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Abstract
Purpose of Review This review seeks to inform oncology clinicians and researchers about the development of novel immuno-
therapies for the treatment of glioblastoma. An enumeration of ongoing and recently completed clinical trials will be discussed
with special attention given to current technologies implemented to overcome central nervous system–specific challenges
including barriers to the peripheral immune system, impaired antigen presentation, and T cell dysfunction.
Recent Findings The success of immunotherapy in other solid cancers has served as a catalyst to explore its application in
glioblastoma, which has limited response to other treatments. Recent developments include multi-antigen vaccines that seek to
overcome the heterogeneity of glioblastoma, as well as immune checkpoint inhibitors, which could amplify the adaptive immune
response and may have promise in combinatorial approaches. Additionally, oncolytic and retroviruses have opened the door to a
plethora of combinatorial approaches aiming to leverage their immunogenicity and/or ability to carry therapeutic transgenes.
Summary Treatment of glioblastoma remains a serious challenge both with regard to immune-based as well as other therapeutic
strategies. The disease has proven to be highly resistant to treatment due to a combination of tumor heterogeneity, adaptive
expansion of resistant cellular subclones, evasion of immune surveillance, and manipulation of various signaling pathways involved
in tumor progression and immune response. Immunotherapeutics that are efficacious in other cancer types have unfortunately not
enjoyed the same success in glioblastoma, illustrating the challenging and complex nature of this disease and demonstrating the need
for development of multimodal treatment regimens utilizing the synergistic qualities of immune-mediated therapies.
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Introduction

Glioblastoma (GBM) is the most common malignant primary
brain tumor, affecting approximately 3 out of 100,000 indi-
viduals in the USA [1]. Despite an aggressive standard of care

regimen of maximal surgical resection followed by combina-
tion radiation and alkylating chemotherapy, prognosis re-
mains poor with a 100% recurrence rate and a median overall
survival (mOS) of approximately 20 months [2]. Interest in
immunotherapy as an alternative approach has rapidly
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amplified in recent years, following the success of immune
checkpoint inhibitors (ICIs) as well as oncolytic viral (OV)
therapies in melanoma and other cancers [3–5]. In GBM,
however, immune-based therapies have not enjoyed the same
success, as demonstrated by the disappointing outcomes of
recent randomized, advanced phase clinical trials [6, 7, 8•].
This review will discuss the current status of immunotherapy
for GBM, covering inherent neuroanatomical and immuno-
suppressive challenges in GBM, as well as ongoing research
including cell-based therapy, ICIs, vaccines, and viral therapy.

Neuroanatomical Barriers of Immunotherapy

The central nervous system (CNS) has long been believed to
be an immune-privileged environment. However, recent live-
imaging studies revealed a CNS lymphatic system with acti-
vated T cells crossing the blood-brain barrier (BBB), thus
giving rise to new questions about the interaction of the
CNS with the peripheral immune system [9–11].

While evidence of CNS interaction with the immune sys-
tem has been noted, three primary barriers deter entry of im-
mune cells into the CNS: the blood-leptomeningeal barrier at
the superficial surface, the BBB in the deep parenchyma-
penetrating capillaries, and the choroid plexus epithelium
(Fig. 1) [12••]. On the superficial surface of the brain, the pial
meningeal layer coats arteries as they penetrate the brain sur-
face, but does not coat veins exiting the parenchyma. A sec-
ond layer of protection is provided by the glia limitans, com-
posed of astrocyte foot processes, which re-enforces the base-
ment membrane of arteries and veins as well as the superficial
parenchyma itself. Low-molecular-weight molecules and flu-
id can pass through the glia limitans, but there is only limited
exchange of T cells at this blood-leptomeningeal barrier
[13–16]. Deeper in the brain, the BBB restricts the flow of
systemic immune cells into the parenchyma. It is formed by
specialized endothelial cells with tight junctions, the endothe-
lial basement membrane enforced by pericytes, and the glia
limitans. In the post-capillary venules, the endothelial base-
ment membrane is separated from the glia limitans, creating a
perivascular space in which immune cells may circulate for
potential access to CNS antigens and entry into the CNS.
Finally, the choroid plexus epithelium regulates passage of
immune cells and solutes into the cerebrospinal fluid (CSF)
through specialized tight junctions and efflux pumps [12••].

Impaired Antigen Presentation Conceals
Immune System Awareness of GBM

Antigen-presenting cells (APCs) have four routes from the
CNS to reach lymph nodes where the immune response
can be initiated. To reach deep cervical lymph nodes, CSF

can either drain through the arachnoid villi to central ve-
nous sinuses or drain from the subarachnoid space to the
lymphatics through the cribriform plate [10, 17]. CSF can
also drain through dural lymphatic vessels in the skull
base and through the perineurium of cranial and spinal
nerve roots [9, 18]. These subarachnoid and dural lym-
phatic pathways allow some immune cell trafficking near
the brain surface. By comparison, surveillance immune
cells have limited access to the CNS parenchyma except
in the post-capillary venules as described above.
Interstitial fluid (ISF) flows though the basement mem-
brane of arteries and capillaries, and this narrow pathway
limits trafficking of large molecules as well as immune
cells [19]. CSF and ISF exchange to a small degree; stud-
ies show low-molecular-weight tracers injected into the
CSF enter the ISF through aquaporin-4 channels in the
astrocyte end feet of the glia limitans [14, 20]. However,
age-related protein deposition into blood vessel walls can
limit ISF exchange over time [19, 21]. These forces col-
lectively result in a more immune-privileged environment
in the deep parenchyma where GBM often arises.
Although the BBB may be partially disrupted in higher
grade gliomas, there often remains a significant popula-
tion of diffusely infiltrative tumor cells deep in the paren-
chyma that have an intact BBB and therefore may not be
as readily accessed by circulating immune cells [22, 23].

The issue of restricted immune cell access is further
compounded by the limited habitation of B and T cells in
normal parenchyma, although CD4+ and CD8+ T cells can
become activated by specific antigen either locally or system-
ically and then traverse the BBB, even in the absence of neu-
roinflammation [24, 25]. Entry of activated T cells into the
brain parenchyma can occur through the dynamic interaction
of adhesion and signaling molecules expressed by immune
cells and endothelial cells lining post-capillary venules in pa-
renchymal perivascular spaces [26•].

Tumor Heterogeneity Limits Degree
and Durability of Response to Therapy

Tumor heterogeneity in GBM seriously undermines robust
and durable responses to therapeutic interventions, driving
poor survival outcomes. In addition to significant genetic di-
versity between different GBMs, there is substantial subclonal
diversity within individual tumors, as defined by genetic and
epigenetic profiling [27–31]. Furthermore, single-cell tran-
scriptional profiling has demonstrated that individual GBM
cells have temporal variation in gene expression regulating
cellular function and the balance between stem-like and dif-
ferentiation states [32]. In addition, exposure to chemotherapy
and radiation, as well as microenvironmental differences in
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oxygen and other nutrients, can selectively pressure the ex-
pansion of certain subclones, or induce hypermutation [33].

Common genetic mutations in adult GBM frequently
targeted by immunotherapy include the epidermal
growth factor receptor variant III (EGFRvIII) mutation
and the isocitrate dehydrogenase (IDH1) R132H muta-
tion, while targets in pediatric gliomas include a con-
served missense mutation in histone H3 from lysine (K)

to methionine (M) at position 27 (H3 K27M mutation)
[34–36]. While most tumor-specific antigens are
expressed heterogeneously within tumor, the H3 K27M
mutation is homogeneously distributed throughout the
entire tumor [37, 38], suggesting that this may be a
truncal mutation and less likely to lead to antigen
loss–mediated escape of the tumor when targeted
therapeutically.

Fig. 1 Central nervous system barriers to immunological
communication. a The blood leptomeningeal barrier at the surface of
the brain is composed of the glia limitans and pia mater covering the
arteries, while veins exiting the parenchyma are protected only by the
glia limitans. Additionally, the subarachnoid space is partitioned from
the dural lymphatic system by the arachnoid mater, with the exception
of arachnoid granulations allowing regulated drainage into the venous
sinus. b The blood brain barrier deep in the brain parenchyma is
composed of endothelial cells tightly linked together by tight junctions
(TJ) and is further enforced by an endothelial basement membrane (BM).

In the case of the post-capillary venule shown here, the endothelial BM is
separated from the lining of glia limitans formed by astrocytic foot
processes and the astrocytic BM, leaving a small perivascular space
(PVS) filled with cerebral spinal fluid (CSF), in which immune cells
can circulate and potentially interact with CNS antigens. c The choroid
plexus tightly regulates parenchymal solute exchange with the CSF and
inner stroma using a layer of epithelial cells, the epithelium, linked by
tight junctions as well as a layer of ependymal cells (Adapted from
Engelhardt, B et al. 2019) Created with BioRender.com and Affinity
Designer software
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Immunosuppression in Glioblastoma

Glioblastoma can impair both local CNS and systemic im-
mune system functions, by hijacking major immunogenic sig-
naling pathways and altering cellular immunity inside and
outside the brain. In addition, there are immunosuppressive
side effects of chemotherapy and radiation.

The Impact of Glioblastoma on Immune Cell
Composition and Functionality

GBM alters physical and functional aspects of the brain im-
mune system through production of immunosuppressive fac-
tors and modulation of cell surface receptors and immune cell
subsets [39]. GBM induces systemic sequestration of naïve T
cells in the bone marrow due to downregulation of sphingo-
sine 1-phosphate receptor, contributing to low levels of effec-
tor T cells systemically and in the tumor micro-environment
(TME) [40•]. The scarcity of effector T cells in the tumor is
compounded by enrichment of regulatory T cells (Treg), a
subpopulation of CD4+ T cells that suppress effector T cells
through cytotoxic T lymphocyte–associated protein 4 (CTLA-
4) signaling and secretion of cytokines TGF-β and
interleukin-10 [41, 42]. Additionally, the immune cell compo-
sition of the GBM TME is characterized by a large population
of macrophage and myeloid-derived cells, as compared to the
meager presence of lymphocytes [43]. Tumor-associated mac-
rophages (TAMs) support the progression of GBM through
promoting angiogenesis and suppressing the adaptive immune
response [44]. Collectively, solid tumor cancers, principally
GBMs, that bear enrichment of macrophages are associated
with shorter survival compared to tumors without such enrich-
ment [43]. Myeloid-derived suppressor cells (MDSCs) further
dampen the adaptive immune response by suppressing the
proliferation and functionality of tumor-infiltrating T cells
through the production of anti-inflammatory cytokines and T
cell suppressive compounds as well as upregulation of the
transmembrane protein, programmed death-ligand 1 (PD-L1)
[45–47]. In addition to these complex cellular mechanisms,
GBM-associated hypoxia results in over-production of angio-
genic factors including vascular endothelial growth factor
(VEGF) and hypoxia-inducible factor1-alpha (HIF-1a), creat-
ing an irregular vascular network that results in limited access
to nutrients, immune cells, and therapeutic treatments [48].

Modulation of Centralized Signaling Pathways by
Glioblastoma Promotes Immunosuppression

The ability of GBM to escape immune surveillance through
deregulated signaling pathways enhances its ability to over-
come many therapeutic strategies, including immunother-
apies. For example, TGF-β, a major GBM-secreted factor,
contributes to immunosuppression, angiogenesis, and

maintenance of the glioma progenitor population through its
involvement in multiple signaling pathways [49]. In addition,
both GBM tumor cells and infiltrating immune cells induce
constitutive activation of signal transducer and activator of
transcription 3 (STAT3), which drives multiple pro-
oncogenic pathways and dampens the anti-tumor immune re-
sponse through recruitment and expansion of Treg cells and
MDSCs, induction of T cell tolerance through STAT3 hyper-
activation in APCs, and regulation of immunosuppressive cy-
tokines [50]. However, while effective in preclinical settings
of a variety of different cancers including GBM, inhibition of
STAT3 fails to provide a viable therapeutic option as STAT3
regulates many other necessary biological processes, and in-
hibition results in unintended side effects such as thrombocy-
topenia [51]. In addition, the fibrinogen-like protein 2 (FGL2)
pathway promotes immunosuppression through increasing
expression of programmed cell death-1 (PD-1) on T cells
and by expanding populations of TAMs, MDSCs, and Treg
cells in the TME [52].

Suppression of the Immune Response by Standard
Therapy and Corticosteroids

Patients with high-grade glioma that undergo standard-of-
care (SOC) treatment with concurrent radiation and
alkylating temozolomide (TMZ) may demonstrate CD4+
lymphopenia, which increases the patient’s risk for infec-
tions including Pneumocystis jiroveci pneumonia (PJP, for-
mally known as PCP) [53]. In addition, patients are also
often treated with dexamethasone, a synthetic glucocorti-
coid, for peri-operative control of intracerebral edema and
consequent neurological symptoms (e.g., headaches, confu-
sion, weakness, other focal neurological deficits, and sei-
zures). However, dexamethasone and other glucocorticoids
significantly dampen the overall immune response and can
reduce therapeutic benefit of immunotherapies, resulting in
consensus recommendations that their use be minimized
prior to and during immunotherapy trials [54–56]. For ex-
ample, it was recently reported that use of dexamethasone
hampered vaccine-reactive T cell responses during
neoantigen vaccine priming in patients with newly diag-
nosed malignant glioma [56, 57].

Recent Advances in Immunotherapy

Over the past few decades, a multitude of immunotherapeutic
strategies have attempted to eradicate and overcome GBM,
including CAR-T cell, vaccine, immune checkpoint inhibitors
(ICI), and OV therapies, discussed in detail below and sum-
marized in Fig. 2.
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Cell-Based Therapy: Chimeric Antigen Receptor T Cell
Therapy

The purpose of cell-based therapy is to enhance the anti-tumor
activity of patient-derived T cells by engineering them to ex-
press either a chimeric antigen receptor (CAR) or a T cell
receptor (TCR) targeting specific tumor antigens. However,
this section will focus primarily on CAR-T cell therapy [58].
Unlike CAR-T cells, TCR-modified T cells rely on major
histocompatibility class (MHC) peptide presentation, which
GBM can suppress, thereby evading MHC-restricted T cell
recognition and rendering TCR-modified T cells incapable
of recognizing tumor-associated antigens (TAAs) [59]. To
circumvent this issue, CAR-T cells are engineered to express
a CAR, composed of a single-chain variable fragment specific

to the target, a T cell activation domain (CD3ζ), and one or
more co-stimulatory domains (such as 4-1BB, CD28, OX40),
which redirects T cell specificity to an extracellular TAA [59,
60].

In a recent phase I study, autologous CAR-transduced T
cells targeting the constitutively active EGFR variant
EGFRvIII, which is present in 24–67% of GBM cases, were
intravenously administered to 10 recurrent GBM patients. The
mOS was 8.25 months, and 4 patients who underwent re-
resection within 14 days of treatment demonstrated infiltration
of CAR-T cells and increased activated lymphocytes within
the resected tumor [61]. However, another phase I trial, which
utilized a third-generation CAR construct of EGFRvIII, did
not show therapeutic benefit [62]. The glioma-associated an-
tigen interleukin-13 receptor alpha 2 (IL13Rα2), found in

Fig. 2 Immunotherapeutic strategies for treatment of glioblastoma. a
Immune checkpoint receptor/ligands such as PD-1 expressed on T cells
and PD-L1 expressed on tissue cells downregulate the adaptive immune
response in normal tissues. Tumors may express PD-L1 as well, thus
inhibiting T cell activation in tumors. Immune checkpoint inhibitors are
antibodies that block receptor-ligand interactions, such as between PD-1
and PD-L1, thus inhibiting the immunosuppressive effects of this
interaction. b Vaccines introduce GBM-specific antigens to native
APCs including dendritic cells and rely on MHC-dependent

presentation to T cells to stimulate a GBM-targeted immune response. c
CAR-T cell therapy uses autologous T cells, which are genetically
modified to target GBM-specific surface antigens, such as EGFRvIII
and IL-13Rα2. Unlike vaccines, CAR-T cells do not rely on MHC-
dependent antigen presentation. d Viral therapy encompasses the use of
oncolytic viruses and retroviruses to either initiate tumor cell lysis and
release of tumor antigen or to integrate therapeutic transgenes for
expression by the tumor cell
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approximately 58% of adult GBM cases and 83% of pediatric
brain tumors, has also been targeted by CAR-T cells in the
clinical setting [63, 64]. Preliminary results for an ongoing
phase I trial with IL-13α2 CAR-T cells demonstrated radio-
graphic response of both intracranial and metastatic spinal
tumors in one patient for 7.5 months [63, 65]. Interestingly,
initial intracavitary CAR-T cell delivery resulted in localized
tumor control with no effect on distant tumor sites, but there
was significant regression of disseminated disease after ad-
junctive intraventricular delivery [65]. Other CAR-T clinical
trials targeting single antigens in GBM have been largely un-
successful; however, novel targets are currently under clinical
investigation (Table 1).

While hematologic cancers have been successfully treated
with CAR-T cell therapy, its efficacy against CNS and other
solid tumors has been limited by a host of barriers including
heterogeneously expressed tumor antigens, limited persis-
tence and homing to distant tumor sites, and TME-mediated
immunosuppression [88]. To address GBM heterogeneity,
there are several exploratory CAR-T systems in development
that target multiple antigens, either in parallel or in tandem
[89–93]. Additionally, improving CAR-T persistence within
the CNS requires refinement of delivery, timing, and frequen-
cy and has been limited by incomplete understanding of CAR-
T cell viability after CNS entry. In a phase I clinical trial with
EGFRvIII CAR-T cells delivered through a single intravenous
infusion, peak peripheral expansion of CAR-Ts was noted ~
3–10 days after infusion, and detected up to 30 days after
infusion, as defined by flow cytometry of peripheral blood
samples [61]. Although this study looked at in situ tumor
engraftment of CAR-T cells in tumors that were later resected,
sample size was small (n = 7) and engraftment variable, so it is
difficult to determine if tumor engraftment is related to
amount and duration of CAR-T cells in the periphery or other
factors [61]. Intratumoral, intracavitary, and/or intraventricu-
lar delivery may further improve durability of response. In
comparison to intravenous therapy, preclinical studies have
suggested that intraventricular (intrathecal) delivery may lead
to faster tumor infiltration, increased penetration into the tu-
mor core, and longer persistence within the tumor [94, 95].
However, preliminary evidence in one patient who received
intrathecally delivered CAR-Ts targeting IL13Rα2 showed
that CAR-T cells may persist in the cerebrospinal fluid for
only 7 days, although this study did not look at CAR-T infil-
tration into the tumor itself [65]. Delivery issues including
method and frequency need further investigation and would
benefit from improved, non-invasive monitoring techniques,
as discussed later.

Immune Checkpoint Inhibitors

Despite success in other cancers, ICI blockade of PD-1/PD-L1
and CTLA-4 has been grossly unsuccessful thus far in GBM.

A phase III trial comparing the PD-1 inhibitor nivolumab to
VEGF-A inhibitor bevacizumab showed no improvement in
survival in patients with recurrent GBM (CheckMate-143)
[8•]. The Checkmate-498 trial, comparing nivolumab plus ra-
diation (RT) versus standard-of-care temozolomide plus RT in
patients with newly diagnosed GBM withoutMGMT promot-
er methylation (a poor prognostic factor), was stopped after
nivolumab with radiation did not show improved survival
compared to temozolomide with radiation (NCT02617589,
publication pending). There is a complementary ongoing trial
in patients with newly diagnosedMGMT promoter methylated
GBM (CheckMate-548, NCT02667587). Preliminary results
have shown that there is no improvement in progression-free
survival (PFS) with the addition of nivolumab to temozolo-
mide and RT, but final results regarding OS are pending.
Several ongoing trials are also exploring the combination of
nivolumab with the CTLA-4 inhibitor, ipilimumab (Table 1).

Interestingly, while checkpoint inhibition has been mostly
ineffective in GBM, there has been some efficacy demonstrat-
ed in brain metastases (BMs) from systemic cancers including
melanoma and non-small cell lung cancer [96–98]. The dis-
crepancy in efficacy of ICI therapy between BMs and GBM
may be partially explained by the variation in immune cell
phenotype, function, and spatial organization of each tumor
type’s respective TME [99]. Two recent, comprehensive anal-
yses of the TME in both primary and metastatic brain malig-
nancies found that BMs, especially melanomas, were charac-
terized by higher proportions of lymphocytes, including
CD8+ T cells, unlike gliomas, which instead exhibited an
abundance of tissue-resident microglia and myeloid cells
[99, 100••]. The efficacy of ICIs in metastases may also relate
to neuroanatomical differences; metastases have BBB remod-
eling that may allow for more efficient immune cell
intravasation [101, 102]. In addition, metastases are often well
circumscribed, and a higher percent volume of eachmetastasis
has BBB disruption, compared to diffusely infiltrating astro-
cytomas that have large areas of tumor with an intact BBB
[103].

Other factors contributing to the failure of ICIs in GBM
may include decreased passage through the BBB of ICI and
activated T cells, as well as low expression of neoantigens by
GBM compared to other systemic tumors [104]. As there are
few tumor-infiltrating lymphocytes (TILs) in GBM [105],
maximal efficacy of checkpoint inhibitors may require initial
peripheral activation of circulating T cells [106•]. There is an
ongoing study to evaluate if there is utility in combining
intravenous/intrathecal delivery of PD-1 inhibitors in brain
metastases of melanoma (NCT03025256), but no such trial
has yet been undertaken in primary brain tumors.
Compounding the lack of access of CTLA4-expressing
APCs and PD-1-expressing T cells to the CNS, not all
GBMs express PD-L1, and those that do show PD-L1 expres-
sion in fewer than 5% of cells [107–110]. In addition, the
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tumor mutational burden and neoantigen expression are lower
compared to systemic cancers [107–110]. Furthermore, pa-
tients with GBM often have impaired systemic immunity,
limiting the potential response to checkpoint inhibition [40•].
With ICI exposure, there may be compensatory upregulation
of the tumor-driven immunosuppressive pathways, including
upregulation of other checkpoint pathway ligands that could
cause T cell exhaustion. Finally, there may be some relevance
to ICI timing, as a recent small trial demonstrated improved
survival in GBM with treatment with the anti-PD-1 antibody,
pembrolizumab, prior to surgery, suggesting possible utility to
immune system priming prior to antigen exposure during sur-
gery [111•].

Vaccine Therapy

Given the immunologically “cold” environment of GBM, ef-
forts have been made to enhance the adaptive arm of the
immune system to target GBM cells through cell-mediated
immunity [112]. Three peptide or dendritic cell (DC)-based
vaccines recently reached phase III clinical trial testing. In the
phase III trial Act IV, rindopepimut, an immunogenic peptide
vaccine targeting EGFRvIII, elicited a strong humoral re-
sponse but conferred no significant improvement in PFS or
mOS [7]. Durability of response may have been hampered by
acquired loss of EGFRvIII expression, illustrating one of the
greatest shortcomings of single-antigen vaccines [7]. On the
other hand, a multi-peptide DC vaccine, ICT-107, targeting
six GBM-specific HLA-A1 and A2 antigens was tested in a
randomized phase II trial and prolonged patient PFS to
11.4 months, a significant increase compared to the control
group’s PFS of 10.1 months (HR = 0.64, p = 0.033) [68]. ICT-
107 was most effective in extending the mOS and PFS in
HLA-A2+ patients or patients with MGMT-methylated
GBM [68]. A follow-up phase III trial testing ICT-107 was
attempted, but was discontinued due to inadequate funding.
The third vaccine to reach phase III testing is DCVax-L, de-
rived by educating autologous DCs with whole tumor lysate
extracted from individual patient resections. The interim re-
sults of the placebo-controlled phase III DCVax-L trial
showed an mOS of 23.1 months; however, the analysis in-
cluded all patients and was not broken down by treatment
group [69, 70].

Other single- and multi-antigen vaccines are under investi-
gation in early phase trials, including (IDH1) R132H and
H3.3K27M peptide vaccines. The (IDH1) R132H peptide
vaccine targets a frequently occurring mutation in the IDH1
gene found primarily in lower grade gliomas, which is respon-
sible for aberrant neural signaling and glioma progression
[35]. In the phase I NOA-16 trial, this vaccine was adminis-
tered with SOC in newly diagnosed patients with (IDH1)
R132H-positive WHO Grade III and IV astrocytomas.
Preliminary results demonstrated induction of a humoral

immune response with a reasonable toxicity profile [86]. In
a recent multicenter pilot study, vaccine targeting H3.3K27M,
along with Toll-like receptor 3 agonist, polyinosinic-
polycytidylic acid stabilized with polylysine and carboxy-
methylcellulose (poly-ICLC), was administered to HLA-
A02.201+ pediatric patients with H3.3K27M+ diffuse midline
glioma (DMG). A subset of patients (n = 18) were selected for
available multi-timepoint blood draws and 39% exhibited an
expansion of H3.3K27M-reactive CD8+ T cells (mOS
16.3 months) and showed significantly prolonged OS com-
pared to tumors who failed to demonstrate a T cell response
(mOS 9.9 months) [56]. Furthermore, dexamethasone admin-
istration is inversely associated with H3.3K27M-reactive
CD8+ T cell responses [56].

Multi-peptide vaccines are designed to elicit a strong T cell
response to multiple tumor antigens. For example, IMA-950
(multi-peptide vaccine composed of 9 MHC class I and 2
MHC class II peptides), with poly-ICLC, was recently tested
in a phase I clinical trial and resulted in patients developing
tumor peptide-specific CD4+ and CD8+ T cell responses,
with the IMA-950 antigens remaining stably expressed on
the tumor throughout the course of the disease [67]. Another
multi-peptide vaccine was tested in the GAPVAC-101 trial, in
which personalized cocktails of pre-manufactured peptide
vaccines utilized non-mutated GBM antigens (APVAC1)
and neoepitopes (APVAC2) to elicit an immunological re-
sponse. This trial demonstrated sustained memory CD8+ T
cell responses induced by APVAC1, while a TH1 CD4+ T
cell response was elicited by APVAC2 [113]. Another recent
phase I/Ib study tested the efficacy of a personalized
neoantigen vaccine in newly diagnosed GBM patients and
found the vaccination promoted neoantigen-specific CD4+

and CD8+ T cell responses and additionally increased the
number of tumor-infiltrating T cells [57].

Viral Therapy

Aberrant cellular pathways in GBM provide a favorable envi-
ronment for specially modified viruses to selectively replicate
[114]. Following successful replication within target tumor
cells, oncolytic viruses (OVs) elicit lytic cell death, provoking
a strong inflammatory response followed by a tumor-targeted
immune response, initiated by the liberation of damage-
associated molecular patterns (DAMPs) and TAAs from tu-
mor cells [115, 116]. A variety of viruses have been
reengineered to target GBM and have been critically reviewed
by Chiocca et al. (2019) [117••].

Adenoviruses can be readily manipulated to drive cell
death, facilitate an immunogenic anti-tumor response, or carry
therapeutic transgenes [118]. For example, conditionally rep-
licative adenoviruses have been modified to selectively repli-
cate in tumor cells with aberrant p16/Rb/E2F signaling (which
controls the activity of the retinoblastoma tumor suppressor
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protein (Rb), a regulator of the E2F transcription factor) [119].
DNX-2401 (previously delta-24-RGD) selectively replicates
within brain tumor stem cells with an abnormal p16INK4/Rb
pathway [120]. Recently, a phase I clinical trial demonstrated
that replication of DNX-2401 in recurrent GBM tumors facil-
itated tumor cell death and some immunogenic cell death by
infiltrating CD8+ T cells and TH cells, lengthening mOS to
13.0 months [75]. Another phase I trial in newly diagnosed
GBM seeks to capitalize on putative synergy between DNX-
2401 and temozolomide, improving tumor recognition by
CD8+ T cells [121, 122]. Interim results reported several ob-
jective radiological responses up to 30 months [76]. G47delta,
a conditionally replicating, double mutant derivative of herpes
simplex virus-1 (HSV-1), is another oncolytic virus undergo-
ing current investigation. In a phase II trial in recurrent/
residual glioblastoma, G47delta was injected intracranially
in combination with adjuvant TMZ, resulting in an influx of
lymphocytes, and interim results have reported a 1-year sur-
vival of 92.3% [123].

Unlike OVs, replicating retroviruses (RRVs) are non-lytic,
require an actively dividing host cell to support viral replica-
tion, and can act as selective carriers of exogenous pro-
cytotoxic transgenes [124]. Toca 511 (vocimagene
amiretrorepvec) is an RRV carrying a modified yeast-
derived cytosine deaminase gene (CD) that integrates into
the tumor cell genome and converts systemically delivered
pro-drug, 5-fluorocytosine (5-FC) into cytotoxic 5-
fluorouracil (5-FU) [124]. Despite promising phase I results,
the phase II/III trial failed to improve OS as compared to a
SOC cohort, with mOS of 11.1 and 12.2 months, respectively,
leading to premature termination [6]. It should be noted that
certain factors predicted improved survival, namely diagnosis
of anaplastic astrocytoma, presence of IDH1 R132H muta-
tion, and second disease recurrence.

Moving Forward

Thus far, immunotherapy has had minimal impact on the sur-
vival of GBM patients, challenged by limitations with antigen
presentation, immune cell trafficking into the CNS, tumor
infiltration, and immunosuppression from the tumor and its
treatments. Additionally, accurate assessment of the efficacy
of immunological therapies is challenged by the limited func-
tionality of non-invasive monitoring tools, resulting in cases
of premature treatment discontinuation and a limited under-
standing of treatment impact.

Overcoming Adaptive Immune Resistance and
Immune Escape

Novel therapies need to address mechanisms of immune es-
cape, including T cell exhaustion and adaptive resistance

[125]. One strategy addressing T cell exhaustion includes
co-administration of a glycogen synthase kinase 3 (GSK3)
inhibitor with CAR-T cell therapy as there is some evidence
that this may reduce CAR-T exhaustion and help establish an
effector memory T cell population [126]. Due to some evi-
dence that the PD-L1 ligand may be upregulated after CAR-T
therapy [61, 127], one ongoing trial has incorporated check-
point inhibition in conjunction with CAR-T (Table 1).
Another similar strategy involved modification of Delta-
2401 (previously delta-24-RGD) adenovirus to deliver the
gene for the OX40 ligand T cell stimulatory gene to glioma
tumor cells. An exploratory study administered this modified
virus (Delta-24-RGDOX or DNX2440) with a PD-L1 inhibi-
tor and noted an increase in infiltrative T cells in vivo in a
preclinical tumor model, leading to the initiation of a phase I
clinical trial (see Table 1) [128]. Finally, anti-CTLA-4
(ipilimumab) and anti-PD1 (pembrolizumab) have been used
in clinical trials and are currently undergoing investigation in
combination with a vaccine therapy (Table 1).

Advances in gene therapy offer a multimodal approach to
targeting GBM. In an ongoing phase I trial, patients were
given intratumoral injections of an adenovirus encoding
HSV type I thymidine kinase (Ad-TK), which converts sys-
temically delivered valacyclovir to cytotoxic ganciclovir with-
in infected tumor cells, in addition to a second adenovirus
delivering the dendritic cell (DC)–recruiting Fms-like tyrosine
kinase 3 ligand (Ad-Flt3L) to transform the tumors into DC-
attracting hot zones. In mouse xenografts, this gene therapy
was combined with a combinatorial PD-1/CTLA-4 blockade,
which reduced the MDSC population and enhanced survival
[129•].

Other combinatorial approaches have attempted to simul-
taneously target the lifeblood of the tumor while forcing tumor
cells into apoptosis by using VEGF inhibitors and gene ther-
apy. For example, in the phase III randomized GLOBE trial,
VEGF inhibitor bevacizumab was combined with the VB-111
adenovirus, which delivers a transgene activating the Fas pro-
apoptotic pathway in tumor endothelial cells; however, this
combination did not extend mOS compared to bevacizumab
monotherapy (Table 1) [85]. Of note, early phase trials with
VB-111 had a median OS of 13.6 months, but VB-111 was
administered concurrently with bevacizumab, rather then prior
to bevacizumab as was the case in later trials [85]. Other
ongoing combinatorial therapies are summarized in Table 1.

Current Diagnostic Shortcomings and Solutions

Advancement in the use of immunotherapy in GBM will also
require improved methods to assess immune response in the
tumor. Unfortunately, this assessment currently relies on in-
vasive biopsy, with limited functionality of non-invasive
monitoring tools.
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Magnetic resonance imaging (MRI) is limited in its ability
to distinguish between tumor, treatment effect, and inflamma-
tory infiltration [130]. The Immune Response Assessment in
Neuro-Oncology (iRANO) guidelines for interpreting MRIs
while on immunotherapy were released in 2015 [54]. These
recommend deferring final interpretation of MRI changes for
3 months, a relatively long period for a disease with mOS of
20–22 months from initial diagnosis and approximately
9 months from recurrence. Other advanced imaging tech-
niques, including MRI with delayed or dynamic susceptibility
contrast, dynamic MRI perfusion, arterial spin labeling,
diffusor tensor imaging, MR spectroscopy, and position emis-
sion tomography (PET), all lack the sensitivity, specificity,
and/or resolution to reliably predict which areas of imaging
correlate to tumor progression versus immune infiltrate [130].
There has been some effort to label lymphocytes ex vivo with
a radionuclide or MRI probe at the cell surface, or to engineer
cytolytic CD8+ T cells to express a radionuclide, PET reporter
gene, or MRI reporter gene [131]. In other neuro-
inflammatory conditions including multiple sclerosis (MS)
and cerebral infarct, radioisomer C11-PK11195-labeled
translocator protein can identify activated astrocytes, microg-
lia, astrocytes, and macrophages imaged using PET [130,
132]. In MS, ultra-small paramagnetic iron oxide nanoparti-
cles have also been used to image infiltrative immune cells
where the BBB is intact [133]. These technologies could po-
tentially be extended to immunotherapy in GBM.

Conclusion

Therapeutic success with immunotherapy in GBM has been
challenged by immune surveillance evasion through multiple
deregulated signaling pathways, limited antigen presentation,
and production of immunosuppressive cytokines and regula-
tory immune cells. These failures have emphasized that suc-
cessful treatment of GBMmay rely on combination therapies,
with cell-based therapies targeting multiple specific antigens
and therapies that indiscriminately target a broad population
of GBM cells, such as oncolytic viruses. Furthermore,
thoughtful design of dosing schedules and delivery methods
of cell-based therapies, oncolytic viruses, immune checkpoint
inhibitors, and vaccines is essential in affirming their best
possible performance when used in the combination therapy
setting.
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