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Tumor immunotherapy has evolved from the use of crude
bacterial extracts to chemically synthesized ligands for
specific immune receptors, such as Toll-like receptors
(TLRs). One of the most promising targets for therapeu-
tic immune activation is TLR9, which detects unmethyl-
ated CpG dinucleotides present in viral and prokaryotic
genomes, which are generally methylated in host DNA.
This review describes the immune effects of synthetic
CpG oligonucleotides as TLR9 ligands and their applica-
tions in cancer immunotherapy.

Introduction

In its principal role of protecting the body against infec-
tious agents, the immune system faces two related chal-
lenges. First, cells of the innate immune system must
rapidly detect invading pathogens and initiate appropri-
ate immune responses to successfully contain the invader
and limit its spread. Second, the adaptive immune system
must develop an antigen-specific response against the
pathogen to eliminate it from the body and to prevent
future infections by the same or closely related agents.
Innate immune cells, such as dendritic cells (DCs) and
macrophages, appear to quickly identify the basic type of
invading pathogen and to initiate a Th1-like cellular
immune response if it is an intracellular pathogen, a Th2-
like humoral immune response if the pathogen is an
extracellular parasite, and a mixed response if the patho-
gen is an extracellular bacterium. In order to detect and
characterize pathogens, the immune system is thought to
use several families of receptors that bind molecular
structures present on pathogens but not in our own cells.
Perhaps the best-studied family of these innate immune
receptors is the Toll-like receptor (TLR) family, which
includes 10 identified members in humans [1].

One factor that has recently received attention in
explaining the specificity of TLR stimulation by pathogen
structures is the cellular location of the TLRs. TLRs that
detect molecules characteristic of extracellular pathogens,
such as lipopolysaccharides, proteoglycans, lipopeptides,
and flagellin, are expressed on the cell surface. However,
TLRs that detect molecular structures derived from intracel-
lular infections with viruses or intracellular pathogens,
notably TLR3, 7, 8, and 9, appear to be limited in their
expression to an endosomal compartment [2]. TLR3
detects double-stranded viral RNA structures, TLR7 and 8
also appear to have evolved to detect certain single-
stranded RNA sequences (Bauer S, Personal communica-
tion), and TLR9Y is stimulated by unmethylated CpG dinu-
cleotides in particular base contexts. Vertebrate DNA does
not stimulate TLR9 because the CpG dinucleotides are pre-
dominantly methylated, and because of certain inhibitory
DNA sequences that block TLR9 stimulation.

Each type of immune cell expresses a different subset of
TLRs. Likewise, each TLR is expressed in a different subset
of immune cells, as a result of which each different TLR
ligand induces a different pattern of immune activation.
For example, human monocytes express particularly high
levels of the TLRs that detect extracellular bacterial mole-
cules, such as endotoxin and lipopeptides, which stimulate
the production of proinflammatory cytokines such as
tumor necrosis factor (TNF)-o and interleukin (IL)-12. At
the other extreme is the plasmacytoid dendritic cell (pDC),
recently identified as the predominant source of type I
interferon (IFN) production in response to viral infection.
pDCs express only two TLRs, TLR7 and TLR9Y, both in the
endosomal compartment. Because these two TLRs appear
to detect only intracellular pathogens, this limits the pro-
duction of high levels of type I IFN to the appropriate set-
ting of defense against intracellular infections. Because
IFN-a triggers strong adaptive Th1 T-cell responses, the
possibility of triggering endogenous IFN-a production
through deliberate activation of the TLR7 or TLR9 path-
ways is of considerable interest for cancer immunotherapy,
as well as the treatment of other diseases.

Although bacterial extracts have commonly been
thought of as “nonspecific immune activators,” the recog-
nition and increasing understanding of the TLR pathways
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have clarified that these immune effects are actually the
consequence of stimulation through multiple different
specific TLR pathways. Now that these different TLRs have
been identified, specific ligands can be chemically synthe-
sized and used as highly selective triggers to stimulate par-
ticular subsets of immune cells. Stimulation of different
TLRs can have quite different immune effects. For example,
CpG DNA stimulation of TLR9 appears to induce stronger
Th1-type immune responses than stimulation of any of the
other TLRs. This new ability to specifically control immune
activation has important therapeutic significance for fields
as diverse as vaccine development, allergy and asthma, and
immunotherapy in infectious diseases and cancer. The pur-
pose of this review is to consider the therapeutic applica-
tions of stimulating TLR9 in oncology.

Cellular Immune Effects of Stimulating TLR9
and Relevance to Antitumor Activity

TLR9 has an extremely restricted pattern of expression in
humans, apparently being limited to pDCs and B cells [3-
6]. For therapeutic applications, TLRY is stimulated with
CpG motifs delivered in the form of synthetic oligodeoxy-
nucleotides (CpG ODN) that are optimized for their stim-
ulatory activity. Because of slightly different TLR9
sequences, human and murine immune cells differ in their
preferred CpG motifs [3]. Mouse cells respond better to the
CpG motif GACGTT, whereas human TLR9 is better stimu-
lated by the core motif GTCGTT, especially if it is near the
5" end of an ODN [7].

The immune effects of activating pDCs and B cells with
CpG ODN are Th1-like and can be considered in two
stages: an early innate immune activation, and a later
enhancement of adaptive immune responses. DNA is
endocytosed by these cells in a sequence-independent fash-
ion, allowing it to interact with endosomal TLR9 [2]. Recent
studies utilizing surface plasmon resonance technology
have shown direct interaction of TLR9 and CpG ODN
(Bauer S, Lipford G, Wagner H, Personal communication).
Like other TLRs, the cytoplasmic domain of TLR9 contains a
Toll-IL-1 receptor (TIR) domain [1]. Upon binding to CpG,
the TLR9 TIR domain recruits the adapter protein MyD88,
which in turn is thought to recruit IL-1 receptor-associated
kinase (IRAK) and TNF receptor-associated factor 6
(TRAFG) to the TLR9 complex, leading to activation of
NFKB transcription factors and c-Jun NH2 terminal kinase
(JNK) mitogen-activated protein kinases (MAPKs) [1].
These cell signaling pathways induce the B cells and pDCs
to show an activation phenotype characterized by expres-
sion of costimulatory molecules, resistance to apoptosis,
upregulation of the chemokine receptor CCR7 that causes
cell trafficking to the T-cell zone of the lymph nodes, and
secretion of Th1-promoting chemokines and cytokines,
such as MIP-1, IP-10, and other IFN-inducible genes [8].
pDCs secrete type I IFN and mature to highly effective anti-
gen-presenting cells [9]. These CpG-induced type I IEN

cytokines and chemokines trigger within hours a wide
range of secondary effects, such as NK cell activation and
enhanced polymorphonuclear neutrophil (PMN) migra-
tion in response to inflammatory signals.

This innate immune activation and pDC maturation is
followed by the generation of adaptive immune responses.
B cells are strongly costimulated if they bind specific anti-
gen at the same time as TLR9 stimulation [10]. This selec-
tively enhances the development of antigen-specific
antibodies, especially of the isotype associated with Th1-
like immune responses (eg, IgG2a in mice). Following CpG
stimulation, both B cells and pDCs can present antigen to
T cells. CpG-induced antigen presentation occurs in a Th1-
like cytokine milieu, stimulating the development of Th1
cells, and can result in primary effector cytotoxic T cells
(CTL) [11]. Moreover, the enhancement of IL-12 produc-
tion by CpG establishes strong memory T-cell responses.
The CpG ODN creates a Th1-like milieu and lymphaden-
opathy in the draining lymph node that peaks at 7 to 10
days [12,13]. DCs increase in number and exhibit a mature
phenotype with increased expression of costimulatory
molecules. This Th1-like environment appears to be sus-
tained for several weeks because CpG-primed mice
respond to an antigen injection with a Th1-biased
response and increased CTL even 5 weeks later [12,13].

The CpG-stimulated pDCs produce high levels of type I
IFN and Th1l-promoting cytokines and chemokines, lead-
ing to rapid activation of innate immune cells including
NK cells, macrophages, and DCs [14-17]. Formerly known
as IFN-producing cells, pDCs are a rare DC subset thought
to be located predominantly within the blood, where they
comprise only approximately 0.1% of all cells. However,
recent studies demonstrate the presence of pDCs within at
least some primary solid tumors [18ee]. These tumor-infil-
trating pDCs show decreased responsiveness to stimula-
tion by CpG ODN [18ee]. The biologic role of tumor-
infiltrating pDCs is not yet clear, but several investigators
have reported that immature pDCs can tolerize antigen-
specific T cells [19,20]. It seems possible that pDCs might
contribute to the establishment and/or maintenance of
immune tolerance to tumor-derived antigens in cancer
patients. pDCs in tumor-draining lymph nodes are stimu-
lated by CpG ODN to produce type I IEN, suggesting a pos-
sible therapeutic application for CpG ODN in breaking
tumor tolerance [18ee].

CpG-induced activation of pDCs can have secondary
effects on other immune cell types. For example, CpG-
stimulated pDCs release type I IFN, which induces human
monocytes to secrete high levels of CXCL-10 (IP-10) [14].
CXCL10 is of interest to oncologists because of its reported
mediation of the antitumor activity of other tumor immu-
notherapies [21,22], and because of its well described anti-
angiogenic effects [23]. Another potential antitumor
mechanism induced by CpG ODNs is monocyte expres-
sion of TNF-related apoptosis-inducing ligand (TRAIL),
enabling them to kill tumor cells [24].
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Identification of Different Classes of CpG
Oligodeoxynucleotides

Different CpG motifs activate the various arms of these
immune defenses to different degrees, indicating that there
is heterogeneity in the CpG response [4,9,25], as reviewed
by Krieg [8]. Based on differences in their structures and
immune effects, we and others have identified three distinct
classes of CpG ODNs [26-28]. A-class CpG ODNs induce
the production of high levels of IFN-a and marked NK-cell
activation, with relatively little IL-6 or B-cell stimulation. In
contrast, B-class CpG ODNs induce the production of mod-
est levels of IFN-0, with much weaker NK-cell activation but
with profound B-cell activation [4]. C-class ODNs have
intermediate immune effects [26-28] and unique structural
characteristics that provide excellent in vivo stability and
ease of formulation. B-class CpG ODNSs are superb vaccine
adjuvants for inducing strong cellular Th1 and humoral
antigen-specific immune responses, but relatively little has
been published on the immune effects of the other ODN
classes, as reviewed by Krieg [8] and Davis [29].

None of the three ODN classes have immune-stimula-
tory activity in mice genetically deficient in TLR9, indicat-
ing that TLRY is required for all of their CpG-induced
immune effects. Differences in the secondary and tertiary
structures of the complexes formed between TLR9 and
these various CpG ODN:s appear likely to explain their dif-
ferences in type I IFN induction. Specifically, the A- and C-
Class CpG ODNs are capable of forming higher order
structures, multimers and dimers respectively, that may
effectively crosslink TLR9. In contrast, the B-class CpG
ODN:s, which fail to induce sustained IFN secretion, do not
form multimers and may thus interact with TLR9 without
causing extensive crosslinking of this receptor. Because
crosslinking of many other immune receptors has been
associated with qualitatively different signals, compared
with monovalent binding of receptors, it is reasonable to
hypothesize that TLR crosslinking may be required to acti-
vate the IFN receptor feedback loop, which appears to be
required for maximal pDC production of type I IFN
[9,30¢]. Studies are underway to elucidate the role of TLR9
and other molecules that may be involved in the recogni-
tion and/or signal transduction in response to different
CpG classes.

Cancer Monotherapy with CpG
Oligodeoxynucleotides

The effects of CpG monotherapy appear to vary dramati-
cally, depending upon the tumor characteristics. In a
highly immunogenic tumor model such as the C3 model
of cervical cancer, systemic therapy with CpG oligos can
induce regression of a distant established tumor [31e].
However, in the vast majority of CpG monotherapy mod-
els, systemic injection of the ODNs has been ineffective
or much less effective compared with peritumoral or
intratumoral injection [32-34]. Likewise, the mecha-

nism of action of the CpG oligos varies from tumor to
tumor, probably depending upon variables such as
major histocompatibility complex (MHC) class I and
class II expression of the tumor, as well as the susceptibil-
ity of the tumor to various immune effective mecha-
nisms. In some models, the tumors appear to be
eradicated by predominantly NK-cell-dependent mecha-
nisms [25,35,36], but in other models the tumor regres-
sion is clearly T-cell dependent, especially upon CD8"
effector T cells [25,34]. When used as vaccine adjuvants,
CpG ODNs have the surprising ability to induce CTL
even in the absence of CD4 T-cell help (see next section).
This may explain why, in one model of CpG monother-
apy, CD4* T cells are not required for the generation of
an antitumor CD8 T-cell response [31¢]. In this tumor
model, CD4* T cells even appear to inhibit the antitumor
response, because CD4 knockout mice showed increased
antitumor effects of CpG treatment in comparison with
wild-type mice.

CpG ODN monotherapy may have an additional
mechanism of antitumor activity in the treatment of
tumors that express TLRY. In this case, the tumor itself can
be stimulated by the CpG oligo, leading to the same upreg-
ulation of costimulatory molecule expression seen on nor-
mal antigen-presenting cells. A strong CpG oligo has been
reported to upregulate the expression of MHC class I and II
molecules as well as a variety of costimulatory molecules
on a wide variety of primary malignant B cells, including
various lymphomas and chronic lymphocytic leukemia
(CLL) cells [37,38]. These CpG-stimulated malignant B
cells develop increased stimulatory capacity for T cells in
allogeneic mixed lymphocyte cultures, suggesting the pos-
sibility of inducing an antitumor T-cell response with the
therapeutic approach. CpG treatment of CLL cells has been
demonstrated to sensitize the malignant cells to other
immunotherapies without enhancing toxicity against nor-
mal cells [39].

Therapeutic Tumor Vaccination with CpG
Oligodeoxynucleotide Adjuvants

Virtually all published studies to date using CpG ODN
as a vaccine adjuvant have been carried out with B class
CpG ODN, to which we refer in this review. The utility
of CpG ODN as a vaccine adjuvant for inducing antigen-
specific humoral and cellular responses has been con-
firmed in studies using a wide variety of antigens,
including peptide or protein antigens, live or killed
viruses, DC vaccines, autologous cellular vaccines, and
polysaccharide conjugates. CpG ODNs do not appear to
be effective adjuvants for most pure polysaccharide anti-
gens, but they are quite effective if a protein carrier is
conjugated to the polysaccharide, as reviewed by Krieg
[8] and Davis [29]. Conjugation of CpG ODN directly to
the antigen has been used to enhance antigen uptake
and reduce antigen requirements [40,41].
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The vaccine adjuvant activity of CpG ODN appears to
result from several mechanisms. First, purified B cells are
synergistically activated when stimulated by CpG ODN in
the presence of antigen, indicating cross-talk between the
B-cell receptor and CpG signaling pathways [10]. Although
CpG DNA can activate essentially any B cell without regard
to its antigen specificity, the synergy observed in B-cell acti-
vation through CpG and the B-cell reactivity suggests that
antigen-specific B cells will be preferentially activated. Sec-
ond, the induction of increased costimulatory molecule
expression on B cells and other antigen-presenting cells
suggests that these should be more effective at promoting
antigen-specific immune responses. Third, CpG ODNs
inhibit B-cell apoptosis, contributing to a more sustained
immune response [42,43]. Fourth, the CpG-induced acti-
vation of DCs creates a Th1-like cytokine and chemokine
environment in the secondary lymphoid organs [11,13].
CpG ODNs promote cross-presentation with strong
cytolytic T-cell and antibody responses to peptides and
protein antigens independently of T-cell help [11,44-47].

Comparisons of different adjuvants in mouse models
have demonstrated CpG ODNs to be stronger Th1-pro-
moting adjuvants than any other agent, even including
complete Freund'’s adjuvant (CFA), as measured by the
ability of CpG ODN to drive the differentiation of CTL-
and IFN-y -secreting T cells [44,45,48,49]. In fact, CpG
ODN:s induce stronger CTL responses than any other TLR
ligand [50,51¢]. Moreover, CpG ODNs accomplish this
level of antigen-specific activation without inducing the
harsh local inflammatory effects seen with CFA. Neverthe-
less, the adjuvant efficacy of CpG ODN and the increase in
the number of antitumor-specific T cells in spleen and
lymph nodes can be further enhanced by coadministration
with other adjuvants, especially adjuvants that can provide
some depot function, such as alum or various lipid emul-
sions and nano- or microparticles [29,52]. Such formula-
tions are especially important when the antigen is
relatively weak. Combinations of CpG ODN with QS21,
TiterMax (Norcross, GA), and monophosphoryl lipid
(MPL) have also shown synergistically increased activity in
mice [53]. In addition, CpG ODN shows strong synergy
with another vaccine immune adjuvant, granulocyte-mac-
rophage colony-stimulating factor (GM-CSF) [53,54,55e].

CpG ODN:s are the only adjuvants reported to induce
antitumor responses strong enough to eliminate estab-
lished tumors in the range of 5 to 10 mm [51,56¢]. Com-
pared with other adjuvants, CpG ODNs have been
reported to induce increased numbers of antigen-specific
CD8* and CD4* T cells, and increased levels of IFN-y pro-
duction [49,51¢,52,57-60]. These studies demonstrate that
the vaccine-enhancing effects of CpG ODN result from the
stimulation of the DCs to have enhanced function and
from the generation of Th1-promoting cytokines, such as
IFN-y and IL-12. CpG ODNSs can induce strong CD8* T-
cell responses to tumor-derived peptides even when mixed
in saline in the absence of other adjuvants [51¢,52,57,59].

In established tumor models, the combination of CpG
ODN with a tumor vaccine is far more effective at eradicat-
ing tumors, compared with relatively weak antitumor
activity seen with peritumoral injections of CpG ODN
alone [51¢,56¢]. Mice vaccinated with irradiated neuro-
blastoma cells expressing GM-CSF together with CpG
ODN were able to regress established neuroblastoma
tumors through a mechanism that required both CD4 and
CD8 T cells [55¢]. Surprisingly, in one model, the CpG
ODN does not have to be mixed in with the vaccine to
enhance the immune response: Mice immunized with a
peptide from ovalbumin made strong CTL responses
against the peptide when given repeated daily injections of
CpG ODN even if the CpG was not added to the peptide
[59]. Daily injection of CpG was shown to increase the
numbers of DCs and T-cell precursors and to increase CTL
generation [59].

Combination Immunotherapy

with CpG Oligodeoxynucleotides

An important mechanism of action for antitumor antibod-
ies is thought to be antibody-dependent cellular cytotoxic-
ity (ADCC). CpG ODNs enhance ADCC [61] and have
dramatically increased the antitumor activity of anti-B-cell
antibodies in mice bearing a syngeneic B-cell lymphoma.
Repeated administration of CpG ODN and antitumor anti-
bodies yields improved activity, compared with single
administration [62].

Toll-like receptor 9 stimulation also shows synergy
when combined with a variety of other antitumor thera-
pies. A well-recognized mechanism through which tumors
appear to block their immune rejection is the local produc-
tion of IL-10, which is thought to inhibit the stimulatory
effects of tumor-infiltrating DCs. So far, there is no evi-
dence that CpG ODN can directly overcome this effect, and
several studies have demonstrated that the Th1-like effects
of CpG are partially overcome by IL-10. Therefore, it is rea-
sonable to hypothesize that blocking the IL-10 pathway
might increase the therapeutic efficacy of CpG ODN. In
several established mouse tumor models where CpG treat-
ment alone had little or no activity, the combination of
anti-IL-10 receptor antibody with CpG ODN induced
tumor regression with a high rate of long-term survival
[63]. The full antitumor effects of this combination
required both CD4 and CD8 T cells as well as NK cells and
protected mice against rechallenge with tumor on day 45
after the original challenge, demonstrating the induction
of a memory response. Another immunotherapy that has
shown synergy in combination with CpG is anti-CTLA-4
[64]. Both CD4 and CD8 T cells are also required for the
therapeutic effect in this model.

Several investigators have shown that CpG ODN can
enhance the efficacy of adoptive cellular strategies for
tumor eradication. Egeter et al. [65] used CpG ODN to
stimulate antigen-presenting cells for the purpose of gener-
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ating more effective tumor-specific Th1 cells, with
improved ability to eliminate established syngeneic lym-
phomas. In this case, therapy did not require CD8 T cells
but did require both IFN-y and CD40L. CpG ODN
strongly synergized with donor lymphocyte infusions in a
mouse acute myeloid leukemia model using allogeneic
recipients of T-cell-depleted bone marrow, resulting in
long-term survival of most CpG-treated mice [35].

Finally, recent studies show that CpG ODN
enhances the activity of traditional cancer therapies,
including chemotherapy, surgery, and radiotherapy.
Weigel et al. [66¢] tested CpG ODN alone or in combi-
nation with cyclophosphamide or topotecan in an
orthotopic rhabdomyosarcoma model. When treatment
was begun in relatively small tumors (day 9, but not yet
palpable) a slight survival benefit was shown for the use
of CpG alone, and increased survival when CpG was
used in combination with high-dose cyclophospha-
mide. The more impressive results in this model are in
large tumors when treatment is started on day 19, when
the tumor is easily measurable, and when neither cyclo-
phosphamide nor CpG ODN alone are able to cure
mice. In this large tumor setting, the combination of
CpG and either cyclophosphamide or topotecan che-
motherapy enabled long-term survival of 15% to 40%
of the mice [66¢]. This survival benefit required the
presence of T cells, but not NK cells, suggesting that the
CpG may have induced the development of an antitu-
mor T-cell response, which may have been sufficient to
eliminate the residual tumor after chemotherapy. The
combination of CpG ODN with cyclophosphamide has
also been reported to improve tumor control in a rat
model of subcutaneous glioma [67].

Systemic CpG ODN administration significantly
improved the long-term survival of mice with minimal
residual disease after surgical resection of large estab-
lished rhabdomyosarcomas when the mice also had
resection of the draining lymph nodes [66¢]. A large frac-
tion of oncology patients are treated with radiotherapy at
some point. It is therefore of interest that CpG ODNs
have a dramatic radiosensitizing effect in mice (Milas L,
Personal communication).

Applications of CpG Oligodeoxynucleotides
in Human Therapy

Mice and humans differ in the types of immune cells that
express TLR9 and therefore are able to respond to CpG. In
contrast to humans, where only the pDCs and B cells are
known to express the TLR9 receptor [5,9], TLR9 expression
in mice is broader, including the mouse myeloid DC and
monocyte/macrophages. These inter-species differences
cause obvious difficulties in extrapolating from mouse
models to predict results in humans. Because many
immune activators have remarkable immune-stimulatory
effects in mice but not in humans, one cannot assume that

the positive effects seen in mouse models will correlate
with human efficacy.

Fortunately, the adjuvant effects of CpG ODN are not
limited to mice. CpG ODN has also been shown to
enhance antibody responses in Aotus monkeys against
peptide sequences derived from the circumsporozoite pro-
tein from Plasmodium falciparum in a mineral oil emulsion
[68] and for a hepatitis B (HBV) vaccine in chimpanzees
[7]. Orangutans are hyporesponders to the commercial
HBV vaccine [69], but addition of a CpG ODN increased
their seroconversion rates after two doses to 100%, with
much higher antibody titers [69].

Optimized CpG ODNs are very strong activators of
Th1-like immune responses in human leukocytes in vitro
(reviewed in [70]). In 1999 the first human clinical trials
began with a B-class ODN, CpG 7909, as an adjuvant to
the HBV vaccine. Clinical trials of CpG 7909 in cancer
patients began in 2001, and as of late 2003, this agent was
being used in randomized phase II clinical trials in both
lung cancer and melanoma. A C-class ODN, CpG 10101,
entered clinical trials in late 2003 for infectious disease
applications, initially for treatment of chronic hepatitis C
infection. In recent human clinical trials, two different B-
Class CpG ODNs, CpG 7909 and ISS 1018, have been
found to significantly increase the levels of certain serum
chemokines, and when given in combination with a vac-
cine, to significantly enhance the generation of antigen-
specific immune responses (Cooper et al., manuscript in
preparation) [71]. Preliminary results using CpG 7909 in
cancer patients appear to be encouraging. More than 400
patients in human clinical trials have received CpG 7909,
with an excellent safety profile. There is as yet no dose-lim-
iting end-organ toxicity or signigicant laboratory toxicity.
At the time of this review, no clinically serious events were
reported for CpG 7909. Synthetic production of CpG 7909
is well established and highly economical. Aqueous solu-
bility is excellent, and the ODN is relatively non-reactive
and nonpyrogenic, making it an excellent drug candidate.

Conclusions

The early days of cancer immunotherapy were marked by
the use of crude bacterial extracts, such as Coley’s toxins,
which had limited efficacy and substantial toxicity.
Recombinant cytokines were initially hoped to be the
rational and targeted “silver bullet” that would usher in
an era of safe and effective tumor immunotherapy. How-
ever, despite some successes, recombinant cytokines have
proven to be of limited value, perhaps because of the fail-
ure of a pharmacologic dose of a single recombinant
cytokine to reproduce the complexity of a multifaceted
therapeutic antitumor immune response in more than
occasional cases. CpG ODNSs acting through TLR9 induce
the immune system through a “natural” pathway to pro-
duce a whole panoply of cytokines and chemokines in a
coordinated manner, which may be more effective and
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less toxic than the administration of individual recombi-
nant cytokines or chemokines in pharmacologic quanti-
ties. This specifically orchestrated stimulation of the
immune system has already demonstrated impressive
activity in a variety of mouse models.

In this review of the results of CpG therapy in the var-
ious mouse models, a great deal of diversity is apparent
in the outcomes and mechanisms of action, most likely
reflecting the different characteristics of the tumors stud-
ied. Despite these differences, several general conclu-
sions can be drawn. First, CpG monotherapy is
surprisingly effective in many small tumors (up to about
2-3 mm in size) but gives a much lower rate of success in
larger tumors. In the majority of monotherapy tumor
models, peritumoral injections have been far more effec-
tive than injections at a distant site, perhaps reflecting
the need to specifically activate antigen-presenting cells
in the lymph nodes draining the tumor. In larger tumors,
CpG ODNs work best when used in combination ther-
apy approaches. According to the data to date, it appears
that any kind of tumor therapy can benefit from the
addition of CpG ODN. An outstanding question is which
of the different CpG ODN classes will prove most useful
in human cancer therapy. The early results from human
clinical trials with a B-class CpG ODN suggest that this
approach may be useful and well tolerated in humans.
Nevertheless, the full therapeutic benefit of these
approaches remains to be determined.
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