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Abstract
Purpose of Review Acute myeloid leukemia (AML) in children remains a challenging disease to cure with suboptimal outcomes
particularly when compared to the more common lymphoid leukemias. Recent advances in the genetic characterization of AML have
enhanced understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. Here, we
review key cytogenetic and molecular features of pediatric AML and how new therapies are being used to improve outcomes.
Recent Findings Recent studies have revealed an increasing number of mutations, includingWT1,CBFA2T3-GLIS2, andKAT6A
fusions, DEK-NUP214 and NUP98 fusions, and specific KMT2A rearrangements, which are associated with poor outcomes.
However, outcomes are starting to improve with the addition of therapies such as gemtuzumab ozogamicin and FLT3 inhibitors,
initially developed in adult AML.
Summary The combination of advanced risk stratification and ongoing improvements and innovations in treatment strategy will
undoubtedly lead to better outcomes for children with AML.
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Introduction

Pediatric acute myeloid leukemia (AML) is a heterogeneous
disease with generally poor outcomes compared to childhood
lymphoid leukemia. Decades of coordinated efforts through
cooperative group trials have improved our understanding of
the unique biology underlying pediatric AML and patient out-
comes. However, relapse remains frequent with limited avail-
able treatment options. As AML is more common and heavily
researched in older adults, the field of pediatric AML has
advanced in the understanding of AML biology and novel
therapeutic strategies by translation of adult studies into the
realm of pediatrics. However, there are substantial differences
in the mutational landscape in pediatric versus adult AML and

tolerance to treatment regimens, thus requiring dedicated risk
stratification and treatment considerations in children.

Compared to adults, children with AML have superior out-
comes due to fewer adverse genetic mutations and the ability
to tolerate the high-intensity chemotherapy currently neces-
sary for cure. While complete remission (CR) rates are high
in pediatric AML at approximately 90%, event-free survival
(EFS) and overall survival (OS) remain suboptimal at 45%
and 65%, respectively, at 3 years, and nearly half of children
will relapse [1, 2]. Even in the low-risk genetic groups, relapse
remains common at up to 35%. Unfortunately, children at the
highest risk of relapse related to poor genetic features have
dismal outcomes altogether and continue to require stem cell
transplant (SCT) to achieve cure, with only one in three sur-
viving at 3 years [1].

Treatment decisions, namely the need for SCT, in pediatric
AML are primarily driven by genetic risk classification which
is quickly evolving. The World Health Organization (WHO)
began defining recurrent genetic groups in myeloid malignan-
cies in 2001 due to high incidence of specific mutations in
AML, unique underlying biology, and comparable outcomes
amongst patients with these lesions [3]. However, these defi-
nitions are primarily based on adult studies, and while an
overlap between genetic features in adults and children exists,
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assigning risk categories in children requires special consider-
ation. Currently, t(15;17), the defining genetic rearrangement
of acute promyelocytic leukemia, is excluded frommost AML
studies due to highly specific therapy and superior outcomes
and will not be discussed here. Favorable-risk genetics such as
inv(16), t(8;21), and CEBPA and NPM1 mutations may be
cured with chemotherapy alone [4–6]. In contrast, monosomy
7 and monosomy 5 or 5q deletions are high-risk (HR) features
which require SCT in first remission for the best outcomes [7,
8]. Rearrangements of KMT2A, located on chromosome
11q23, were also included in initial WHO classifications,
but the prognostic significance was unclear until recently [9,
10••]. As advanced testing abilities and mutation profiling
have become more readily available, these genetic risk groups
are rapidly changing. Through collaborative efforts such as
the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) AML initiative, in-depth de-
scriptions of pediatric AML mutations and their effects on
outcomes have been achieved [10••].

Along with improving our understanding of the biology of
AML, identification of recurrent mutations has provided an
opportunity to develop new treatment approaches. Targeted
therapeutics, epigenetic modifiers, immune-based strategies,
and novel metabolic pathway inhibition have all been utilized
recently with varying degrees of success in adult AML. These
strategies are now being employed in children with the aim of
improving cure rates and providing more options in the relapse
setting. Here, we discuss the current progress in understanding
the unique mutational landscape of pediatric AML, implica-
tions on prognosis, and the use of new treatment strategies to
optimize therapy and outcomes in children with AML.

Genetics

Established Genetic Risk Factors

Risk stratification in pediatric AML has previously been based
on the presence of a handful of genetic features and responses
to therapy. Those with favorable genetics include t(8;21),
inv(16), NPM1 mutations, and CEBPA mutations, each of
which carries EFS and OS rates of approximately 65–70%
and 80%, respectively [1, 4, 11]. t(8;21) and inv(16), collec-
tively termed core binding factor (CBF) AML, represent the
most common cytogenetic subgroup in pediatric AML ac-
counting for 20–25% of cases [1, 10••, 11]. Mutations in
NPM1 and CEBPA are more recent additions to the favorable
prognostic group and are similarly associated with an im-
proved prognosis in both children and adults [5]. CEBPA en-
codes a transcription factor that regulates expression of
myeloid-specific genes with recurrent mutations occurring in
two functional domains in approximately 4% of pediatric
AML [4]. NPM1 is a primarily nucleolar protein which plays

a role in regulating p53 function and other cellular processes
and, when mutated in AML, aberrantly localizes to the cyto-
plasm [5].NPM1mutations are more commonwith increasing
age but do occur in about 5–10% of children compared to 30%
of adults [5, 10••, 12, 13•]. Pediatric studies demonstrate a
higher EFS and OS with NPM1 mutations, particularly in
cytogenetically normal AML or when they occur in the con-
text of HR mutations where the presence of mutated NPM1
may improve outcomes compared to the HR genetic feature
alone [5, 6, 10••].

In contrast to the favorable outcomes associated with CBF
AML and NPM1 or CEBPA mutations, certain HR features
have consistently shown poor outcomes in children and adults
over the decades. This includes monosomy of chromosome 7
or 5 or deletion of 5q. These HR features are more common in
adults and collectively occur in less than 5% of pediatric AML
patients [14]. Of these, monosomy 7 is more common and
carries a high rate of induction failure, EFS of 17–29%, and
OS of 32%, a significantly worse prognosis than the HR group
as a whole (EFS of 28%; OS of 48%) [1, 14–17]. The list of
mutations conferring an HR status and overall poor outcome
continues to expand as research reveals new mutations and
prognostic relevance. Identification of such cytogenetic and
molecular changes is the first step to targeting dependencies
for these HR subtypes and ultimately improving outcomes.

Tyrosine Kinase Mutations

FLT3

FMS-like tyrosine kinase 3 (FLT3) is a recurrently mutated
gene in AML, occurring in 20–25% of children and 30% of
adults [10••, 13•, 18]. FLT3 mutations lead to constitutive
activation of the tyrosine kinase domain (TKD) causing unin-
hibited growth and are characterized as either TKD or internal
tandem duplication (ITD) mutations with FLT3-ITD being
significantly more common in children (Table 1) [13•]. The
prognostic relevance of the FLT3-ITD allelic ratio (AR) has
been refined over the last decade. Previous trials demonstrated
that an AR > 0.4 conferred a poorer prognosis compared to an
AR < 0.4, and so FLT3-targeted therapy was included only for
the high AR group [19]. However, updated analysis has sug-
gested that anAR> 0.1 is sufficient to confer unfavorable EFS
of 25–30% and OS of 60% [20•]. Therefore, children with an
FLT3-ITD AR > 0.1 may benefit from FLT3 inhibitor therapy
and SCT in first remission with this lower threshold being
used in upcoming trials.

RAS

Mutations in the Ras pathway are the most commonmutations
occurring up to 40% of pediatric AML patients, primarily in
either NRAS or KRAS genes [13•]. Similar to FLT3, RAS
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mutations lead to constitutive activation of the Ras pathway.
Despite intense research in associating RAS mutations with
outcome, they do not independently alter relapse risk or sur-
vival measures in pediatric AML in general, but theymay play
a prognostic role in specific subtypes [21]. For example, in
CBFAML, RAS-mutated patients have a lower risk of relapse,
though this is not integrated into current risk stratification
algorithms [22]. Importantly, RAS mutations may play a role
as a therapeutic target as many new therapies utilize tyrosine
kinase (TK) inhibition to limit cell growth. Mutations in Ras
pathway genes are also found to associate with rearrange-
ments in KMT2A, though this relationship appears to be most
common in infant acute lymphoblastic leukemia [23].

KIT

Mutations in the tyrosine kinase receptor KIT gene oc-
cur in 12% of pediatric AML patients and typically lead

to unregulated function of the KIT protein [10••, 13•,
24]. These mutations occur in two hotspot locations in
the gene, exon 8 and exon 17, though only exon 17
mutations have definitively been shown to cause KIT
auto-phosphorylation and constitutive activation [25].
Though previous studies have not determined a prog-
nostic value of KIT mutations in pediatric AML as a
whole, others have shown an improved OS associated
with KIT mutations [13•, 21]. These recent results may
be due to an enrichment of KIT mutations in the
favorable-risk CBF AML group, as KIT mutations occur
in 24–36% of this population with a slight predomi-
nance for exon 17 mutations [22, 26]. While studies
in CBF AML as a whole also do not demonstrate a
prognostic significance of KIT mutations, such muta-
tions within the t(8;21) subgroup of AML increase the
risk of relapse and lead to an inferior OS of only 50%
at 4 years [22, 26].

Table 1 Recurrent mutations in pediatric AML. Duration of survival endpoint varies depending on study

Category Mutation Reference Prevalence Estimated EFS Estimated OS Special considerations

Tyrosine kinase FLT3/ITD AR > 0.1 13, 20 15% 25–35% 60% Co-occur with WT1, DEK-NUP214,
and NUP98 fusions

FLT3-TKD 13 8–10%

RAS 13, 21 35–40% 65% 81% NRAS mutations more common than KRAS

KIT 13, 21 12% 60% 90% Enriched in inv(16) and t(8;21) AML

Epigenetic modifiers KMT2A fusions 9, 27 15–20% 44% 56% Prognosis dependent on fusion partner
t(9;11) 39–43%a 50% 63%

t(4;11) 1–2%a 29% 27%

t(6;11) 5–8%a 11% 22%

t(10;11)(p11.2q23) 1–2%a 17% 27%

t(10;11)(p12q23) 13%a 31% 45% MLL-MLLT10 fusion
t(11;19) 12–14%a 46-49% 47-61%

MLLT10 fusion
(non-KMT2A)

29, 30 < 1% 36% EMD common

DEK-NUP214 13, 17, 32 1–2% 32%
68%b

53% High rates of induction failure
More common in > 10 years of age

KAT6A fusion 35 < 0.5% 57% 59% Common in c-AML and may have
spontaneous remission

66% with EMD

Transcription factors WT1 mutation 10, 13 10–15% 30% 45% Often co-occurs with NUP98
fusion or FLT3/ITD

ETV6 fusions 10, 30, 37, 44 < 1% 43%b 12%
100%b

Most common in < 18 months of age
MNX1-ETV6 found in 30% infant AML

CBFA2T3-GLIS2 17, 41 2% 16.7% 41.7% 27% of M7 AML

NUP98 fusion 13, 17, 21, 41 5–10% 13–17% 33.3–52% 9% of M7 AML
Others FUS-ERG 17, 30 < 1% 9% 31%

MECOM fusion 30 < 1% 9% 31%

NPM1-MLF1 30 < 1%

EFS event-free survival, OS overall survival, AR allelic ratio, EMD extra-medullary disease, c-AML congenital AML, SCT stem cell transplant
a Percentage of KMT2A rearrangements
bWith SCT
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Epigenetic Modifiers

KMT2A Rearrangements

Lysine methyltransferase 2a encoded by KMT2A (formerly
MLL) regulates gene expression via methylation of histone res-
idues and epigenetic modifications. It is located on chromosome
11q23 and is frequently involved in gene rearrangements in
AML with a multitude of fusion partners. KMT2A rearrange-
ments were included in the original WHO AML classification,
but the prognostic significance in adults was unclear. KMT2A
rearrangements are more common in children than adults with a
particularly high occurrence in infant AML, and the fusion part-
ner profile is also unique to each age group [16, 27••]. While
studies in children show that KMT2A rearrangements are clearly
associated with inferior outcomes with an EFS of 44% and an
OS of 56% along with higher rates of early death and relapse,
the true prognostic value is highly dependent on the fusion part-
ner gene (Table 1) [9, 15, 28]. The KMT2A-MLLT3 fusion
resulting from t(9;11)(p22;q23) is the most common KMT2A
rearrangement in children, yet over 100 different fusion partners
have been identified [15, 16]. Of the recurrent fusions,
t(6;11)(q27;q23) and t(10;11)(p12;q23) have the worst out-
comes with a 5-year OS of approximately 30% [9, 28].
Interestingly, MLLT10, the fusion partner in t(10;11)(p12;q23),
also pairs with other genes in novel fusion events [10••, 29, 30•].
Other KMT2A rearrangements such as t(4;11)(q21;q23) and
t(11;19)(q23;p13.3) are now considered HR fusions due to their
associated high relapse risk [9, 28]. In contrast, one study dem-
onstrated a 100% 5-year OS and a 92% EFS in 25 children
harboring t(1;11)(q21;q23) [9]. Due to the low frequency of
novel KMT2A fusions, not all rearrangements have well-
defined outcomes, but careful consideration should be given to
the fusion partner when considering the treatment approach for
such patients.

DEK-NUP214 Fusion

AML with t(6;9)(p22;q34), a translocation leading to DEK-
NUP214 fusion, represents less than 2% of children with
AML [31–33]. DEK is involved in chromatin structure and
transcriptional regulation, whereas NUP214 regulates trans-
port of structures between the nucleus and cytoplasm [33].
In children, international studies demonstrate a high rate of
induction failure with only 67% CR along with 5-year OS of
39–53%, EFS of 32%, and relapse rate of 57–64% [31, 32].
This fusion is more common in older children with a median
age of 10.4 years. While some studies suggest that the pres-
ence FLT3-ITD does not independently alter outcomes in this
subgroup, a recent Children’s Oncology Report (COG) report
showed a superior EFS in those with t(6;9) that also harbored
FLT3-ITD, likely due to the fact that all FLT3-ITD-positive
patients received SCT in 1st CR [31, 32]. In both the

American and European experiences, SCT in 1st CR for pa-
tients with t(6;9) significantly improved EFS to 68% com-
pared to 0–18% in those who received chemotherapy alone,
demonstrating a clear role for SCT in the treatment of DEK-
NUP214 AML [31, 32].

KAT6A Fusion

Translocations involving 8p11 are a newly described entity in
AML, which lead to fusion of KAT6A, a histone acetyltransfer-
ase, with a partner gene, most commonly CREBBP on 16p13.
In adults, this fusion is often found in younger patients with
unique clinical characteristics such as leukemia cutis, dissemi-
nated intravascular coagulation, and hemophagocytosis [34]. In
children, this rare fusion is strongly associated with congenital
AML, presenting this way in over 25% of described cases [35].
Amongst all presentations of KAT6A fusions, current reports
demonstrate a 5-year EFS and an OS of 55–60% in those
who undergo therapy with curative intent and often undergo
SCT in first remission [35]. Relapses tend to occur within the
first year of diagnosis. Of particular interest is the natural pro-
gression in congenital AML with KAT6A fusions, where spon-
taneous remission often occurs, though 50% will subsequently
have return of their disease [35].

Transcription Factors and Other Fusions

WT1

Wilms’ tumor 1 (WT1) gene is commonly mutated across
different malignancies and regulates quiescence in hema-
topoietic progenitors as well as differentiation of myeloid
cells [21]. Mutations in WT1 occur in approximately 10–
15% of childhood AML and are more likely to be clonal
than in adults [10••, 13•, 36]. In half of children with WT1
mutations, both alleles are affected either by mutation or
by deletion [36]. In addition,WT1 mutations frequently co-
occur with aberrations such as FLT3-ITD and NUP98 fu-
sions [21, 36]. WT1 mutations are independent poor prog-
nostic factors with a 5-year OS of 35% and EFS of 22% in
children [36]. In addition, CR rates are significantly lower
in children with WT1 mutations [13•]. The combination of
WT1 mutation and FLT3-ITD confers an even poorer prog-
nosis with an OS of 21% and EFS of 15–30% and a sig-
nificantly higher rate of relapse, though these outcomes do
not reflect the most recent clinical trials [10••, 21].

ETV6 Abnormalities

Fusions with ETV6, common in lymphoid leukemias,
have also been identified in pediatric myeloid malignan-
cies at a lower frequency. The fusion of ETV6 with
MNX1, resulting from t(7;12)(q36;p13), was originally
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described in infant AML and associated with an extremely
poor prognosis with a 3-year EFS and OS of 0% [37, 38].
Recently, MNX1-ETV6 has been identified outside of in-
fancy where it frequently co-occurs with trisomy 19 and
has better outcomes than previously reported [38]. While
high rates of relapse have been consistently demonstrated,
the 3-year OS in a recent European study was 100% as
patients had improved outcomes with SCT following re-
lapse [37]. ETV6 has also been found to fuse with numer-
ous other genes in pediatric AML and to be associated
with inferior survival, leading to the recent inclusion of
ETV6 fusions in the HR genetic stratification [10••, 30•].
In addition to fusions, loss of ETV6 via chromosome 12p
deletion is also associated with a poor prognosis [16].

CBFA2T3-GLIS2

CBFA2T3-GLIS2 fusion results from a cryptic translocation in
chromosome 16 [39]. It was first described in children with
non-Down syndrome acute megakaryoblastic leukemia
(AMKL) where it occurs in 30% of children, but has recently
been described in approximately 8% of AML patients less
than 3 years of age [39–41]. CBFA2T3-GLIS2 has a predispo-
sition for African American children which make up nearly
1/3 of patients with the fusion [40]. These children have pre-
viously been treated with standard therapy as the CBFA2T3-
GLIS2 fusion does not co-occur with traditional HR karyo-
types [40]. On retrospective analysis of clinical trials, children
with CBFA2T3-GLIS2 had far inferior outcomes with only
50% achieving CR at the end of first induction and 35% hav-
ing persistent MRD after induction 2. Both EFS and OS are
poor at only 20–40% at 5 years regardless of having the
AMKL phenotype [17, 39]. These children reflect a previous-
ly undefined group of HR children who may benefit from
early SCT.

NUP98 Fusions

NUP98, a nucleoporin gene, has been of recent interest
due to its fusion with NSD1 in t(5;11)(q35;p15) in less
than 5% of pediatric AML patients [13•, 21]. NUP98-
NSD1 is not found in combination with other cytogenetic
rearrangements, but it frequently co-occurs with FLT3-
ITD or WT1 mutations, with one or both genes mutated
in 80% of patients [13•, 21, 24, 42]. NUP98 fusions in
children independently increase the risk of relapse and
decrease CR, EFS, and OS [13•, 21, 42]. NUP98 fusions
combined with either FLT3-ITD or WT1 mutations have
an even worse prognosis than NUP98 fusions alone, with
a relapse rate over 75% and an OS of 20–40% [21, 42].
Clinically, these fusions are associated with a higher pre-
senting white blood cell (WBC) count and older patient
age [43]. A second recurrent fusion with NUP98 is the

NUP98-KDM5A fusion, identified in 2% of children from
recent American and European trials [43]. In contrast to
NUP98-NSD1, the NUP98-KDM5A fusion is more com-
mon in young children and most common in AMKL
where it was originally described [17, 43]. The NUP98-
KDM5A fusion rarely co-occurs with WT1 or TK muta-
tions, yet still has a very poor prognosis. The 5-year EFS
and OS of this group are 16–39% and 33–34%, respec-
tively [17, 43]. Importantly, of those who underwent SCT
in 1st remission, 71% still subsequently relapsed, demon-
strating an ongoing need for better therapies [17].

Other Mutations

Additional rare gene fusions and mutations exist which
are associated with inferior survival. However, the small
number of children in which these mutations occur has
limited the ability to study such genetics in detail, includ-
ing accurate survival statistics [30•, 44]. These include
RPN1- and RUNX1-MECOM fusions, NPM1-MLF1, and
FUS-ERG [17, 30•]. Many of these fusions occur due to
cryptic rearrangements and were previously unidentified
when use of fluorescent in situ hybridization was the pre-
dominant means of diagnosing genetic abnormalities. The
use of advanced genetic testing strategies, such as RT-
PCR, has since improved the detection of these negative
prognostic markers and is an essential tool to correctly
assess patient risk [10••, 30•, 44]. Recognition of each
of these HR genetic features in pediatric AML is neces-
sary to improve outcomes.

New Therapy

Current Treatment Approach

While outcomes in pediatric AML have improved over the
decades, these advances have been primarily due to early in-
tensification of therapy, early use of SCT in HR patients, and
improvements in supportive care. Current regimens still rely
heavily on high-dose chemotherapy including cytarabine and
anthracyclines in order to induce remissions. These agents
carry a serious risk of toxicity including infection and cardiac
dysfunction. Despite high doses of cytotoxic chemotherapy,
relapse remains a frequent problem in pediatric AML. The
newer treatment approaches discussed below have only re-
cently been introduced in pediatric clinical trials (Table 2).
These agents were typically developed and studied in older
adults unable to tolerate the intensity of standard therapies,
including SCT, and are now being translated into pediatric
AML care.
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Immune-Based Therapy

Drug-Antibody Conjugates

Targeted therapy which exploits cell surface markers unique
to cancer cells has been a significant therapeutic advance in
cancer treatment. In drug-antibody conjugates, antibody
targeting can deliver a drug, such as the small molecule
calicheamicin, directly to cells of interest. Gemtuzumab
ozogamicin (GO) is one such treatment where calicheamicin
is conjugated to an anti-CD33 antibody and has potent anti-
tumor effects on CD33-expressing cells, found in a majority

of AML cases [45, 46]. Despite initial adult studies demon-
strating improvements in EFS and OSwhen used in upfront or
relapse therapy, GO was pulled from the market due to its
increased toxicities [47, 48]. More recent studies have dem-
onstrated that lower doses of GO can produce similar out-
comes with less treatment-related mortality, leading to re-
approval of GO in adult AML therapy [49, 50]. GO was sub-
sequently incorporated into pediatric clinical trials in both re-
lapsed and upfront therapies where it improved EFS and re-
duced relapse risk; however, OS and CR rates remained un-
changed [14, 51]. The reduced relapse risk (32.8% vs. 41.3%)
when GO was given in upfront therapy in COG AAML0531

Table 2 New therapeutics in pediatric AML

Drug Mechanism of action Current stage of development in pediatric AML

Drug-antibody conjugates

Gemtuzumab ozogamicin [14] Anti-CD33 antibody with calicheamicin payload FDA-approved for newly diagnosed
AML > 1 month of age

Standard of care as single dose in induction 1

Flotetuzumab [58] CD123/CD3 bispecific dual-affinity retargeting antibody Phase I trials for r/r AML

Nivolumab [61] Anti-PD-1 antibody/checkpoint inhibitor Phase I/II trial for r/r AML combined with azacitidine

Epigenetic modifiers

Decitabine [67] Hypomethylating agent: inhibits DNA methyltransferases Completed phase I trial for r/r AML
Phase II trial with standard chemotherapy

in newly diagnosed AML

Azacitidine [68] Hypomethylating agent: inhibits DNA methyltransferases Phase I/II trials for r/r AML
Phase II trial with standard chemotherapy in

newly diagnosed AML

Vorinostat [72] Inhibits histone deacetylase Phase I trial for r/r AML

Panobinostat [71] Inhibits histone deacetylase Phase I trial for r/r AML

Tyrosine kinase/FLT3 inhibitors

Sorafenib [80] 1st-generation type II TKI: active against
FLT3-ITD and FLT3-TKD mutations

Completed phase III trials for high
AR FLT3-ITD AML

Midostaurin [83] 1st-generation type I TKI: active against FLT3
and KIT mutations

USA: phase I/II trials terminated for low enrollment
International: ongoing phase II trial

Gilteritinib [87] 2nd-generation type I TKI: active against FLT3 and AXL Phase III trials combined with standard
chemo in newly diagnosed AML

Phase I/II trial combined with FLAG for r/r AML

Quizartinib [75] Type II TKI Phase I/II trials in r/r AML

Crenolanib [75] Type I TKI Completed phase I trial in r/r leukemias

Others

Venetoclax [99] Inhibits BCL-2 Phase I/II trials for r/r AML

CPX-351 [99] Liposomal formulation of daunorubicin and
cytarabine—enhances synergy between drugs
and extends half-life

Completed phase I/II trials for r/r AML
Current phase III trial for newly diagnosed AML

Atovaquone [99] Inhibits oxidative phosphorylation and STAT3 activation Phase I trial with standard chemotherapy

Chimeric antigen receptor T cells

CD123-targeting CAR-T [62] T cells genetically modified to target/kill
CD123-expressing AML cells

Phase I trials for r/r AML

CD33-targeting CAR-T [46] T cells genetically modified to target/kill
CD33-expressing AML cells

Phase I trials for r/r AML

FDA, Food and Drug Administration; r/r, relapsed/refractory; TKI, tyrosine kinase inhibitor; ITD, internal tandem duplication; TKD, tyrosine kinase
domain; AR, allelic ratio; FLAG, fludarabine, cytarabine, granulocyte colony-stimulating factor; CAR-T, chimeric antigen receptor T cell
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was offset by increased treatment-related mortality (8.6% vs.
5.9%) [14]. Newer studies are therefore designed to maximize
benefit while limiting toxicity by givingGO as a single dose in
induction, as this has been shown to have the highest benefit
and may reduce toxicity profiles [14, 52]. Children more like-
ly to benefit from GO therapy include those with FLT3-ITD
mutations, KMT2A rearrangements, single-nucleotide poly-
morphisms in ABCB1 and CD33, and high CD33 expression,
but these are not currently factored into treatment decisions
[18, 53–55].

CD123, the IL-3 receptor α-chain, has also been a cell
surface target of interest in AML owing to its expression in
a majority of AML cases, including leukemic stem cells [56].
CD123-targeted therapies remain in the early phases of devel-
opment but may provide an additional avenue of treatment. To
date, several antibody conjugates have been explored, includ-
ing a CD123-targeting drug conjugate in which an anti-
CD123 antibody is linked to the alkylating agent
indolinobenzodiazepine pseudodimer and a dual-affinity
retargeting (DART) CD3-CD123 platform which assists
CD3+ T cells in recognizing and eliminating CD123-
expressing cells [57, 58]. The CD3-CD123DART is currently
in pediatric early-phase clinical trials.

Interest has also recently grown in the use of checkpoint
inhibitors in AML to enhance the immune response to cancer-
ous cells. This strategy has been used successfully in adult solid
tumors but remains experimental in AML. Currently available
checkpoint inhibitors include nivolumab and pembrolizumab,
anti-PD-1 antibodies, and ipilimumab, which targets CTLA-4.
Early clinical trials in adult AML have shown that checkpoint
inhibition, either as monotherapy or in combination with other
treatments, is a feasible and safe strategy now being explored in
larger studies [59]. Nivolumab has also been successfully used
in adults who relapse following SCT to regain donor chimerism
without the need for second transplant [60]. The only reported
use in pediatric AML was in a child with highly refractory
relapsed AML in combination with azacitidine in which the
child had symptomatic relief after therapy but failed to have
any significant improvement in disease burden, though phase
I/II clinical trials in children with AML have recently begun
(NCT03825367) [61].

Chimeric Antigen Receptor T Cells

Immunotherapy with chimeric antigen receptor T cells (CAR-
T) for AML has lagged significantly behind lymphoid leuke-
mias in development and effectiveness. The heterogeneity of
AML has made it challenging to identify adequate leukemia-
specific antigens which do not also produce on-target off-tumor
effects on normal tissue. CD33 and CD123 are expressed in
90% and 75% of AML, respectively, with less than 5% of cases
being negative for both [56]. While CD33-directed therapies
also target non-leukemic mature and progenitor myeloid cells,

the lack of CD33 expression in hematopoietic stem cells
coupled with the success of GO has provided rationale for
investigation into the use of CD33-directed CAR-Ts [46].
CD123 is expressed at high levels in multiple types of hemato-
logic malignancies, making it an attractive target across leuke-
mia types [62]. However, CD123 is also expressed on normal
hematopoietic stem cells and may therefore be most useful as a
bridge to SCT. Both CD33- and CD123-directed CAR-T trials
are currently underway in pediatric studies for relapsed/
refractory AML (NCT04318678, NCT03971799). Due to con-
cerns for on-target off-tumor effects, it is likely that sophisticat-
ed targeting strategies such as dual-targeting or switchable
CAR-Ts will be required to avoid serious toxicity [56, 62].

Epigenetic Modifiers

Hypomethylating Agents

The prevalence of epigenetic dysregulation in AML develop-
ment has led to a rising interest in targeting epigenetic modifiers
as part of therapy. Hypomethylating agents (HMAs) such as
decitabine and azacitidine are DNA methyltransferase
(DNMT) inhibitors which alter DNA methylation patterns,
leading to increased expression of tumor suppressors and apo-
ptosis [63]. In adults, these therapies prolong survival but rarely
lead to sustained remission when used as a single agent [64].
Decitabine has also been used as maintenance therapy for
adults with AML but did not protect against relapse when used
in this setting [65]. In children, case reports and small early-
phase trials incorporating DNMT inhibitors have demonstrated
reasonable safety profiles and efficacy in the relapse setting, but
large studies have not been completed [66, 67]. One study
utilized azacitidine in combination with fludarabine and
cytarabine chemotherapy and achieved CR in 7/12 children
with relapsed or refractory AML [68]. The use of HMAs in
upfront treatment with cytotoxic chemotherapy is currently be-
ing investigated in the St. Jude AML16 trial (NCT03164057).

HDAC Inhibitors

Histone deacetylases (HDACs) contribute to epigenetic regu-
lation via the removal of acetyl groups from histones condens-
ing chromatin and decreasing gene transcription. Inhibition of
HDAC activity remodels chromatin in AML cells with atten-
dant decreased expression of DNA repair genes, depletion of
CXCR4, cell cycle arrest, and ultimately apoptosis, with these
effects being synergistic with standard chemotherapy regi-
mens [69, 70]. The two HDAC inhibitors which have been
investigated in AML include vorinostat and panobinostat
which are FDA-approved for refractory multiple myeloma
and cutaneous T cell lymphoma, respectively. Preclinical
studies demonstrate that the effects of HDAC inhibitors are
maximized when given with other drugs such as HMAswhere
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they serve as epigenetic sensitizers [71, 72]. While adult stud-
ies have had mixed results, HDAC inhibitors can be safely
combined with other agents such as DNMT inhibitors and
relapse regimens and are currently being investigated in re-
lapsed pediatric AML (NCT03263936) [73, 74].

FLT3 Inhibitors

FLT3-mutated AML has been a specific disease subset of
interest due to the targetable nature of tyrosine kinases.
FLT3 inhibitors are small molecules which bind to the aden-
osine triphosphate–binding site on FLT3 leading to competi-
tive inhibition of kinase activity [75]. The drugs are catego-
rized as type I or type II inhibitors with both affecting ITD
mutations, but type I inhibitors are also active against TKD
mutations and have higher binding affinity for FLT3 [76]. In
addition, first-generation inhibitors have multikinase activity
with lower specificity for FLT3 and more off-target effects,
whereas second-generation inhibitors are more specific for
FLT3 activity. There are at least 8 FLT3 inhibitors currently
on the market or under development, though none is approved
for use in children. Sorafenib is a multikinase type II inhibitor
and one of the first used in the treatment of AML. When
combined with chemotherapy, sorafenib improved CR and
EFS regardless of FLT3 mutation status in younger adults
with AML, but also increased toxicity [77, 78]. Early-phase
clinical trials in children with relapsed AML demonstrated
that sorafenib was tolerable and effective when given with
chemotherapy [79]. Sorafenib was therefore added to treat-
ment of children with newly diagnosed, high AR FLT3-ITD
AML, including 1 year of maintenance therapy in the most
recent COG trial. Preliminary results demonstrate that addi-
tion of sorafenib increases CR and EFS and decreases relapse
risk in children with high AR FLT3-ITD, providing rationale
for ongoing use of FLT3 inhibitors in children [80].

Midostaurin, the first FDA-approved FLT3 inhibitor, is a
first-generation type I FLT3 inhibitor with off-target effects on
KIT and was shown to decrease blast percentages in patients
with relapsed/refractory AML when used as a single agent
regardless of FLT3 mutation status [81]. The large multina-
tional RATIFY study demonstrated that standard chemother-
apy (plus SCT) plus midostaurin prolonged survival and de-
creased relapse risk compared to chemotherapy and SCT
alone [82]. Preclinical studies of midostaurin in patient-
derived xenograft models were promising, but clinical trial
use has been limited by low enrollment and the introduction
of second-generation inhibitors [83].

Gilteritinib is a second-generation type I FLT3 inhibitor
which also inhibits AXL, a tyrosine kinase which enhances
FLT3 activation and serves as amechanism for FLT3 inhibitor
resistance [84]. It was FDA-approved in adults with relapsed/
refractory FLT3-mutated AML after demonstrating a tolerable
safety profile with a 20–30% CR rate and significantly

prolonged survival when given as monotherapy [85, 86].
Preclinical models showed that the combination of gilteritinib
with either azacitidine or cytarabine and anthracyclines further
potentiated anti-leukemic effects [87]. While pediatric studies
are currently lacking, two upcoming pediatric trials will inves-
tigate the use of gilteritinib in FLT3-mutated AML in combi-
nation with chemotherapy in both the relapse and upfront
settings (NCT04240002, NCT04293562). Newer FLT3 in-
hibitors such as quizartinib and crenolanib are currently being
investigated as well and appear to have similar efficacy to the
approved FLT3 inhibitors [88].

Other Therapeutics

BCL-2 Inhibition

Venetoclax inhibits BCL-2, an anti-apoptotic protein whose
overexpression is a mechanism of resistance in AML [89]. In
adults, venetoclax with HMAs or low-dose cytarabine is both
tolerable and improves response rates when used as part of
low-intensity front-line therapies, but its utility in relapse re-
mains unclear [90]. Pediatric studies are still in early phases,
but initial studies demonstrated a CR of 70% when used in
combination with cytarabine with or without idarubicin [91].
Preclinical studies also suggest that venetoclax works syner-
gistically with FLT3 inhibitors midostaurin and gilteritinib to
induce apoptosis in AML cells, and may provide another ther-
apeutic avenue [92].

Liposomal Chemotherapy

A liposomal formulation of traditional chemotherapy agents
cytarabine and daunorubicin, termed CPX-351, optimizes
pharmacodynamics and synergistic effects via maintenance
of the optimal 5:1 molar ratio which extends the half-life
and enhances uptake in the bone marrow [93, 94]. The use
of CPX-351 in adults demonstrated superior remission rates
compared to conventional chemotherapy, though improve-
ments in EFS and OS were limited to those with secondary
AML [95, 96]. In children, a phase I/II study in relapsed/
refractory AML demonstrated a high response rate with 75%
achieving a CR after a single course of CPX-351, 80% of
whom were negative for MRD [97•]. A total of 96.7% of
patients with a CR subsequently received additional relapse
therapy with fludarabine, cytarabine, and granulocyte-colony-
stimulating factor followed by SCT. The OS for the entire
patient population was 52.7% at 2 years from study entry.
While CPX-351 has demonstrated promising early results
and is being incorporated into upfront therapy for HR children
in upcoming trials, it maintains a similar side effect profile to
the conventional formulations of daunorubicin and cytarabine
[95, 96, 97•].
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Oxidative Phosphorylation Inhibitors

Other therapeutic strategies rely on rebranding older medica-
tions for new purposes, such as atovaquone, an antibacterial
and antimalarial medication which inhibits electron transport
and is approved for use in the prevention of Pneumocystis
jirovecii pneumonia (PJP) [98]. Recent studies have shown
that atovaquone has effects on AML cells by inhibiting
STAT3 phosphorylation and subsequent expression of
STAT3 target genes [99]. In preclinical studies, atovaquone
induces apoptosis in AML cells, inhibits the mechanistic tar-
get of rapamycin, and inhibits oxidative phosphorylation
(oxphos), leading to prolonged survival in patient-derived xe-
nograft models [100]. In adults, atovaquone is commonly
used in post-SCT for PJP prophylaxis, and one retrospective
study demonstrated that adults with AML who underwent
SCT with prolonged atovaquone use had lower relapse rates
than those with shorter atovaquone exposure, providing fur-
ther rationale for clinical use of atovaquone for AML [99]. In
children, an ongoing multi-institution feasibility study uses
atovaquone for PJP prophylaxis in AML patients receiving
traditional chemotherapy (NCT03568994). Metformin and
lonidamine have also been identified as oxphos inhibitors with
anti-tumor effects in vitro, though lonidamine is not commer-
cially approved in the USA [101].

Conclusion

The outcomes in pediatric AML, while improved in recent
decades, remain suboptimal with high rates of relapse and
few options for therapy when initial treatment regimens fail.
Genetic risk grouping has gone a long way to target the inten-
sity of therapy to those at the highest risk of relapse and death;
however, the heterogeneous nature of AML has left many HR
genetic features unidentified until recently.

Through the use of comprehensive mutation testing, collab-
orative international efforts, and integration of data from adult
trials, critical information is now known regarding even rare
genetic lesions that alter outcomes. This has primarily led to a
growing list of HR genetic features. Specific KMT2A fusions,
DEK-NUP214 andWT1mutations, ETV6 rearrangements, and
CBFA2T3-GLIS2,MECOM,MLLT10, and NUP98 fusions are
now included in various cooperative group risk algorithms that
recommend SCT in first CR. The potential for benefit of SCT
transplant in first CR for these patients remains to be seen.
Additionally, challenges surrounding attainment of an MRD-
negative CR using traditional chemotherapy may limit the util-
ity of this approach and continue to highlight the need for
additional treatment options for such patients.

The treatment of AML is quickly changing in adults, yet the
advances in pediatrics are slower to evolve due to a lack of drugs
developed specifically for the pediatric population and the

challenges of evaluating novel agents for a relatively rare dis-
ease. Standard therapies in adult AML, such as GO and FLT3
inhibitors, have only recently been incorporated into pediatric
trials, and the optimal way in which to incorporate them into
therapy is still under investigation. In addition, newer agents
such as HMAs and DNMT inhibitors have been developed
primarily for adults who cannot tolerate intensive cytotoxic ther-
apy, and therefore, acceptable outcomes in this population differ
greatly from the desired results in children. However, the use of
these agents may prove beneficial when incorporated into re-
lapse regimens in children with pediatric AML.

The continual expansion of recurrent genetic lesions in
AML and their effects on outcomes, along with the growing
list of therapeutic options, may ultimately provide an opportu-
nity to individualize regimens in pediatric AML. The addition
of GO and FLT3 inhibitors to standard chemotherapy regimens
is now becoming a standard of care, but more studies are need-
ed on other new agents to determine their utility in children.
Through ongoing collaboration and innovation, treatment strat-
egies will become more tailored to the underlying genetics of
the disease with resultant improvements in outcome.
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