
vomiting were also reported shortly after injection of the 
tracer.

Expression of GLP-1R is limited in malignant insu-
linoma; however, they often express SSTR making them 
eligible for imaging with 68Ga-SSTR-PET [81].

MIBG  Neuroendocrine cells express the norepinephrine 
transporter, allowing norepinephrine and its structurally 
similar guanethidine derivative metaiodobenzygluanidine 
(MIBG) to enter the cell. This transporter is consequently 
also expressed on several NENs, such as pheochromocytoma 
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and paraganglioma, gastrointestinal NENs and MTC [82]. 
The iodine-123 labelled MIBG is used for diagnosis and 
staging in gastrointestinal NENs, pheochromocytoma/para-
ganglioma and MTC [82–84]. In direct comparison however, 
radiolabelled MIBG showed lower sensitivity compared to 
the 68Ga-based SSTR imaging [82].

Future Developments

FAP/FAP‑Inhibitors  The fibroblast activation protein (FAP) 
is a serine proteinase which is overexpressed on the cell sur-
face of activated fibroblasts, particularly cancer-associated 
fibroblasts in tumor stroma [12]. FAP-specific inhibitors 
have recently been developed as radioligands for PET imag-
ing [85]. 68Ga-FAPI-04 has low nanomolar affinity to FAP, is 
almost completely internalized, has a rapid blood clearance, 
and showed excellent image contrast in across many tumor 
entities [86]. As small intestinal NENs are characterized by 
extensive fibrosis surrounding the primary tumor and mes-
enteric metastases, potentially leading to intestinal obstruc-
tion and ischemic complications, FAPI-based PET imaging 
could be particularly interesting in these patients.

CXCR4  The C-X-C motif chemokine receptor 4 (CXCR4) 
is another receptor which is overexpressed on dedifferenti-
ated SSTR2 negative NENs [87, 88]. Coupled to 68Ga as the 
diagnostic compound 68Ga-Pentixafor, CXCR4 expression 
can be reliably assessed in vivo [89, 90].

In a direct comparison of 68Ga-Pentixafor with 68Ga-
DOTATOC- and18F-FDG-PET/CT in 12 patients with 
GEP NENs, 68Ga-based SSTR imaging showed a clear 

diagnostic superiority of 92%, followed by 83% for 18F-
FDG and 50% for 68Ga-Pentixafor [89]. However, being 
negative in all G1 patients, the diagnostic accuracy of 
68Ga-Pentixafor increased with increasing tumor grade 
(50% G2, 80% G3 patients). But since all CXCR4-positive 
lesions also showed high 18F-FDG-uptake, there is cur-
rently no additional value of this imaging technique in 
NENs.

GIPR  Another member of the gut peptide family is the glu-
cose-dependent insulinotropic polypeptide receptor (GIPR). 
GIP shows similar characteristics to GLP-1 including glu-
cose-dependent insulin secretion and inactivation by DPP4 
[73]. While in normal tissue, only low expression of GIPR 
is detected, they are overexpressed in insulinoma and gas-
trinoma, as well as non-functioning pancreatic, ileal, and 
lung NENs [91]. Also, for the around 10% of NENs which 
do not express SSTR nor GLP-1R, GIPR is an attractive 
target since it is expressed in the majority of those tumors 
[91]. While pre-clinical data showed promising results, the 
translation of those findings into clinical practice is currently 
pending.

CCK2R  Patients with MTC are often diagnosed with meta-
static disease, and systemic therapeutic options are limited 
[92]. Already in 1997, the expression of the transmembrane 
G-protein coupled cholecystokinine-2 receptor (CCK2R) 
was described to be present on 90% of MTCs [93]. Since 
those tumors usually have a low incidence of SSTR expres-
sion [72], the CCK2R constitutes an attractive alternative 
target for peptide-based molecular imaging.

Fig. 2   Targeting of GLP-1R 
with 68Ga-DOTA-exendin-4 
PET/CT. Patient with biochemi-
cally confirmed endogenous 
hyperinsulinemic hypoglyce-
mia. CT and MRI were nega-
tive. Coronal (A) and transaxial 
(B) PET/CT showed focal 
68Ga-DOTA-exendin-4 uptake 
in the body of the pancreas 
(white arrows) consistent with a 
benign insulinoma. Coronal (C) 
and transaxial (D) T1-weighted 
MRI showed a slightly hypoin-
tense signal at the same location 
(white arrows) and was only 
retrospectively interpreted as 
a suspicious lesion. Histology 
confirmed an insulinoma in the 
pancreatic body

143   Page 6 of 10 Current Oncology Reports (2021) 23: 143



1 3

Minigastrin is a peptide CCK2R agonist, used for in vivo 
visualisation of its expression. In 2016, the detection of an 
MTC in one patient was reported using the 68Ga-labelled 
minigastrin analogue MG48 (68Ga-PP-F11) PET/CT [94]. 
Several CCK2R targeting peptides are being evaluated at 
the moment, promising improved diagnostic evaluation for 
future MTC patients [95•].

Artificial Intelligence Tools

Radiomics, defined as the use of advanced computer analysis 
and deep learning techniques to find and quantify imaging, 
have the potential to lead to more differentiated grading, 
even allowing prediction of treatment response. In NENs, 
radiomics have so far mainly been evaluated in pancreatic 
NEN. Here, this technique was successfully used in several 
studies to differentiate low grade from high-grade tumors 
or pancreatic carcinomas [96, 97]. One study even showed 
a correlation between the developed radiomics nomogram 
and the proliferation markers Ki-67 and mitotic count [98]. 
Other studies have tried to use radiomics as a prognostic 
tool. However, while in one study the apparent diffusion 
coefficient (ADC) correlated with WHO tumor grade, no 
such association was found for recurrence-free survival [99]. 
Another study using 68Ga-DOTATOC PET/MRI showed 
decreased tumor lesion volume in responders but was also 
not able to predict treatment response to PRRT [100].

While these approaches are promising, their translation 
into clinical practice, especially prospective studies with 
patient relevant outcomes, are currently missing.

Conclusion

Molecular imaging is a rapidly evolving field which will 
further improve current management of NENs. Among the 
currently available options, 68Ga-based SSTR PET/CT is 
recommended as the standard molecular imaging technique. 
Detection and staging of NENs with an SSTR-antagonist 
PET/CT is promising, but further clinical studies are needed. 
68Ga-DOTA-exendin-4 PET/CT, using the GLP-1R-targeting 
peptide exendin-4, is likely to become the diagnostic method 
of choice for suspected insulinoma negative on conventional 
imaging.

For dedifferentiated NENs, new molecular targets such as 
the CXCR4 and the CCK2 receptors have been assessed, the 
latter showing intriguing data for the staging of MTC using 
the targeting ligand minigastrin.
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