
Current Neurology and Neuroscience Reports (2022) 22:745–755

Vol.:(0123456789)1 3

https://doi.org/10.1007/s11910-022-01231-5

STROKE (B. OVBIAGELE, SECTION EDITOR)

Reversing the Ruin: Rehabilitation, Recovery, and Restoration After 
Stroke

Melissa D. Stockbridge1  · Lisa D. Bunker1  · Argye E. Hillis1 

Accepted: 26 August 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Purpose of Review Stroke is a common cause of disability in aging adults. A given individual’s needs after stroke vary as a 
function of the stroke extent and location. The purpose of this review was to discuss recent clinical investigations addressing 
rehabilitation of an array of overlapping functional domains.
Recent Findings Research is ongoing in the domains of movement, cognition, attention, speech, language, swallowing, and 
mental health. To best assist patients’ recovery, innovative research has sought to develop and evaluate behavioral approaches, 
identify and refine synergistic approaches that augment the response to behavioral therapy, and integrate technology where 
appropriate, particularly to introduce and titrate real-world complexity and improve the overall experience of therapy.
Summary Recent and ongoing trials have increasingly adopted a multidisciplinary nature — augmenting refined behavio-
ral therapy approaches with methods for increasing their potency, such as pharmaceutical or electrical interventions. The 
integration of virtual reality, robotics, and other technological advancements has generated immense excitement, but has not 
resulted in consistent improvements over more universally accessible, lower technology therapy.
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Introduction

An estimated 7.6 million American adults have had a stroke, 
and projections show that by 2030, an additional 3.4 million 
will, a 20% increase in prevalence over the next 10 years [1, 
2]. However, recent advancements have driven an age-adjusted 
decrease in death from stroke and complementary increase 
in demand for rehabilitation [3]. A given individual’s needs 
after stroke vary widely as a function of the stroke extent and 
location. Motor impairments are the most common [4], but 
post-stroke cognitive impairments have been estimated in as 
much as half of surviving adults [5, 6] and may include deficits 
in reasoning, attention [7, 8], memory [9], and language that 
significantly contribute to a reduced quality of life [10]. Mental 

health also has been identified as an important mediating factor 
for rehabilitation success [11, 12].

Post-stroke recovery is impacted by numerous activity-
dependent mechanisms including axonal sprouting [13, 
14, 15], dendritic spine elaboration [16, 17], and migra-
tion of subventricular stem cells to peri-infarct regions [18, 
19, 20]. Synaptic plasticity is the dominant mechanism for 
recovery. Thus, the basic principles of behaviorally sup-
ported neuroplasticity apply; frequent, rigorous, specific 
exercises lead to recovery of function [21]. The standard of 
care for post-stroke rehabilitation remains characterized by 
task-specific and task-oriented training strategies facilitated 
by a clinician and deployed for 30–60 min per day for each 
domain (physical and cognitive-linguistic) in the acute phase 
and tapering over time as a function of recovery and ongoing 
access to services.

The goal of physiatric research is maximizing the effec-
tiveness and efficiency of supported recovery. This work can 
be broadly classified in one of three ways. First is the devel-
opment and evaluation of activities and strategies to facili-
tate behavioral modification. Second is identification and 
refinement of synergistic approaches to behavioral therapy 
that decrease the threshold for long-term potentiation and 
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depression through direct manipulations like transcranial 
direct current stimulation (tDCS) [22, 23, 24] or pharma-
cological adjuncts [25, 26•]. Finally, there is considerable 
enthusiasm for the introduction of emerging technology, 
such as robotics, virtual reality (VR), and gamification for 
the enhancement of therapy, which offer promising ways 
of improving rehabilitation adherence. These innovations 
also allow rehabilitation specialists to introduce and titrate 
real-world complexity and multifaceted demands, particu-
larly in the inpatient setting. Patients may use these tools in 
conjunction with other technologies. For example, a patient 
may engage in a gamified version of a therapy task, meaning 
it integrates elements like scoring points, rules, puzzles, and 
competition, typically to increase interest and engagement 
in the activity’s goal, but instead of moving a joystick or 
pressing keys, the interaction with the task is electromyo-
graphically directed, meaning the electrical activity in the 
patient’s muscle is the input used to interact with the task.

Here, we will summarize the recent evidence for novel 
behavioral strategies, synergistic approaches, and techno-
logical enhancements across three key domains of func-
tion: mobility, cognition, and language. Mobility research 
has been substantially strengthened by the bench to bedside 
pipeline. However, there is a relative dearth of cognitive 
rehabilitation studies targeting attention, executive function, 
and memory, let alone positive trials. Despite considerable 
interest, studies targeting post-stroke language rehabilita-
tion, or the treatment of aphasia, are even more niche and, 
thus, that much more difficult to design and execute. For 
this reason, we have incorporated both meta-analyses and 
systematic reviews, which near-ubiquitously note the paucity 
of well-controlled, sufficiently powered clinical trials, and 
descriptions of select ongoing trials into our review in order 
to best reflect the leading edge of physiatry research.

Strength and Movement

Motor rehabilitation was the subject of a recent comprehen-
sive review [27••], which found that the vast majority of 
novel intervention strategies resulted in no statistically sig-
nificant improvement in motor outcomes relative to “stand-
ard” therapy at the primary endpoint. Null improvements 
were noted in studies of neuromuscular electrical stimula-
tion, functional strength training, task-oriented training, and 
modified constraint-induced movement therapy (but see [28] 
for positive evidence of constraint-induced movement ther-
apy). A review of sensory therapies to improve motor recov-
ery also came up with modest results [29]. Authors noted 
studies supporting mirror therapy [30] and mental imaging 
[31, 32] but minimal evidence overall. However, even in the 
absence of demonstrable improvement over conventional 
therapy, broadening the diversity of available therapies that 

are similarly effective provides patients and clinicians with 
better tools to respond to individual patient needs and prefer-
ences, potentially improving overall outcomes. For example, 
self-rehabilitation of post-stroke motor function is similarly 
valuable to conventional therapy [33].

Synergistic approaches to motor rehabilitation have 
included both tDCS [34, 35] and pharmacology [36, 37, 38] 
with mixed results, leading authors to highlight the potential 
value of identifying subgroups to facilitate individualized 
treatment planning [39]. The strongest evidence for drug 
therapies comes from serotonergic and dopaminergic drugs 
[37]; however, no clear pharmacological recommendation 
has emerged [40]. Intravenous cerebrolysin within 3 days 
of stroke [41] has been associated with significant upper 
limb motor improvement and remains a focus of ongoing 
investigation [42, 43, 44, 45].

Technological therapy enhancements for motor reha-
bilitation often are used in concert to create an overall 
experience for patients that is challenging and motivating. 
Robot-assisted regimens include passive and active therapy, 
including electromyograph driven exoskeletons [46]. How-
ever, efficacy of robotic implementation varies as a function 
of the robot and the patient’s needs and may be prohibitively 
expensive for certain healthcare settings. Recent feasibility 
study demonstrated the utility of a home-based robotic sys-
tem for upper limb rehabilitation [47], and the proliferation 
of robotics into consumer technology may make this a more 
promising direction for future work. As of this writing, there 
are a remarkable number of ongoing clinical trials examin-
ing enhancements to traditional motor rehabilitation using 
robotic exoskeletons with (e.g., NeuroExo NCT05374486; 
NCT04724824; and NCT04599036) and without (e.g., 
RESTORE NCT04201613; NCT05226988; NCT04054700; 
and NCT05174676) brain-machine interface. A few trials 
have demonstrated feasibility of VR [48] alone, VR com-
bined with a gamified therapy activity [49], and VR com-
bined with electrical stimulation and robotics [50] for upper 
limb motor recovery. However, a systematic review found 
insufficient evidence to arrive at a conclusion regarding the 
utility of VR over and above conventional therapy [51]. In 
contrast, a meta-analysis of 42 trials examining gamified 
therapy for upper limb rehabilitation found greater, more 
retained improvements than those from conventional therapy 
in function, activity, and participation domains [52].

Cognition and Memory

Cognitive rehabilitation strategies most commonly focus on 
multiple cognitive domains but occasionally target single 
capacities in isolation. General cognitive protocols have been 
associated with modest improvements [53, 54, 55, 56], and 
additional programs are under investigation (e.g., COMPEX 
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study, NCT04229056). However, a recent Cochrane review 
failed to find sufficient evidence that cognitive rehabilita-
tion meaningfully improved selective, sustained, or divided 
attention either immediately or long term [57], with the pos-
sible exception of prism adaptation training [58, 59] and 
visual scanning training [60] for spatial neglect (see section 
on neglect below). Memory deficits are generally addressed 
through the use of compensatory strategies and mnemonic 
aids, sometimes referred to as “cognitive prosthetics.” The 
proliferation of smartphones and personal computers has 
revolutionized the kind of support individuals with diverse 
needs can receive from handheld devices [60, 61] and given 
rise to new computerized memory training protocols under 
investigation (e.g., the ASCEND-I study, which combines 
traditional and gamified elements when targeting working 
memory; NCT04472351).

tDCS and transcranial magnetic stimulation (TMS) com-
bined with frequent, rigorous, and specific activities have 
been associated with improvements in cognition. Further, 
these noninvasive brains stimulation approaches have been 
found to augment the effects of behavioral therapies target-
ing executive function [62–64]. More recently, studies have 
been designed to refine our understanding and use of these 
tools to optimize their effect. For example, an upcoming 
trial is planned to examine the effect of anodal tDCS com-
bined with computerized cognitive therapy on memory and 
executive function in individuals with chronic stroke (TIP-
SCI trial, NCT05195398), while a similar design is ongoing 
that examines anodal tDCS combined with execution of an 
n-back task for the treatment of memory and attention after 
stroke (TRAINS trial, NCT04897334).

Pharmacological interventions continue to be consid-
ered for the treatment of inattention, particularly choliner-
gic therapies, such as rivastigmine [65, 66], though there 
is a marked absence of double-blind, randomized clinical 
trials. Presently, clinical trials targeting general cognitive 
improvement are underway using levodopa (NCT03735901) 
and maraviroc (NCT04966429), and rolflumilast is under 
investigation specifically for treating post-stroke memory 
impairment (NCT04854811).

The emergence of increasingly sophisticated VR technol-
ogy has generated tremendous excitement [67, 68, 69]. Two 
recent meta-analyses of VR in the treatment of cognitive 
skills found no benefit over standard of care and noted the 
paucity of adequately powered trials [70, 71], while a third 
using more liberal inclusion criteria and did find evidence 
of a benefit of VR on global cognitive measures [72]. Thus, 
there remains equipoise with regard to the integration of this 
technology for cognitive benefit. Overwhelmingly, studies 
have focused on feasibility and failed to generate sufficient 
information to compare effects with either traditional reha-
bilitation or spontaneous recovery [73]. As systems become 
more affordable and commercially available, this is certain 

to be an area of continued inquiry (e.g., NCT04441177 and 
NCT05283369).

Language, Speech, and Communication

Post-stroke communication impairments (e.g., aphasia, dys-
arthria, and apraxia of speech [AOS]) can exist together with 
cognitive deficits or in isolation (e.g., aphasia, the impair-
ment of language with spared cognitive function). Left hem-
isphere disorders, such as aphasia, have by far received the 
most attention in the intervention literature, but disorders 
associated with right-hemisphere damage (e.g., aprosodia, 
or the inability to recognize or produce emotional speech) 
are also common [74] and can be detrimental to an indi-
vidual’s functional communication. Remediation of com-
munication deficits, to date, is almost exclusively comprised 
of behavioral interventions, typically delivered face-to-face 
(although the COVID-19 pandemic did create a monumen-
tal shift towards more teletherapy in practice and research). 
However, with approximately 100 h of SLT needed to sig-
nificantly improve functional communication [75], interest 
has turned more and more towards alternative approaches to 
the recovery of communicative function. These alternative 
approaches, as with the other common post-stroke impair-
ments, include methods of moderating/enhancing neural 
activity (e.g., non-invasive brain stimulation or medication) 
and/or using various technological applications to support 
recovery. These approaches have not replaced traditional 
behavioral interventions, but rather typically have been 
applied in conjunction with them (i.e., as an adjuvant). In 
all cases of adjuvant approaches discussed in subsequent 
paragraphs, additional evidence from large RCTs is sorely 
needed to confirm (or disprove) positive effects on language 
outcomes.

tDCS and repetitive TMS (rTMS) are the most com-
monly investigated methods of non-invasive brain stimula-
tion in post-stroke aphasia, with only minimal investigation 
in motor speech disorders (e.g., [76]). Recent reviews and 
meta-analyses of tDCS and rTMS have shown accumulat-
ing evidence of positive effects on specific language tar-
gets, such as naming, but neither can be confidently labeled 
as effective/efficacious (tDCS: [23, 77, 78, 79, 80]; rTMS: 
[81, 82, 83, 84]). Likewise, additional study of more func-
tional outcomes and individuals in the subacute phase 
(particularly for tDCS) also is needed. However, evidence 
is emerging: for tDCS, see Matar et al. [85] for a recent 
small-N study showing positive results for discourse and 
functional communication outcomes [85], Sebastian et al. 
(in review) for positive results of right cerebellar tDCS on 
functional communication (NCT02901574), or Stockbridge 
et al. (in review) for positive effects of left anodal tDCS 
on discourse in an RCT in subacute aphasia (SLISSE trial, 
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NCT02674490). Several ongoing/planned RCTs hopefully 
will contribute additional evidence to support the efficacy of 
tDCS (e.g., NCT03773406 and NCT04166513) and rTMS 
(e.g., REMAP trial, NCT04102228).

There is no current consensus on the best site(s) for 
stimulation, but most positive effects have been associated 
with stimulating left-hemisphere perilesional areas and/or 
inhibiting intact right-hemisphere homologues or the right 
cerebellum [86]. Specific stimulation sites are generally 
theoretically determined (e.g., LIFG) but can sometimes 
be anatomically individualized using resting-state magne-
toencephalography (rsMEG; [87]), functional MRI [88], or 
functional near-infrared spectroscopy (fNIRS; [89, 90]) to 
identify targets. A comparison of traditional sponge-based 
electrodes or high-definition electrodes (HD-tDCS) showed 
similar results [91], although the effect of HD-tDCS was 
limited to a 2 mA current in a double-blinded RCT [92]. 
For rTMS, most evidence supports 1 Hz (inhibitory) rTMS 
at about 90% of the resting motor threshold over right pars 
triangularis, although one study has shown improvement 
on different outcomes when inhibiting right posterior STG 
compared to right IFG [93].

Considering that both tDCS and rTMS aim to enhance 
neuroplastic mechanisms, it is as yet unclear if one method 
of stimulation is superior in terms of recovery. There have 
been very few comparative studies of rTMS versus tDCS 
and results are contradictory (although this is unsurprising 
given the significant differences in study design, quality, and 
stimulation parameters/targets; [94, 95]). Additional study 
comparing the various delivery parameters for both tDCS 
and rTMS, individually, as well as comparisons between 
these and other adjuvants therapies, using comparable para-
digms is needed. As a whole, the evidence does show that 
tDCS and rTMS are safe and relatively easy to use, but they 
rarely have been implemented into clinical practice. The lack 
of consensus for the optimal parameters remains a signifi-
cant barrier to implementation, as well as the lack of access 
and training for SLPs. Indeed, most SLPs report feeling 
uncomfortable with tDCS [96].

Another stimulation technique is just beginning to be 
investigated in aphasia: transcranial alternating current 
stimulation (tACS; see NCT04375722, NCT05194566). 
This method of stimulation is used to increase connectivity 
between two target sites—thus, it is not difficult to see the 
appeal that this method would have for language recovery 
considering the breadth of the network. Thus far, only one 
study examining feasibility has been reported [97].

With regard to pharmacological adjuvants to speech/lan-
guage recovery, current evidence has been expertly sum-
marized in several recent reviews [25, 26•, 98]. Currently, 
there are no FDA-approved medications for the treatment of 
aphasia, but there are a few dozen trials primarily focused 
on catecholamines (e.g., dopamine and epinephrine) or 

neurotransmitters such as acetylcholine or serotonin. Few tri-
als have been conducted focused specifically on AOS or dys-
arthria, although early studies showed conflicting results of 
dopamine on motor speech, see [99] for review. In general, 
pharmacological studies have been small and the overall 
results are mixed but encouraging, warranting further inves-
tigation (see [25] for a list of specific drugs recommended 
for continued investigation). Currently, there are only two 
ongoing registered drug trials for aphasia: an RCT examin-
ing the effect of escitalopram in conjunction with comput-
erized naming therapy (ELISA trial, NCT03843463) and a 
crossover trial of levetiracetam alone (i.e., not in conjunction 
with behavioral therapy; NCT00227461). While published 
drug studies in aphasia focus on identifying positive effects 
of various drugs on recovery, a recent retrospective study of 
longitudinal data found no detrimental effects of choliner-
gic, GABAergic, or dopaminergic medications on language 
recovery [100].

With technological advances and widespread access, 
investigation into teletherapy and electronic-based tasks/
self-practice is rising considerably. The main premise in 
pursuing technology-assisted therapy is to facilitate access 
(by reducing costs and/or logistical barriers like location/
transportation) and/or increase the amount of practice an 
individual can complete, given the large number of hours 
needed to facilitate learning. Good compliance, ease-of-use, 
and satisfaction have been reported with these studies [101, 
102, 103], which is encouraging given a primary motivation 
of increasing total amount of practice time. Results from 
VR, telerehabilitation, and computer-/tablet-based treatment 
studies are overwhelmingly positive, but lack of comparison 
studies and/or adequate control groups/tasks makes it dif-
ficult to identify superior protocols or attribute outcomes 
to the technological component of the treatment [104, 105]. 
Some studies have shown similar response to remote deliv-
ery as in-person, supporting the notion that teletherapy is a 
viable and effective option [106–108]. There are also lim-
ited data showing better outcomes with computerized self-
practice than some traditional approaches/tasks [109, 110], 
but any conclusions that one approach is collectively better 
than the other are inappropriate or, at least, premature. VR 
applications have been successfully used to create opportuni-
ties for real-time or simulated social or task-specific inter-
actions with caregivers or other persons with aphasia [111, 
112]. In the case of AOS, besides mode of delivery/prac-
tice, computer-based programs have also been used for [bio]
visual feedback [113]. In general, most treatment evidence 
in this area comes from aphasia and AOS, but there is an 
ongoing trial examining tablet-based practice in dysarthria 
(NCT05146765).

Behavioral interventions have been, and continue to be, 
the primary means of intervention in post-stroke commu-
nication disorders. The breadth of treatment protocols and 
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targets precludes discussion here, but general trends involve 
establishing higher levels of evidence for some of the most 
established protocols (e.g., semantic feature analysis [SFA, 
see NCT04215952], constraint-induced aphasia therapy 
(CIAT, [114]), or verb network strengthening treatment 
[VNeST, NCT05152979]) or to examine optimal dose/fre-
quency/intensity, either generally [115] or for specific pro-
tocols (e.g., [116]). The latter question has also prompted 
investigations of intensive treatment programs where a sig-
nificant amount of treatment (e.g., 30 h) is provided over a 
relatively brief period of time (e.g., 2 weeks; NCT04957225, 
[117, 118]). Such programs report favorable outcomes, 
including the psychological well-being of participants [119, 
120], but the optimal timing of such intensive practice is 
not known (i.e., acute vs. subacute vs. chronic), especially 
considering feasibility and tolerance concerns during earlier 
stages of recovery [121, 122].

There has unfortunately been limited investigation of 
treatment for communication disorders stemming from 
right-hemisphere stroke [123] besides cognitive deficits 
(reported above). Response to a single session of training 
for affective prosody recognition is reported [124] and an 
RCT crossover trial treating right-hemisphere communica-
tion deficits (aprosodia) is planned (NCT04575909). One 
previous study reported gains in prosody production with 
either cognitive-linguistic or imitative therapy [125].

Some researchers have examined the combination of mul-
tiple approaches, combining medication, neuromodulation, 
technology, and/or behavioral language therapy in a single 
interventional program (combination of medication, tDCS, 
and behavioral therapy: NCT04134416, [126]), but there is 
insufficient evidence at this time to draw broad conclusions 
regarding the benefit of such approaches.

A few other intervention approaches to communication 
do not quite fit into any of the prior categories but may be 
of interest to specific providers. These include targeting 
speech/language and/or psychosocial outcomes through 
social groups [127], singing groups [128], mental health 
therapies specifically for persons with communication dis-
orders ([129], NCT04984239), and physical exercise [130].

Swallowing

Traditional dysphagia therapy typically involves behavio-
ral interventions as well as training compensatory strate-
gies (e.g., diet modification or postural adjustments), but 
recent trends include neurostimulation (both peripheral 
and central) and biofeedback [131]. Peripheral stimulation 
includes pharyngeal electrical stimulation (PES) and neu-
romuscular electrical stimulation (NMES). PES—which is 
applied intrapharyngeally—has had positive results for tra-
cheotomized individuals with dysphagia post-stroke [132] 

but mixed results otherwise. Positive outcomes are reported 
with NMES—which stimulates muscle contractions exter-
nally—when paired with traditional therapy [133]. Central 
stimulations include tDCS and rTMS. For rTMS, best results 
are associated with high-frequency (i.e., excitatory) rTMS 
applied to pharyngeal motor cortex—applied bilaterally or 
contralesionally [134, 135]. Single anode tDCS (applied to 
ipsilateral pharyngeal motor cortex with the cathode placed 
suborbitally or on the contralesional pharyngeal motor cor-
tex) offers minimal benefit [134], while bilateral anodal 
tDCS (anode applied to both hemispheres with cathodes 
applied to the contralateral suborbital regions) is more 
promising [136, 137]. As with neurostimulation in the other 
modalities, optimal parameters are unclear at this time.

Biofeedback for dysphagia typically involves accelerom-
etry, surface electromyography (sEMG), or tongue manome-
try, and tasks are often gamified to incentivize participation. 
While individual studies report positive outcomes, a recent 
review and meta-analysis found that improvements on the 
behavior targeted did not translate into improved functional 
swallowing or decreased tube-feeding/oral supplements 
[138]. Differences in methodological rigor and study param-
eters may be contributing to the lack of positive findings, 
thus additional study is needed to determine the benefit (or 
lack thereof) of biofeedback approaches.

Attention

Neglect is a multifaceted syndrome that can manifest in a 
variety of ways [139] with most treatment research address-
ing unilateral visuospatial neglect. While individuals with 
persistent neglect may be trained to compensate for atten-
tional biases in some contexts (e.g., reading), there is only 
limited evidence for effective remediation of the impairment 
[140, 141•]. A lack of consensus stems, in part, from the 
many differences that exist across treatment study meth-
odologies, participants, outcome measures, etc. Treatment 
approaches follow other impairments and involve behavioral 
modification (e.g., prism adaptation, visual scanning, and 
mirror therapy), adjuvant neuromodulation (e.g., non-inva-
sive brain stimulation and pharmacological treatment), and 
technology-based interventions (e.g., robotics training), as 
well as combinations of these approaches.

Prism adaptation is the most common behavioral 
approach, and the only approach with modest evidence 
for the treatment of unilateral visuospatial neglect. Prism 
goggles are worn during therapeutic tasks to shift visual 
input to the ipsilesional hemispace. While reviews of 
prism adaptation treatments report positive effects on 
objective and functional tasks following treatment [58, 59, 
142], a meta-analysis of RCTs did not find improvement 
on subjective ratings or retention of gains beyond 1 month, 
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relative to controls [142]. However, this may be due to the 
relatively small amount of total practice (i.e., most studies 
administered only about 5 h total over 2 weeks), differ-
ences in the prism parameters (i.e., degree of visual shift), 
or heterogeneity of recovery stage. Visual scanning train-
ing (VST) has yielded mixed results [60, 141•]. Evidence 
for other behavioral approaches, such as mirror therapy, 
are scant [141•, 143].

Several recent reviews of non-invasive brain stimulation 
in conjunction with behavioral interventions such as prism 
adaptation for the treatment of neglect [144, 145] paint 
a promising picture for rTMS, tDCS, and neuromuscular 
vibration (NMV, a type of peripheral sensory stimulation 
intended to implicitly shift the center of attentional pro-
cessing; [146–149]). Unfortunately, sample sizes, stimu-
lation sites, time-post onset, and other parameters vary 
such that reliable conclusions regarding the effective-
ness of these approaches, especially long-term, remain 
unclear. Some meta-analyses suggest an advantage for 
rTMS over tDCS, generally, with excitatory stimulation 
to the ipsilesional hemisphere and inhibitory stimulation 
to the contralesional hemisphere yielding equally favora-
ble results [146, 148]. However, a recent RCT showed 
positive effects, relative to sham, with excitatory tDCS 
to ipsilesional parietal cortex, but not inhibitory tDCS to 
contralesional parietal cortex [150]. Evidence for another 
stimulation technique—continuous theta-burst stimulation 
(a specific variant of TMS)—is less favorable [148], but 
perhaps only because there are few studies having inves-
tigated it.

Investigation of pharmacological adjuvants follows 
the same theoretical motivations noted previously, but 
only a few drug trials were conducted in the last 20 years 
with regard to neglect. Results are conflicting without 
positive long-term effects [141•]. The most promising 
results that may warrant further investigation were for 
rotigotine (a dopamine agonist; [151, 152]) and guan-
facine (a noradrenergic agonist; [153]). We are unaware 
of any ongoing drug trials for the treatment of unilateral 
hemispatial neglect.

A single RCT has examined use of robotics for treatment 
of hemispatial neglect. In that study, a sophisticated robotic 
toy was placed in neglected space and programmed to inter-
act with the person with neglect. As attention to the device 
improved, it was moved further and further into neglected 
space. Participants demonstrated significant improvement 
on measures of neglect, including performance of activities 
of daily living, relative to controls, but long-term outcomes 
were no reported. Another similar study, using an interac-
tive humanoid robot, is ongoing (see NCT05152433). VR 
applications have limited evidence thus far [141•, 154], but 
there are ongoing studies to treat neglect in a VR environ-
ment (NCT03458611, NCT04651335).

Mental Health

An important caveat to rehabilitation is the frequent and 
common co-occurrence of post-stroke depression and 
other neuropsychiatric disorders [155, 156], and their 
impact on therapy participation and success. For an esti-
mated one in three [156] to five [77] individuals with 
stroke [157], effective pharmacological and counseling is 
key to patients experiencing the greatest benefit associ-
ated with their rehabilitation therapy. As noted in the prior 
section, new avenues of research are pursuing the direct 
treatment of these sequelae for individuals with commu-
nication disorders that are notoriously difficult to treat and 
often excluded from research related to these issues [158].

Conclusions

Rehabilitation after stroke is evolving, with a number of 
innovative stimulation (sometimes called “electroceuti-
cal”), pharmacological, and technological approaches to 
augment traditional behavioral therapies for the myriad 
of sequelae of stroke. Most of these augmentations still 
require large RCTs to demonstrate efficacy and substantial 
effects on daily function or quality of life.
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