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Abstract
Purpose of Review Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplasms, bearing a terrible
prognosis. Stage III tumors, also known as locally advanced pancreatic cancer (LAPC), are unresectable, and current palliative
chemotherapy regimens have only modestly improved survival in these patients. At this stage of disease, interventional tech-
niques may be of value and further prolong life. The aim of this review was to explore current literature on locoregional
percutaneous management for LAPC.
Recent Findings Locoregional percutaneous interventional techniques such as ablation, brachytherapy, and intra-arterial chemo-
therapy possess cytoreductive abilities and have the potential to increase survival. In addition, recent research demonstrates the
immunomodulatory capacities of these treatments. This immune response may be leveraged by combining the interventional
techniques with intra-tumoral immunotherapy, possibly creating a durable anti-tumor effect. This multimodality treatment
approach is currently being examined in several ongoing clinical trials.
Summary The use of certain interventional techniques appears to improve survival in LAPC patients and may work synergis-
tically when combined with immunotherapy. However, definitive conclusions can only be made when large prospective (ran-
domized controlled) trials confirm these results.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) remains a
highly lethal disease, among some of the most challeng-
ing neoplasms to treat [1]. Despite advances in systemic
regimens (i.e., stronger chemotherapeutics and novel im-
munotherapies), long-term survival can currently only be
achieved through surgical resection of the tumor.
However, even then, most patients will develop recur-
rent disease in the subsequent years, resulting in a 5-
year survival of 20% for resected patients [2]. At initial
diagnosis, 30–40% of patients present with locally ad-
vanced pancreatic cancer (LAPC, stage III) [3]. Herein,
LAPC is defined as having > 180° arterial engagement
and/or venous involvement, rendering reconstruction un-
attainable [4]. Although palliative FOLFIRINOX (folinic
acid, fluorouracil, irinotecan, and oxaliplatin) is currently
the gold standard for stage III tumors, studies have sug-
gested that locoregional treatments may improve overall
and disease-free survival [5••, 6, 7•, 8–12]. Percutaneous
interventional techniques include radiofrequency ablation
(RFA), microwave ablation (MWA), cryoablation, irre-
versible electroporation (IRE), brachytherapy (iodine-
125 (125I) seed implantation), intra-arterial infusion of
chemotherapy (IAIC), and transarterial chemoembolization
(TACE).

Another disconcerting feature of PDAC is its highly
immunosuppressive tumor microenvironment (TME),
established by, among others, the presence of regulatory
T-cells (Tregs), myeloid-derived suppressor cells
(MDSCs), and tumor-associated macrophages (TAMs)
(Fig. 1), limiting the efficacy of chemo- and immunother-
apies. In addition to their cytoreductive abilities, ablative,
radiotherapeutic, and certain chemotherapeutic strategies
have demonstrated immunomodulatory properties by in-
ducing immunogenic cell death (ICD) [13, 14]. The de-
struction of tumor tissue releases antigens (i.e. proteins of
mutated genes) and damage-associated molecular patterns
(DAMPs), which are host biomolecules (e.g., DNA, RNA,
cytokines) that promote and exacerbate an inflammatory
response. These products promote activation of antigen-
presenting cells (APCs) such as dendritic cells (DCs),
which will subsequently transport antigens to the draining
lymph nodes. Here, activation of anti-tumor-specific T-
cells is established, theoretically capable of inducing a
systemic anti-tumor response in which secondary, non-
locally treated tumors display regression [15]. The im-
mune response may be leveraged by combining these
tumor-destructive interventional techniques with immuno-
therapy. This review will focus on locoregional manage-
ment of LAPC using ablative techniques, internal radia-
tion (brachytherapy), intra-arterial chemotherapy, and
intra-tumoral immunotherapy.

Locoregional Ablation, Brachytherapy,
Chemotherapy, and Immunotherapy

Literature from the last decade (2010–2020) describing mini-
mally invasive approaches (i.e., percutaneously or using an
endoscope) of ablative techniques (RFA, MWA, cryotherapy,
and IRE), brachytherapy (iodine-125 seed implantation),
intra-arterial administration of chemotherapeutics (IAIC and
TACE), and intra-tumoral immunotherapy is discussed.
Specifically, safety and efficacy of these approaches
(Tables 1 and 2) are addressed along with their immunomod-
ulatory abilities.

Radiofrequency Ablation

RFA employs high-frequency alternating currents that create
heat, achieving temperatures between 60 and 100 °C, resulting
in acute lethal hyperthermia without an excessive increase in
impedance [34]. In principle, the extent of cellular damage
depends on three factors: amount of energy applied, rate of
the energy delivery, and the tissue’s sensitivity to thermal
damage. Lethal hyperthermia (> 50–60 °C) induces tissue
coagulation and protein denaturation in the central zone, in
close proximity to the needle electrode. In the periphery,
(sub)lethal temperatures (< 40–50 °C) may result in a combi-
nation of necrosis, apoptosis, or recovery, depending on the
exposure time [35]. Commonly, one needle electrode is used
which is placed into the tumor core, either during laparotomy
or laparoscopy, percutaneously, or endoscopically.

Efficacy and Safety of RFA

Within the management of pancreatic cancer, endoscopic ul-
trasound (EUS)–guided RFA has been successfully used for
pain palliation by targeting the celiac ganglion [36]. However,
the additive value of cytoreductive RFA in the context of
LAPC remains controversial, regardless of the utilizedmethod
(i.e., open [37–43], percutaneous [16], endoscopic [44–46]).
Literature on minimally invasive (percutaneous or endoscop-
ic) RFA is scarce. Three articles employed EUS and one uti-
lized a percutaneous approach. With a median overall survival
(mOS) of 6 months from cytoreductive RFA, outcome was
poor. Compared to the open approach, these methods demon-
strated significantly reduced morbidity (0% vs. 53%) and
mortality (0% vs. 6%). D’Onofrio et al. reported on the only
percutaneous series of patients with unresectable PDAC (n =
18), all of whom were pre-treated with chemotherapy [16].
Technical success was achieved in 16 patients (93%), mOS
was 6 months, and none of the patients experienced major
complications. Most frequently reported severe complications
for pancreatic RFA include pancreatitis, biliary injury, portal
vein thromboses, pancreatic fistulas, hemorrhages, duodenal
perforations, and gastric ulcers or fistulas [47]. The
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positioning of the pancreas, entwined with delicate structures,
complicates the utilization of thermal ablative methods. For
example, the heat-sink effect of adjacent large blood vessels
can hinder successful RF ablation. Also, to ensure minimal

collateral thermal damage, a safe distance to delicate sur-
rounding parenchyma (i.e., blood vessels and duodenum)
must be maintained [48]. This can be minimized by constant
intra-procedural cooling of such structures. Ambiguity

Fig. 1 Changing immune status upon treatment with local interventional
treatment in combination with local immunotherapy. Pre-treatment:
pancreatic ductal adenocarcinoma (PDAC) maintains a heavily
immunosuppressive environment, established by (among others)
regulatory T-cells (Tregs), tumor-associated macrophages (TAMs),
myeloid-derived suppressor cells (MDSCs), and suppressive cytokines.
Treatment: combination treatment with intra-tumoral immune
modulation and ablation, brachytherapy, or intra-arterial chemotherapy
potentially creates synergism resulting in a durable anti-tumor effect.
Immune potentiation combined with local ablation leads to the release
of tumor antigens and damage-associated molecular patterns (DAMPs).
Subsequently activated dendritic cells (DCs) are now able to capture

antigens and migrate towards the draining lymph nodes. Here, antigens
are presented to lymphocytes, inducing antigen-specific expansion of
effector T-cells, including T-helper-1 cells (Th1) and CD8+ (cytotoxic)
T-cells, which will provide systemic anti-tumor immunity. Immune
activation will lead to reduced TAMs, Tregs and MDSCs. Post-
treatment: The tumor microenvironment demonstrates a more
immunopermissive state, comprising of natural killer cells, M1
macrophages, anti-tumor T-cells (Th1 and CD8+), and permissive
cytokines such as interferon (IFN). T-cells are also primed to roam the
body in search of tumor cells, both at the primary tumor site as well as
other locations, possibly resulting in the regression of untreated
concomitant (micro)metastases. Figure created with BioRender.com
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regarding procedure regimens (temperature, power, duration,
minimum distance to vulnerable structures) and timing prior
to or after chemo(radio)therapy remains [40, 41]. The current-
ly recruiting randomized controlled PELICAN trial aims to
determine the survival benefit of chemotherapy and
cytoreductive RFA compared to sole chemotherapy
(NCT03690323).

Immunomodulation After RFA

The immunomodulation presented after RFA is a result of
ICD through the release of antigens and DAMPS such as
interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor
(TNF)-α [35]. Specific for thermal tissue damage is the re-
lease of a DAMP called heat shock protein (HSP)-70, in-
volved in proper folding and transport of proteins, and be-
lieved to play a key role in the immunological response [49].
HSP-70, mainly exposed in the peripheral non-coagulative
ablation zone, is elevated in the serum of patients after RFA,
which can lead to an immunological anticancer response
through activation and maturation of DCs [50, 51].
However, in this peripheral zone, created by diffusion of heat
outwards, IL-6, HSP-70, and hypoxia-related pathways have
also been implicated to stimulate outgrowth of tumor cells in
this area, thus potentially causing (early) recurrences [52–55].
In the coagulative central zone, protein denaturation and de-
struction of the blood and lymph vessels impedes proper im-
mune infiltration as well as antigen diffusion or transport and
subsequent presentation in draining lymph nodes. Clinical ev-
idence of an RFA-induced immune response in PDAC is cur-
rently limited to one publication. In this article, Giardino et al.
analyzed pre- and post-operative peripheral blood of 10 LAPC
patients and found RFA to activate adaptive immune subsets
(CD4+ and CD8+ T-cells) and myeloid DCs, while maintain-
ing stable numbers of immune inhibiting Tregs [56•].

Microwave Ablation

MWA uses electromagnetic waves to produce tissue-heating.
It relies on the oscillation of polar molecules to generate fric-
tional heat, aiming for temperatures between 80 and 150 °C to
induce coagulative tissue necrosis [57]. The procedure can be
performed using a sole or a cluster of MW antennas which are
inserted into the tumor. An advantage of MWA over other
thermal ablative techniques includes the faster heating of tis-
sue, making it less susceptible to the heat-sink effect. In addi-
tion, MWA appears more suited for larger tumors, is less
affected by tissue impedance changes and the microwaves
are able to travel more efficiently through fibrous (pancreatic)
tissue [58]. However, MWA ablation zones can be harder to
predict, possibly leading to overtreatment and, consequently,
unintentional thermal damage to adjacent structures. MWATa
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can be performed during laparoscopy, laparotomy, and
percutaneously.

Efficacy and Safety of MWA

Three groups previously described results following percuta-
neous MWA in LAPC [17–19]. They included a total of 32
patients treated under US or computed tomography (CT) guid-
ance, mostly focusing on the technique’s feasibility and safe-
ty. All reported 100% technical success rates, without any 30-
day mortality. Carrafielo et al. included 10 patients (5 percu-
taneous, 5 laparotomic) with LAPC unresponsive to chemo-
therapy and were the only group reporting severe morbidity (n
= 2, 20%) and survival outcomes (1-year OS of 80%) [17].
Major complications included one (early) pancreatitis and one
(late) pseudoaneurysm of the gastroduodenal artery. All arti-
cles were uniform to conclude the technique’s ability to tem-
porarily improve quality of life, its feasibility, and safety.
However, comprehensive and longer term survival results
are lacking, thus conclusions on the efficacy of MWA in
LAPC are premature. Nonetheless, similar to RFA, a major
drawback of this technique remains the use of thermal energy
in a highly delicate organ surrounded by vulnerable structures.

Immunomodulation After MWA

MWA induces a similar immune response as described for
RFA, with upregulation of serum HSP-70, although apparent-
ly to a lesser extent [59]. (Pre-)clinical literature on immune
modulation of MWA in the context of pancreatic cancer is
lacking.

Cryoablation

With cryoablation, liquid gasses such as argon or nitrogen are
delivered through one or multiple cryoprobes and expand into
a gaseous state at the tip of the probe through a mechanism
known as the Joule-Thomson effect [60]. With temperatures
as low as – 190 °C, this process causes local freezing of tissues
resulting in a combination of necrotic and delayed apoptotic
cell death. Cryoablation depends on four factors: rate of
cooling, minimum temperature, and duration at this tempera-
ture during the procedure, and the rate of thawing. The ex-
treme cold also induces blood coagulation followed by vascu-
lar ischemia [60]. Several freeze-thaw cycles are performed to
obtain effective and successful ablation. Cryoablation requires
real-time monitoring of the ice ball to ensure complete freez-
ing and minimal injury to adjacent structures.

Efficacy and Safety of Cryoablation

To date, four articles have been published on the use of
cryoablation in the context of LAPC, two in an open [61,

62] and two in a percutaneous setting [12, 63]. As monother-
apy, cryoablation demonstrated a mOS of 12.6 months [63],
and in combination with internal radiotherapy a mOS of 16.2
months [12] was noted (neither article specified whether OS
from diagnosis or treatment). Niu et al. were the only group
reporting on sole percutaneous cryoablation and included pa-
tients with stage II (n = 3), III (n = 11), and IV (n = 18) PDAC
whose tumor was deemed unresectable [63]. Clinical benefit
response (based on pain scores and analgesic consumption)
was 84.4%, and the mOS was 12.6 months (incl. all stages). In
order to overcome potentially incomplete destruction at the
ablation border, Xu et al. described percutaneous cryoablation
in combination with brachytherapy in LAPC (n = 49), dem-
onstrating a mOS of 16.2 months with a 6% severe complica-
tion rate [12]. The freezing process can injure delicate paren-
chyma including the duodenum, bile ducts, or blood vessels,
resulting in inflammation, fistulas, abscesses, or bleeding.
Division of surrounding tissue or application of warm pads
may reduce the risk of these freezing-related injuries [59].

Immunomodulation After Cryoablation

Cryoablation has been described as a potent immunostimula-
tory inducer among thermal ablative therapies, able to release
most non-denatured proteins and induce profound DC antigen
loading [64, 65]. It has even resulted in extreme cases of
inflammatory responses owing to the induced cytokine storm
which increases vascular permeability, resulting in abundant
tissue edema and in some cases cryoshock [66]. On the other
hand, cryoablation has also been described as an immunosup-
pressant modality [67]. Increased levels of IL-10, an immuno-
suppressive cytokine that promotes Treg differentiation, have
been proposed as part of the explanation for this [68, 69].
Furthermore, portions of the ablation zone may not exhibit
ICD, thus impeding generation of a proper anti-tumor
immune response [49]. In this regard, the rate of tissue freez-
ing has been suggested as an important determinant of
immunologic response [70]. Literature on the immune
response after cryoablation in pancreatic cancer patients is
currently limited to one pre-clinical study. White et al. com-
pared early immunological responses after cryoablation and
IRE in a rodent model of pancreatic cancer. They noted no
significant changes in any immune cell type after
cryoablation, compared to a robust intra-tumoral infiltration
of macrophages and CD3+ T-cells after IRE [71].

Irreversible Electroporation

IRE is a predominantly non-thermal ablative technique
which utilizes high-voltage electrical pulses (HVEPs) of
up to 3000 V to permeabilize and destabilize the cellular
membrane, leading to necrotic and (delayed) apoptotic cell
death [72]. Multiple needle electrodes are placed in and
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around the tumor, such that the entire tumor volume including
a margin is encompassed. Compared to thermal ablative
methods, IRE offers several advantages, especially for pancre-
atic tumors. The HVEPs preserve the collagen framework of
adjacent delicate structures, allowing for cellular regeneration
[73]. In addition, the efficacy of the HVEPs is not hindered by
the heat-sink effect. For these reasons, US- or CT-guided open
IRE, as stand-alone therapy [20, 24, 42, 74–80] or for margin
accentuation [76, 81], and percutaneous IRE [5••, 6, 7•, 11,
20–26, 82] have gained interest over the last decade for the
treatment of locally advanced or recurrent pancreatic cancer.
Figure 2 demonstrates a case of a 62-year-old male with
LAPC successfully treated with contrast-enhanced (ce)CT-
guided percutaneous IRE.

Safety and Efficacy of IRE

Studies on percutaneous IRE demonstrate survival outcomes
after diagnosis (mOSd) between 13.3 and 27 months (vs.
15.3–24.9 months in open IRE), and survival outcomes after
treatment (mOSt) between 7 and 27 months (vs. 6.4–12
months in open IRE). A large database study has established
that IRE in combinationwith chemotherapy (mOS 16months)

prolongs survival compared to sole chemotherapy (mOS 8
months) after propensity score matching [83]. Leen et al. re-
ported on the largest LAPC cohort (n = 75) with the longest
survival outcomes (mOSt 27 months). These results may in
part be explained by the retrospective nature of the research,
inherently leading to selection bias, in combination with fa-
vorable patient selection criteria. The largest prospective co-
hort was reported by Ruarus et al., who treated 40 LAPC and
10 recurrent patients using (ce)CT-guided percutaneous
IRE. They reported mOSd and mOSt of 17 months and
9.6 months, respectively. Major complication rates varied
substantially among studies on percutaneous IRE (0–40%)
but were generally lower compared to open procedures
(8–53%). The most frequently encountered major compli-
cations during and after IRE procedures include pancreati-
tis, fistulas, ileus, or delayed gastric emptying, intra-
abdominal hemorrhages, ulcers, portal vein thromboses,
and biliary-related issues (leakage and/or cholangitis). To
reduce the chances of IRE-related infections, prophylactic
antibiotics are a must. Reported mortality rates after treat-
ment varied between 0 and 6% (vs. 0–13% in an open
setting). Notably, Xu et al. have recently published on the
importance of adjuvant chemo- and/or radiotherapy after

Fig. 2 CT-guided percutaneous irreversible electroporation (IRE) for
locally advanced pancreatic cancer (LAPC). Sixty-two-year-old male
with LAPC on the basis of involvement of the superior mesenteric
artery (0–90°, although complete encasement (360°) of the first jejunal
branch), involvement of the aorta (0–90°), and involvement of the
superior mesenteric vein/portal vein (0–90°). A biliary stent (black
asterisks in a, b, c, e, f) was placed prior to IRE using endoscopic
retrograde cholangiopancreatography (ERCP). a Perprocedural contrast
enhanced (ce)-CT of the LAPC in the head of the pancreas (white arrows)
and biliary stent (black asterisk) prior to IRE treatment. The white asterisk
shows significant dilation of the pancreatic duct. b Perprocedural axial

view of 2 of the 4 needle electrodes in situ. c Perprocedural coronal view
of all 4 needle electrodes in situ. The needles were successfully placed,
bypassing all major blood vessels. d Sagittal view of 2 of the 4 needle
electrodes in situ. e ce-CT immediately after IRE. The white arrows
delineate the ablation zone, wherein formation of gas pockets is clearly
visible (black arrow). The gas pockets maybe the result of water
electrolysis and/or vaporization. f ce-CT 3 months post-IRE
demonstrates a hypointense ablation zone (white arrows). The portal
vein is open; dilation of the pancreatic duct (white asterisk) remains
unchanged. No evidence of local recurrence or distant metastases
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IRE, concluding that additive adjuvant therapy significantly
improves survival [84].

Immunomodulation after IRE

Immunomodulation in IRE has been described as the most
potent compared to thermal ablative techniques, specifically
in terms of protein release and T-cell activation [64].With IRE
specifically, hypoxia is relieved by increasing blood vessel
permeability and microvessel density, counteracting
hypoxia-induced immunosuppression [85••]. In addition, the
preservation of lymph vessels allows DCs to transport re-
leased antigens from the ablated area to the draining lymph
nodes. Thereafter, the activated effector T-cells are able to
infiltrate the residual ablated mass owing to intact blood vessel
structures. Scheffer et al. have demonstrated the clinical im-
munemodulatory effects after percutaneous IRE in the periph-
eral blood of 10 LAPC patients [86•]. Two weeks post-IRE,
Tregs were decreased, PD-1+ T-cells were elevated, and
boosting or de novo induction of a Wilms Tumor-1 (pancre-
atic TAA)-specific T-cell response was observed. These find-
ings are consistent with a systemic and tumor-specific im-
mune stimulatory effect. Pandit et al. also evaluated the
post-IRE immune response in LAPC patients (n = 11) [87•],
in which three Treg subsets displayed an inverse correlation
with time, demonstrating attenuation of immunosuppression.

Brachytherapy: Iodine-125 Seed Implantation

Iodine-125 (125I) seed implantation is a form of brachythera-
py, or internal radiation, and has been used in the treatment of
PDAC for several decades. The seeds contain the radioactive
material and can be placed inside the tumor using an implan-
tation needle and gun [88]. The radioactive material causes
direct cell death by damaging its DNA and indirect damage
by producing free radicals, resulting in a mixture of lethal and
sublethal damage [89]. Since the radioactive particles are em-
bedded inside the tumor and have a small radiation radius, this
allows for administration of a high radioactive dose, killing
nearby tumor cells without inflicting considerable collateral
damage to the surrounding tissue. An important limitation of
this treatment is radiation attenuation. With a half-life of 59
days, 125I seed implantation will only have a temporary effect.
As with the other local therapies, implantation can be accom-
plished through open [90–94] or percutaneous [8, 12, 27, 28]
means under CT or US guidance, with the latter approach
having shorter procedural times and quicker recovery [95].

Safety and Efficacy of 125I Seed Implantation

As stand-alone local therapy, median survival outcomes in
LAPC patients percutaneously treated ranges between 7.3
and 11 months. Additional increase in survival can be

achieved if 125I seed implantation is combined with other in-
terventional modalities such as cryoablation (mOS 16.2
months) [12] or TACE (mOS 17.6 months) [8]. Reported
severe morbidity varies between 0 and17% (vs. 0–11% open
setting), whereas mortality among studies was 0% (vs. 1.3%
open setting). The high rate of severe morbidity reported by
Yang et al. (17%) can be explained by patient selection,
including only LAPC patients whose disease was
complicated by obstructive jaundice [28]. Most common
(major) complications for percutaneous 125I seed implantation
include pancreatitis, fistulas, seed migration, ulcers, infec-
tions, leakage, and intestinal perforations [29].

Immunomodulation After 125I Seed Implantation

Apoptosis is the predominant form of cell death in radiation-
based therapies, but high doses of radiation can also lead to
necrosis. Similar to other ablative therapies, paradoxical im-
munomodulatory effects have been reported after radiothera-
py treatment [96]. Immunopermissive effects may be initiated
by a combinatory release of antigens and DAMPs, followed
by activation of the adaptive system. However, radiotherapy
has been suggested to promote inactivation of DCs and NK
cells, consequently leading to recruitment of immunosuppres-
sive MDSCs and Tregs. There is currently no literature pub-
lished on the immunomodulatory effects of internal radiation
therapy in pancreatic cancer, but external radiation effects were
demonstrated by Fujiwara et al. in a subcutaneous PDAC
mouse model [97]. Radiotherapy appeared to induce innate
immune permissive responses by activating Toll-like receptors
(TLRs) and pro-inflammatory chemokines. However, effects
on the adaptive system seemed double-edged as immune acti-
vating (TNF receptors) and immune suppressive (transforming
growth factor (TGF)-β) pathway genes were upregulated.
Furthermore, intra-tumoral CD8+ T-cells remained scarce.

Intra-arterial Infusion Chemotherapy/Transarterial
Chemoembolization (TACE)

(Regional) intra-arterial infusion of chemotherapy (RAIC or
IAIC) and transarterial chemoembolization (TACE) are min-
imally invasive techniques in which (a combination of) che-
motherapeutics are locally supplied through an arterially
placed catheter. The latter technique (TACE) includes addi-
tional embolization agents to achieve simultaneous blocking
of the vessels. IAIC and TACE are often combined with sys-
temic chemotherapy, either in a concurrent or sequential fash-
ion, or used as a subsequent therapy for systemic chemother-
apy refractory patients. The chemotherapeutic agents are cy-
totoxic and non-specifically target either the DNA itself or
enzymes required for DNA synthesis and repair, with the ra-
tionale that highly proliferative cancer cells are more vulner-
able to this damage. IAIC and TACE have been extensively
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employed for the treatment of hepatic tumors [98], but some
literature has also been published on its use in pancreatic can-
cer [9, 30–33]. The exact tumor location and its supplying
arteries determine through which vessels the chemotherapeu-
tic infusion will be delivered. In general, tumors with abun-
dant blood vessels benefit more from regional infusion since
this implies a greater localized concentration of the chemo-
therapeutics [30].

Safety and Efficacy of IAIC/TACE

A meta-analysis compared systemic administration of chemo-
therapy (n = 143) with IAIC (n = 155) [9]. The analysis com-
prised 6 randomized controlled trials (RCTs) including 298 pa-
tients with advanced pancreatic disease (stages III/IV). They con-
cluded that IAIC resulted in increased median survival (5–21
months vs. 2.7–14 months), superior clinical benefits (78% vs.
29%), and fewer overall complications (49% vs. 71%) and he-
matological side effects (61% vs. 86%). Although chemothera-
peutic toxicity (e.g., neutropenia, thrombocytopenia) rates are
lower, they can still arise in IAIC. In addition, specifically with
IAIC, (post-procedural) infections or vascular dissections may
occur. Although IAIC has shown to be of value, the expansion
into common clinical practice is limited by the difficulty of the
procedure, with i.v. chemotherapy being more readily available
and cheaper. However, especially for patients resistant to stan-
dardized systemic chemotherapy, this may be a suitable neo-
adjuvant or palliative treatment option.

Immunomodulation After (Local) Chemotherapy

(Locoregional) Chemotherapy has been implicated to elicit
tumor-specific immune responses [14, 99]. The apoptotic
ICD leads to extracellular accumulation of nucleic acids
(DAMPs), promoting release of type I interferon (IFN),
followed by maturation of DCs and activation of effector T-
cells [100]. However, to date no literature has been published
specifically describing the immune response after local ad-
ministration of chemotherapy in pancreatic cancer.
Michelakos et al. describe clinical results in PDAC patients
(n = 248) of whom a portion received systemic FOLFIRINOX
(± radiation) and were compared to untreated controls [101].
The treated group exhibited dense CD8+ T-cell infiltration,
high CD4+ T-cell numbers, and low Treg cell density.

Intra-tumoral Immunotherapy

The aim of immunotherapy is to establish a systemic anti-
tumor immune response. Intra-tumoral immunotherapies, in
addition to their local priming effects, also enable this system-
ic effect yet offer one major advantage over systemic admin-
istration. Their bioavailability to the tumor and its draining
lymph nodes is superior, thus allowing lower doses to suffice

and consequently avoiding major systemic toxicities
[102–104]. As a result, combination immunotherapies previ-
ously deemed unworkable due to severe toxicities are now
feasible, with the possibility of repeat treatments [105].
Intra-tumoral infusion can be established under image-guid-
ance, either using an endoscopic or percutaneous (needle-
guided) approach. Examples of these intra-tumoral immuno-
therapies are oncolytic viruses, cytokines, immune checkpoint
inhibitors, and Toll-like receptor (TLR) agonists (Fig. 1).

Oncolytic viruses are deployed to infect tumor cells and
insert genetic material into their DNA. Oncogenic pathways
at play in tumor cells allow for replication of the oncolytic
viruses and eventual lysis of the tumor cells, while leaving
normal healthy cells unaffected. The lysed tumor cells release
tumor antigens, DAMPs, and virus-derived pathogen-associ-
ated molecular patterns (PAMPs), leading to immune system
activation [106]. Hirooka et al. published results of a phase 1
clinical trial in which LAPC patients (n = 10) were treated
with EUS-guided intra-tumoral HF-10 oncolytic virus in com-
bination with erlotinib and gemcitabine [107•]. This triple
treatment was deemed safe (20% SAEs), with a PFS of 6.3
months and OS of 15.5 months.

IL-12 is a pro-inflammatory cytokine produced by APCs in
response to pathogens. It has the ability to induce differentia-
tion of naïve CD4+ T-cells into T-helper-1 (Th1) cells, in-
crease cytotoxic activities of T-cells and NK cells, and inhibit
or reprogram MDSCs and TAMs [108]. In a PDAC hamster
model, an intra-tumoral IL-12 incorporated oncolytic virus
achieved a potent anti-tumor effect [109].

Intra-tumoral administration of anti-CTLA4 and/or anti-
PD-1 has been shown to ensure optimal access to tumor-
draining lymph nodes and in mouse models it has been shown
to be equally efficacious as systemic delivery without unwant-
ed immune-related side effects accompanying systemic treat-
ment [102–104]. In a pre-clinical model of PDAC, peri-
tumoral anti-CTLA4 has demonstrated effective inhibition of
tumor growth, with increased effector T-cell infiltration and
reduced Tregs [110].

TLRs are a family of pattern recognition receptors present
on the surface of macrophages and DCs, normally involved in
the recognition of pathogens. Hereupon, they initiate a cas-
cade of pro-inflammatory effects through the innate and adap-
tive immune system [111]. Schmidt et al. demonstrated that
intra-tumoral administration of a TLR-2/6 agonist in PDAC
patients (n = 10) with incompletely resected primary tumors
resulted in an influx of lymphocytes and monocytes in wound
secretion, and reversal of NK inhibition [112].

Future Directions

The immunomodulatory effects of different treatment
strategies are highly variable and have yet to be fully
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elucidated in the clinical context of PDAC. Nonetheless, a
transition from an immune inhibitory to a more permissive
state has been presented in several studies. However, one
common major limitation remains, i.e., the transient nature
of the immune effect. It has been hypothesized that the anti-
tumor immune response may become durable when these lo-
cal techniques are combined with immunotherapy (Fig. 1). In
a pre-clinical immunocompetent mouse model with subcuta-
neous PDAC, stereotactic body radiotherapy (SBRT) in com-
bination with intra-tumoral injections of IL-12 microspheres
resulted in increased IFN production and CD8+ T-cell activa-
tion, followed by significant tumor reduction and even remis-
sion in some cases [113]. Zhao et al. utilized a similar PDAC
mouse model, demonstrating that combined IRE and systemic
anti-PD1 treatment promotes CD8+ T-cell infiltration and sig-
nificantly increased overall survival when compared to the
controls and either IRE or anti-PD1 as monotherapy [85••].
Narayanan et al. also presented pre-clinical findings in mice
with PDAC, in which IRE was combined with systemic anti-
PD1 and an intra-tumoral TLR-7 agonist [114•]. Compared to
sole IRE, this triple strategy improved treatment response and
resulted in elimination of untreated concomitant metastases.
Clinically, IRE combined with NK cells [115, 116•] or allo-
genic Vγ9Vδ2 T-cell infusion [117••] have both presented as
life-prolonging therapies. These encouraging initial results
warrant further exploration. The PANFIRE-III trial will com-
bine IRE, systemic anti-PD1, and an intra-tumoral TLR-9 ag-
onist in metastasized PDAC patients (NCT04612530).

Conclusion

PDAC is an aggressive type of cancer and maintains a highly
immunosuppressive environment. The discussed interven-
tional techniques provide cytoreduction of tumor mass in
LAPC patients, which may result in prolonged survival.
Furthermore, recent literature suggests that certain techniques
have immunomodulatory capacities, which may be leveraged
when combined with immunotherapy, possibly creating a du-
rable anti-tumor effect. Promising initial data supports this
notion of synergism between local interventional and immu-
notherapeutic strategies. However, definitive conclusions can
only be made when large prospective (randomized controlled)
trials confirm these results.
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