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Abstract
Purpose To understand why some patients respond to immunotherapy but many do not, a clear picture of the tumor microen-
vironment (TME) of head and neck squamous cell carcinoma (HNSCC) is key. Here we review the current understanding on the
immune composition per HNSCC subsite, the importance of the tumor’s etiology and the prognostic power of specific immune
cells.
Recent Findings Large cohort data are mostly based on deconvolution of transcriptional databases. Studies focusing on infiltrate
localization often entail small cohorts, a mixture of HNSCC subsites, or focus on a single immune marker rather than the
interaction between cells within the TME.
Summary Conclusions on the prognostic impact of specific immune cells in HNSCC are hampered by the use of heterogeneous
or small cohorts. To move forward, the field should focus on deciphering the immune composition per HNSCC subsite, in
powered cohorts and considering the molecular diversity in this disease.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) annually
affects more than 700,000 patients globally, leading to over
350,000 deaths in 2018 [1]. It arises in the mucosal linings of
the upper aerodigestive tract including the oral cavity, oro-
pharynx, hypopharynx, and larynx. The most important risk
factors for HNSCC are the use of tobacco, excessive alcohol
consumption, and persistent infection with high-risk human
papillomavirus (HPV) [2]. Despite aggressive and toxic treat-
ment regimens including (a combination of) surgery, chemo-
therapy, and radiotherapy the 5-year overall survival (OS)
remains a mere 40–50% and has seen little improvement in

the past decades [3]. The effect of the recent addition of im-
mune checkpoint inhibitors to the clinicians’ arsenal for recur-
rent and metastatic HNSCC on survival is therefore highly
anticipated [4].

Treatment response and tumor progression are influenced
by the interaction between the tumor and its surroundings, the
tumor microenvironment (TME). Rather than considering the
tumor as a group of malignant cells, the TME represents a
complex eco-system inwhich the tumor and other constituents
of the TME, such as T cells, B cells, natural killer (NK) cells,
myeloid derived suppressor cells (MDSC), macrophages, den-
dritic cells (DC), and cancer associated fibroblasts (CAF),
interact with each other. Tumor infiltrating lymphocytes
(TILs) are considered the most crucial effectors of the host
anti-tumor immune response, and their presence has been
linked to improved survival in several cancer types according-
ly [5, 6]. However, tumors have developed several mecha-
nisms to escape the host immune response, including down-
regulation of HLA class I expression to avoid T cell recogni-
tion [7], induction of T cell apoptosis [8], recruitment of im-
munosuppressive cells such as regulatory T cells (Tregs),
MDSCs, or M2 macrophages [9], inactivation of the antigen
processing machinery preventing processing and presentation
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of tumor-associated antigens [9], and upregulation of check-
point inhibitory molecules [10]. Additionally, tumor cells are
under selective pressure through a dynamic process known as
immunoediting, in which less immunogenic tumor cells are
positively selected for their ability to escape the immune sys-
tem and thus gain a survival advantage [11].

In recent years, the tumor immune microenvironment has
gained much interest, especially in light of the recent advances
in immunotherapy. The notion that the vast majority of
HNSCCs are not destroyed upon anti-PD-1 checkpoint inhi-
bition suggests that other immune suppressive mechanisms
might be at play. In this review, we outline the various players
in the TME of HNSCC and evaluate their function and prog-
nostic significance. In addition, we discuss the current data
available linking molecular alterations in HNSCC to the im-
mune composition within the TME. Since HNSCC can be
divided into HPV-related (mainly oropharyngeal squamous
cell carcinomas (OPSCCs)) and HPV-unrelated (i.e.,
smoking- and alcohol-related) disease, it can be expected that
the TME of both disease entities may vary. HPV-related
HNSCCs are appreciated as a separate type of cancers since
they differ significantly with respect to genomic and molecu-
lar aspects, clinical outcome, and immune microenvironment
[12•, 13, 14]. In general, HPV-related HNSCC exhibit in-
creased immune infiltrate compared with HPV-unrelated tu-
mors [15, 16, 17•, 18]. Published studies where HPV status is
not considered should therefore be interpreted with caution.

Innate Immune Effector Cells

Innate effector cells, such as NK cells and neutrophils are seen
as the first responders in case of tissue damage. Their func-
tionality in the context of cancer is more often studied in the
peripheral blood rather than at the tumor site. Relevant
existing data on neutrophil- and NK cell presence in the
TME is outlined below.

Neutrophils

Neutrophils, or their precursors, can be attracted by developing
tumor cells that secrete factors like IL-8, CCL4, or CCL5.
Tumor-associated neutrophils (TAN) can be polarized towards
an anti-tumor N1 phenotype and a pro-tumor N2 phenotype,
dependent on the growth factors present within the TME [19].
N2-type TAN can promote tumor growth by supporting genetic
instability, angiogenesis, cancer metastasis, and immune sup-
pression [19, 20]. Regarding the presence of neutrophils in
HNSCC, Trellakis et al. studied infiltration of polymorphonu-
clear granulocytes (PMNs) in tumors in the oropharynx (n = 71)
and hypopharynx (n = 28) by staining for cells expressing the
granulocytic marker CD66b or the azurophilic granule marker
myeloperoxidase (MPO) [21]. The majority of the patients had

stage IV disease (78%). PMN infiltration was observed in 93%
of the studied cases, either in the tumor or the stroma. T4 tumors
were found to be more highly infiltrated by PMN than lower T
stage tumors. In a selection of advanced disease patients (n =
40) medium or strong PMN infiltration was a negative prog-
nostic factor for OS in multivariate Cox regression analysis
(p = 0.048). Dumitru et al. found a similar reduced survival in
patients with oro- or hypopharyngeal cancer with high neutro-
phil infiltration and especially patients with multiple nodal me-
tastasis had high rates of TAN [22]. The most unfavorable
outcomewas observed in this study when neutrophil infiltration
was combined with expression of the actin-binding protein
cortactin, suggestive of an interaction between TAN and
cortactin in the TME promoting metastatic spread [22].
Reports on the quantification of neutrophils at other HNSCC
subsites are lacking to date.

NK Cells

NK cells can have direct cytolytic effect by producing factors
like perforins and granzymes and they can secrete interferon-γ
(IFN-γ), which promotes activation of myeloid cells and T
helper-1 (Th1) cells. They can also promote tumor cell apo-
ptosis via FasL or TNF-related apoptosis-inducing ligand
(TRAIL). Additionally, NK cells can kill antibody-bound tu-
mor cells through antibody-dependent cellular cytotoxicity
(ADCC). Considering the latter, it is quite surprising that little
is known on the presence of NK cells within the TME, since
the immunological working-mechanism of the epidermal
growth factor receptor (EGFR)-targeted antibody
Cetuximab, used in the treatment of HNSCC, relies on NK-
cell mediated ADCC [23]. In The Cancer Genome Atlas
(TCGA) analyses (n = 500 HNSCC cases), HNSCC ranked
third highest for the expression of NCR1 mRNA, which en-
codes the NK-specific marker NKp64 [24]. Patients with high
NCR1 expression had a significantly better OS (p = 0.016).
Looking at presented flow data for tumor-infiltrating leuko-
cytes (TIL) in two HNSCC patients (from a cohort of n = 6),
NK cells seem only a minor cell fraction within the viable TIL
gate in these patients (0.45% or 0.98% of viable TIL, com-
pared to 65% and 54% CD3+ T-cells, respectively). Wagner
et al. quantified CD56+ NK cells in OPSCC (n = 140: 34
HPV-related, 106 HPV-unrelated) and found significantly
higher NK cell density in HPV-related tumors and adjacent
stroma compared to HPV-unrelated tumors (p = 0.004) [25].
NK cells were more abundant in the stroma compared to the
tumor area. Co-staining with granzyme B and CD16 suggested
the infiltrating NK cells to mainly represent cytotoxic NK cells,
although potentially regulatoryNK cells, lacking thesemarkers,
were detected and this was seen more often in HPV-unrelated
tumors than in HPV-related tumors. In univariate Kaplan-Meier
analyses, presence of CD56+ NK cells in either the tumor and/
or stroma was linked to a better survival, both in HPV-related
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and HPV-unrelated disease. Mandal et al. also reported im-
proved survival of HNSCC patients with high NK cell infiltra-
tion based on TCGA data [16].

Myeloid Cells

Dendritic Cells

DCs are antigen-presenting cells (APCs) which link the innate
with the adaptive immune system. They pick up antigens at
the site of the tumor and, when properly activated, are able to
induce a tumor-specific T cell response. Early studies already
suggest that a greater number of myeloid DCs (mDCs) is
associated with increased TILs, lower rate of metastases, less
recurrence, and improved survival in patients with HNSCC
[26, 27]. Recent studies confirm this positive correlation
[28–32]. This implies that DCs play a pivotal role in the
immunosurveillance of the host against HNSCC. Contrary,
several studies did not replicate the link between DC density
and clinical parameters [33–37]. Collectively, there is no con-
sistency concerning the prognostic significance of DC density
for HNSCC. This may be explained by small study sizes,
discrepancy concerning the type of DC markers, and hetero-
geneous patient populations. By way of illustration, tumor
subsite, which has significant impact on the immune land-
scape [12•, 13, 14], varied within and between aforemen-
tioned studies. Moreover, HPV status was not always includ-
ed. HPV E6 and E7 may impede with macrophage inflamma-
tory protein 3 (MIP-3) transcription and E-cadherin levels
leading to reduced DC activity [38, 39]. In studies where
HPV status was included, some found elevated DC numbers
in HPV-related HNSCC [12•, 15], while others observed no
differences [17•, 40]. Notably, Kindt et al. detected signifi-
cantly lower DCs in HPV-related compared with HPV-
unrelated tumors [14]. The prognostic value of DCs when
including HPV status is still poorly studied. Nguyen et al.
could not find a significant correlation between DC levels
and survival after controlling for among others HPV status
[12•]. In addition, Kindt et al. observed no correlation between
the number of DCs and survival of HPV-related HNSCCs.
However, the DC number was significantly associated with
increased recurrence free survival and OS in HPV-unrelated
disease [14]. Taken together, the prognostic relevance of
mDCs in HNSCC remains unresolved.

Besides mDCs, plasmacytoid DCs (pDCs) infiltrate the
TME of HNSCC [34, 41–43]. At steady state, pDCs circulate
in the blood and can be found in lymphoid organs. Upon
infection, pDCs infiltrate peripheral tissues [44]. Within the
TME, pDCs predominately reside within the connective tis-
sue, close to the tumor [34, 41–43]. pDCs are able to elicit an
anti-tumor response by secreting high levels interferon-α
(IFN-α) upon triggering of the Toll-like receptor 9 (TLR9)

[44]. However, it appears that pDCs display diminished
IFN-α production in HNSCC [41, 42]. Also, tumors are able
to downregulate TLR-9 on pDCs [41], indicating that al-
though pDCs infiltrate the TME, their ability to elicit an
anti-tumor response is diminished. Moreover, it has been sug-
gested that pDCs in the absence of appropriate stimulation
promote tolerance by inducing Tregs [41, 45]. In concordance
with this, enhanced pDC numbers significantly associate with
tumor size, lymph node metastases, and poor clinical outcome
in HNSCC [34, 42]. Han et al. demonstrated that infiltrating
pDCs are an independent prognostic factor. They also exam-
ined whether the number of pDCs differed upon HPV-status
but found no correlation between pDCs and HPV infection
[42]. Contrary, Partlová et al. observed more pDCs in HPV-
related HNSCC, but this difference was not significant [15].
Additional studies are required to understand the prognostic
value of pDCs at different HNSCC subsites and in relation to
HPV-status.

Macrophages

Macrophages are found in abundance within the TME and
appear in different phenotypes. Macrophages activated by
IFN-γ polarize into a M1 phenotype and contribute to anti-
tumor immune responses, as opposed to M2 macrophages,
driven by interleukin (IL)-4, which are characterized by stim-
ulating anti-inflammatory and pro-tumoral responses [46–48].
It has become evident that the density of CD68+ cells, a gen-
eral marker for macrophages, is elevated inHNSCC compared
with normal mucosa [49–54]. CD68+ tumor–associated mac-
rophages (TAMs), defined as macrophages located in or close
by the tumor, were found to correlate with lymph node me-
tastases and poor survival in HNSCC [49–52, 54–58]. This
correlation was not observed in all studies [12•, 59–62]. Of
note, the expression of CD163, a specific M2 marker [63],
may be prognostically more informative. HNSCC cells drive
TAMs towards M2 polarization [64]. In turn, M2 TAMs con-
tribute to migration and invasion of HNSCC cells [65, 66].
Accordingly, two studies found no association between CD68
positivity and clinical outcome while increased CD163+

TAMs were an independent prognostic factor [61, 62]. The
prognostic value ofM2 TAMswas confirmed by several other
studies [58, 67–69], though not in all [32, 70].

The ratio of M1/M2 TAMs indicates a better prognosis in
both HPV-related and HPV-unrelated HNSCC, and it has
been reported that HPV-related tumors have a higher M1/
M2 ratio [17•]. Furthermore, lower M2/CD68+ TAM ratios
have been observed in HPV-related HNSCC compared with
HPV-unrelated [12•, 52, 60, 71, 72]. In line with this, HPV-
unrelated tumors display augmented M2 infiltration [73].
While aforementioned studies show consistency, several stud-
ies could not replicate these differences in CD68 and/or
CD163 expression between HPV-unrelated and HPV-related
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tumors [53, 59, 69, 70, 74]. These discrepant results may be
explained by variation in tumor subsites, treatment, or cutoff
values concerning marker expression. In summary, compel-
ling evidence suggests a role for M2 TAMs in the progression
of HNSCC. HPV-related tumors seem to be more enriched for
M1 TAMs, while HPV-unrelated tumors appear to be more
enriched for M2 TAMs.

Myeloid-Derived Suppressor Cells

MDSCs are characterized by their ability to inhibit the innate
as well as adaptive immune system. They suppress CD4+ and
CD8+ T cells, induce Tregs, and act together with macro-
phages resulting in a shift towards an immunosuppressive
phenotype by elevating levels of IL-10 and decreasing IL-12
[75–77]. Elevated levels of MDSCs in HNSCC compared to
normal mucosa have been described [53, 74, 78, 79].
Moreover, increased accumulation of MDSCs correlates with
high clinical stage and pathological grade [79]. It remains
elusive whether the infiltration of MDSCs differs upon HPV
status. Although three studies concluded that MDSC levels do
not differ between HPV-related and HPV-unrelated HNSCC
[53, 69, 74], additional studies are required to confirm this.

Adaptive Immune Cells

CD8+ Effector T Cells

After activation by antigenic and cytokine stimulation by
APCs like DCs, naïve CD8+ T cells differentiate into either
memory or cytotoxic effector T cells [80]. Cytotoxic T cells
constitute a subset of T cells with the ability to recognize and
kill tumor cells and therefore serve as central players within
the anti-tumor response. Indeed many studies report a positive
correlation of higher CD8+ TIL with improved survival in
HNSCC patients [32, 81–85]. However, the effect seems to
be affected by tumor subsite, relative amount to other tumor
infiltrating immune cells, spatial distribution, and HPV status.

In OCSCC, a prognostic benefit of high CD8+ TIL has
been described [85–89, 90•], but the majority of reports show
no significant association of high CD8+ TIL with OS or DSS
[56, 91–96]. This lack of consistency might in part be ex-
plained by the relative amounts of CD8+ TILs to other TILs
affecting their function. For instance, a high CD8+/CD4+ ratio
confers superior DSS and DFS [97], and a low CD8+/forkhead
box protein 3 (FoxP3) ratio confers inferior OS and DFS [98,
99]. Interestingly, two recent meta-analyses on the role of
CD8+ T cells in OCSCC showed contradictory results. This
could be due to the low amount of studies that qualified for
meta-analysis, especially by Hadler-Olsen et al. [100, 101].

In OPSCC, the prognostic role of CD8+ TILs seems more
pronounced with a substantial amount of papers reporting a

positive effect on survival of high CD8+ TIL both stromal and
intratumoral [59, 85, 102–108]. HPV-related OPSCC show a
significantly higher infiltration of CD8+ T cells [12•, 15, 70,
74, 82, 85, 104–106]. In fact, it has been reported that HPV-
related OPSCC patients with a low CD8+ TIL count do not
show the typical improved survival associated with HPV-
related OPSCC [109]. This could point to a role for the local
immune response in the survival of HPV-related OPSCC pa-
tients. Not all studies were able to find this association, how-
ever [110]. Although investigated to a lesser extent, high
CD8+ TIL counts have been associated with survival benefit
in laryngeal squamous cell carcinoma [85, 111, 112].

CD4+ T Cells

CD4+ T cells represent a heterogeneous cell type which can be
sub-classified into various subtypes including Th1, Th2, Th9,
Th17, follicular helper T cells (Tfh), and Tregs [113]. This
hampers the evaluation of their role in HNSCC as observed
effects could be attributable to any of these subtypes, and
staining for CD4 alone might not be sufficient. This could
explain the ambiguous role of CD4+ T cells in HNSCC: some
papers report a favorable prognostic effect of higher CD4+

TIL [12•, 85, 114], while others report the opposite [88,
115]. However, no significant association between CD4+

TIL and survival has been reported most frequently [81, 86,
91, 94, 96, 102]. Although in their meta-analyses, de Ruiter
et al. did find a prognostic benefit of higher CD4+ T cell
infiltration in HNSCC, the authors stress to interpret this with
caution given the paucity of papers eligible for analyses and a
high suspicion of publication bias [84]. In two recent meta-
analyses for OCSCC specifically, Huang et al. report no prog-
nostic value [100], whereas Hadler-Olsen et al. found data to
be insufficient for analyses [101]. Recently, Cillo et al. [116•]
reported on scRNAseq comparing HPV-related and HPV-
unrelated HNSCC, and showed that HPV-related tumors are
enriched in the presence of a Tfh cell population when com-
pared with HPV-unrelated tumors. In TCGA data, a Tfh-high
profile corresponded with improved survival [116•]. It must
be mentioned that while the majority of HPV-related tumors
in this study were OPSCC, the HPV-unrelated tumors were a
mix of OCSCC, OPSCC, larynx, and hypopharynx. In all, the
role of CD4+ T cells in HNSCC remains to be clarified.
Investigation of CD4+ T cell subpopulations at various
HNSCC subsites specifically is warranted.

Regulatory T Cells

Tregs are a subpopulation of CD4+ T cells which can be iden-
tified by the expression of the transcription factor FoxP3
[113]. They play a critical role in maintaining host-tolerance
and thus preventing auto-immunity, by regulating other im-
mune cells including DCs, NK cells, B-cells, CD4+ and CD8+
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T cells, but in doing so also facilitate tumor immune escape
and tumor progression [117]. Indeed a large meta-analysis on
the prognostic value of FoxP3 showed that high Treg infiltra-
tion is associated with inferior OS in several tumor types, but
not in HNSCC [118]. In fact, when considering HNSCC in
general, higher CD4+FoxP3+ T cell infiltration correlates with
better survival [30, 119, 120]. This does however not seem to
apply to all HNSCC subsites as for OCSCC most studies do
report lower CD4+FoxP3+ TIL counts to be related with im-
proved survival [121–124]. Only one study found an associa-
tion in the opposite direction [97], but most, including two
meta-analyses, failed to show a significant correlation of
FoxP3 with survival in OCSCC [89, 92, 100, 101, 125].

Echarti et al. recently reported high stromal numbers of
Tregs to be correlated with improved survival in HNSCC,
and epithelial numbers of Tregs to only gain prognostic im-
portance when stratifying for “inflamed”, “immune exclud-
ed”, and “immune desert” tumors based on total number of
infiltrating CD8+ T cells [126]. This might in fact represent the
CD8+/FoxP3+ ratio, which confers survival benefit when low-
er in OCSCC, as published previously by Chen et al. and more
recently by Ni et al. [99, 124]. Interestingly, the intracellular
localization of FoxP3 might play a role, as a shift in the sub-
cellular localization of FoxP3 expression from cytoplasmic to
nuclear has been described after TCR/CD28 activation [127,
128]. This indicates that a subgroup of FoxP3+ T cells might
in fact have an effector function.Weed et al. have found that in
OCSCC, cytoplasmic localization of FoxP3 was associated
with lower risk of recurrence, as opposed to nuclear localiza-
tion [129]. In addition, Feng et al. report the spatial relation of
FoxP3+ T cells to CD8+ T cells to affect OS in OCSCC. In
their study using multispectral imaging on 119 HPV-unrelated
OCSCC, they showed that a higher density of FoxP3+ T cells
within 30 μm of CD8+ T cells was significantly associated
with worse OS [90•].

In OPSCC, a positive correlation of higher CD4+FoxP3+ T
cell infiltration with improved survival is reported [59, 85, 120,
130, 131], but a significant association with poor survival has
also been described [132]. When considering HPV, it seems
that papers reporting significantly higher CD4+FoxP3+ infiltra-
tion in HPV-related OPSCC [103, 130, 131, 133] are in balance
with reports that do not find such relation [104, 106, 120, 134,
135]. In their study, Ward et al. reported higher absolute counts
of FoxP3+ T cells in HPV-related OPSCC and correlated this to
improved survival [109]. However, the authors state the ob-
served absolute increase could merely be a reflection of higher
overall T cell infiltration in HPV-related OPSCC, since relative
amounts of FoxP3 did not differ significantly. One other study
described such correlation [131]. In their meta-analysis, de
Ruiter et al. were unable to analyze HPV-related tumors due
to insufficient data [84].

B Lymphocytes

The composition and prognostic role of B-cells in the TME of
HNSCC is relatively understudied. As part of the adaptive
immune system, B lymphocytes play an important role in
the immune response following the onset of malignant tumors
[136]. Mature B cells can produce antibodies which could
bind to tumor cells and induce ADCC by NK cells or Fc-
receptor mediated phagocytosis by macrophages, they can
also act as APCs or can directly interact with CD4+ T cells
(through CD40/CD40L) or CD8+ T cells (through
CD27/CD70), thereby, providing help to the anti-tumor im-
mune response [137]. In addition to these anti-tumor features,
regulatory B-cells (Bregs) are thought to stimulate tumor
growth by negatively interacting with other immune cells as
well as with tumor cells. It is assumed that Bregs inhibit NK
cell- and cytotoxic T cell–mediated tumor immunity, suppress
the differentiation of Th1/Th17 cells, and promote the alter-
ation of T-helper cells and macrophages towards the Th2/M2
types. Moreover, Bregs might disable the cellular immune
response against the tumor by promoting the conversion of
CD4+/CD25− T lymphocytes to FoxP3+ Tregs, thereby, en-
abling tumor growth and the development of metastasis.
Bregs secrete IL-6, IL-10, IL-35, and TGF-β, all known for
their suppressive effect on the immune response [138].

HPV-relatedHNSCCwere shown to contain increased per-
centages of tumor-infiltrating CD19+/CD20+ B lymphocytes
compared with HPV-unrelated HNSCC and non-cancerous
mucosa [17•, 70, 74, 139•, 140, 141]. When performing
RNA-sequencing, it was even shown that phenotypic differ-
ences exist between B lymphocytes in HPV-related and HPV-
unrelated HNSCC [140]. Hladíková et al. found that in HPV-
related OPSCCs, the B cell population within the TME seems
to be represented mainly by memory B lymphocytes with an
activated, antigen-experienced phenotype, characterized by
high expression of CD27, no expression of IgD and low ex-
pression of IgM [141]. When they subsequently divided the
HPV-related OPSCCs into two groups based on the amount of
B cell infiltrate (Blow (B cell proportions < 0.5% of total cells)
versus Bhi tumors), they noticed that in the Bhi group the
tumor-infiltrating B cells displayed significantly higher levels
of activation markers like HLA-ABC, HLA-DR, CD86, and
CD40 when compared with the Blo group, corresponding with
an activated phenotype. Moreover, Bhi OPSCCs possessed
higher proportions of proliferating Ki-67+ B cells than the
Blow counterparts [141].

The prognostic impact of B lymphocytes in the TME of
HNSCC remains somewhat ambiguous. While most studies
report a favorable effect of B lymphocytes on HNSCC patient
survival [17, 141–143], some studies fail to find any effect on
survival [70] or even claim that certain subsets of B cells,
particularly Bregs, may contribute to an immunosuppressive,
cancer promoting microenvironment [144]. Distel et al.
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demonstrated that the prognostic impact of CD20+ B cells
may be dependent on the type of treatment and stage of dis-
ease [145]. In their study, they investigated 115 patients with
oro- or hypopharyngeal squamous cell carcinoma by dividing
them in two groups: a low-risk group (n = 62) of early stage
disease treated with primary surgery and postoperative radio-
therapy, and a high-risk group (n = 53) of inoperable, ad-
vanced stage disease treated with definitive chemoradiothera-
py. Immunohistochemistry for CD3, CD4, CD8, CD20,
CD68, FoxP3, and granzyme B was performed on all pretreat-
ment biopsies and percentages of the various subsets of TIL
were correlated with survival. Surprisingly, it was observed
that in the low-risk group higher numbers of CD20+ B cells
were consistently associated with improved locoregional tu-
mor control (p = 0.02), while it was negatively associated with
prognosis in the high-risk group (p = 0.04). Of note, B cells
have the ability to form tertiary lymphoid structures (TLS)
when they aggregate in a network of follicular DCs
surrounded by T cells and high-endothelial venules [146]. In
OCSCC, TLS are more frequently seen in stage I–II than in
stage III–IV disease, and the presence of TLS is associated
with improved survival [147]. In their scRNAseq study, Cillo
et al. reported an increased presence of germinal center B cells
in HPV-related versus HPV-unrelated HNSCC, correspond-
ing with the presence of TLS [116•].

Stroma

Cancer-Associated Fibroblasts

The most abundant, non-immune, cell type recognized in stro-
ma are cancer-associated fibroblasts (CAFs). Without any
doubt, CAFs promote tumor development by supporting tu-
mor cell proliferation, invasion, and metastasis. The presence
of CAFs within the TME often is linked with stromal
desmoplasia through deposition of collagen. The most com-
monly used markers to identify CAFs are α-smooth muscle
actin (α-SMA), integrin α6, and fibroblast activation protein
(FAP). In addition to producing growth factors like epidermal
growth factor and vascular endothelial growth factor, CAFs
produce matrix metalloproteinases that aid in the remodeling
of the extracellular matrix and facilitate tumor outgrowth and
metastasis. While much is known about the detrimental fac-
tors that are produced by CAFs, the exact origin of the CAFs
within the TME remains quite elusive, as they have been de-
scribed to derive from various different cell types [148]. CAFs
promote immune suppression in the stromal compartment by
producing high levels of TGF-β, IL-10, and IL-6, while at the
same time recruiting many inflammatory cells through secret-
ed chemokines [149].

In OCSCC in the tongue, the presence of CAFs, as identi-
fied by IHC, was found to be an independent prognostic

factor, negatively impacting OS and DFS [150]. Similarly,
CAF-related gene expression was linked to worse prognosis
in OCSSC [151].

Multiple studies have looked at the effects of isolated CAFs
and the factors they produce on the growth and invasion ca-
pacities of HNSCC cell lines [152, 153]. While there is a
general consensus that CAFs are a negative prognostic factor
in HNSCC, surprisingly few studies can be found that actually
tested this in (large) cohorts of patients by quantifying CAFs
in the TME. The studies that are available primarily focus on
the prognostic value of CAFs in OCSCC. Dhanda et al.
stained 104 OCSCC for the CAF markers αSMA and
SERPINE1 and found high expression to relate with poor
clinical outcome and extracapsular spread [154]. In OPSCC
(n = 44), the collagen proteins COL8A1 and COL11A1 were
described to be expressed on tumor cells as well as CAFs in
the TME.While a reduction in survival was mentioned, which
did not reach statistical significance in this small group of
patients, these data were not shown [155]. Puram et al.
[156•] performed single-cell RNAseq on ~ 6000 cells isolated
from OCSCC samples (n = 18) and found CAFs to be a large
determinant of the mesenchymal molecular subgroup of
HNSCC previously identified by the TCGA workgroup
[157]. This molecular subgroup is known for its invasive char-
acter and poor survival outcome and is dominated by genes
related to epithelial to mesenchymal transition (EMT). Puram
et al. propose that the tumor cells in this subgroup are similar
to those defined in the basal molecular subgroup, but that the
presence of CAFs within the TME promotes the EMT profile.
There seems to be a void to be filled, where CAFs are quan-
tified in the different subsites of HNSCC combined with im-
mune composition analysis, not at the transcriptional level, but
studying the actual cell numbers and their spatial localization.

Molecular Landscape and TME

The tumor mutational landscape and the TME are two of the
major determinants of personalized medicine. To comprehen-
sively characterize the TME, the effect of the mutational land-
scape on the TME should therefore be taken into consider-
ation. We outline the few studies that have investigated their
relation below.

Saloura et al. [73] studied the relation of genetic alterations
to CD8+ T cell infiltration using both the TCGA and Chicago
Head and Neck Genomics (CHGC) cohorts. Tumors were
classified into high or low CD8+ T cell inflamed phenotype
(TCIP-H vs TCIP-L) based on their chemokine signature.
Results showed that TCIP-H tumors were enriched for muta-
tions in CASP8, EP300, EPHA2, and HRAS and had more
frequent amplifications of CD274, PDCD1LG2, JAK2, and
KDM4C. TCIP-L tumors showed higher rates of NSD1 mu-
tations, EGFR and YAP1 amplifications and CDKN2A
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deletion. Unfortunately, HPV-related tumors were too infre-
quent in the TCGA database to analyze the impact of HPV on
the genetic landscape of TCIP-H and TCIP-L tumors. Mandal

et al., also exploiting the TCGA database, showed that the
proportion of mutational processes attributable to tobacco
smoking inversely correlated with measures of immune

Table 1 Overview of the current understanding of the prognostic value
of different immune subsets at different HNSCC subsites. Green indicates
> 50% of papers report positive correlation, red indicates > 50% of papers
report negative correlation and yellow indicates > 50% of papers report
no correlation, or number of studies reporting opposite effects are equal.

Size represents amount of papers considered. Small 0–5 papers; medium
6–10 papers; large > 10 papers. Abbreviations: HPV, human
papillomavirus; NK cells, natural killer cells; mDC, myeloid dendritic
cells; pDC, plasmacytoid dendritic cells; MDSC, myeloid derived
suppressor cells; Tregs, regulatory T-cells; Bregs, regulatory B-cells
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infiltration, indicative of the immunosuppressive effect of to-
bacco smoking [16]. Although immunologically cold, these
tumors were associated with high mutational loads. These
tumors are expected to be more immunogenic due to higher
neoantigen load [158], but in their study, Mandal et al. were
unable to find any significant correlation of mutational load to
measures of immune infiltration [16]. This was substantiated
by Saloura et al. in their later study [73].

In a transcriptional study, linking TP53 mutational status in
HNSCCwith immune signatures, neutrophil, a NK cell, pDC,
Treg, CD8+ TIL, and B cell gene signatures were reported to
be significantly lower in TP53 mutated compared with TP53
wild-type tumors (P = 0.001) and higher in HRAS-mutated
tumors (p = 0.033). [159]. For TP53 mutants, these subsets
were lower both in HPV-related and HPV-unrelated tumors,
though the significance was most pronounced between mutant
and wild-type in HPV-related cases. Significantly fewer NK
cells were reported to be present in TP53 mutant tumors com-
pared with TP53 wild-type tumors (p = 6.4·10−8), and more
NK cells were present in HRAS-mutated tumors than HRAS
wild-type tumors (p = 0.012). Aligned with the data from
Wagner et al. [25] NK cell–related genes were more abundant
in HPV-related tumors than HPV-unrelated tumors [159].

All above analyses were performed on several multi-omics
datasets, and HNSCC subsites were not specified.

Conclusion and Future Directions

In Table 1, we have combined the observations from the studies
discussed in this review to provide an overview of the current
understanding of the prognostic value of different immune sub-
sets at different HNSCC subsites. While it seems evident that
immune cells infiltrating the TME in HNSCC have relevance
with regard to the clinical prognosis of patients, there is a clear
need for more extensive studies to fill in some gaps. Our opin-
ion is that the field should focus more on subsite specific anal-
yses, clearly separating HPV-related and HPV-unrelated
HNSCC. The current understanding on the differences between
the immune cells infiltrating HPV-related and HPV-unrelated
HNSCC and their link to prognosis are visualized in Fig. 1.
Also, rather than focusing on studies trying to mine the pres-
ence of immune cells from large omics datasets, understanding
the spatial interaction between tumor cells, immune cells, and
CAFs in the stromal compartment, is in our opinion crucial to
getting a better understanding of the TME in HNSCC. This will
hopefully result in clearer answers on the prognostic power of
the immune infiltrate, as a whole or of specific cell subsets, and
will aid in defining those patients most likely to respond to
(immuno)therapy strategies as well as create new hypotheses
as to how to improve the immune infiltrate in patients who
seem to fit a less favorable profile.

Fig. 1 Schematic overview of the current understanding on the
differences between the immune cells infiltrating HPV-related (a) and
HPV-unrelated (b) HNSCC. Abbreviations: CAF: cancer associated

fibroblast; pDC: plasmacytoid dendritic cell; mDC: myeloid dendritic
cell; NK cell: natural killer cell; M1: M1 macrophage; M2: M2
macrophage
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