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Abstract
Purpose of Review Brain and other central nervous system (CNS) tumors, while rare, cause significant morbidity and mor-
tality across all ages. This article summarizes the current state of the knowledge on the epidemiology of brain and other 
CNS tumors.
Recent Findings For childhood and adolescent brain and other CNS tumors, high birth weight, non-chromosomal structural 
birth defects and higher socioeconomic position were shown to be risk factors. For adults, increased leukocyte telomere 
length, proportion of European ancestry, higher socioeconomic position, and HLA haplotypes increase risk of malignant 
brain tumors, while immune factors decrease risk.
Summary Although no risk factor accounting for a large proportion of brain and other CNS tumors has been discovered, 
the use of high throughput “omics” approaches and improved detection/measurement of environmental exposures will help 
us refine our current understanding of these factors and discover novel risk factors for this disease.
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Introduction

Brain and other CNS tumors, while rare, cause significant 
mortality and morbidity across all ages. Despite decades of 
research on the etiology of brain and other CNS tumors, no 
risk factor accounting for a large proportion of cases has 
been identified. Brain and other CNS tumors are unique in 
that they are histologically complex, with over 100 types 
as listed by the World Health Organization International 
Classification of Diseases Oncology [1] and they display 
many of the well know Hallmarks of Cancer [2, 3] with 
dysregulated cell growth, metabolism, etc. However, with 
the use of novel high throughput “omics” approaches our 
understanding of causes and risk factors for brain and other 

CNS tumor continues to be refined and grow. In this review, 
we describe current and up to date knowledge about causes 
and risk factors for brain and other CNS tumors in children/
adolescents and adults.

Updates on Causes and Risk Factors 
for Brain and Other CNS Tumors in Children 
and Adolescents

Brain and other CNS tumors the most common cancer in 
children diagnosed at 0–14 years old and the second most 
common cancer in adolescents diagnosed at 15–19 years 
old [4••]. In particular, the incidence of brain and other 
CNS tumors is highest for those 5 and younger at diagno-
sis. In children and adolescents, the majority of brain and 
other CNS tumors are malignant tumors (age-adjusted 
incidence of 3.55 per 100,000) while non-malignant brain 
and other CNS tumors are less common in this age group 
(age-adjusted incidence 2.60 per 100,000) [4••]. The most 
common malignant histologies in this age group are glioma, 
embryonal tumors and germ cell tumors while the most 
common specific non-malignant histology is tumors of the 
pituitary (Fig. 1a). There have been no significant changes in 
incidence of these tumors in this age group over the last few 
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decades [4••, 5]. In addition, brain and other CNS tumors 
are the number one cause of cancer related mortality in chil-
dren diagnosed at 0–14 years old and overall survival for 
childhood and adolescent brain and other CNS tumors varies 
greatly by brain and other CNS tumor histology (Fig. 1c).

Many factors, both environmental and genetic, have 
been studied in order to identify a factor that accounted 
for a large proportion of childhood and adolescent brain 
and other CNS tumors (as reviewed in [6•]). Unfortu-
nately, no such factor has been identified. There are two 
primary risk factors for brain and other CNS tumors in 
children, adolescents and adults that have been well vali-
dated: single gene inherited disorders (~ 4% of childhood 
cases) and ionizing radiation (as reviewed in [6•, 7]). In 

fact, carcinogenic effects of radiation seem to be stronger 
in children, particularly in younger children, and show a 
clear dose response relationship [8, 9]. Few genetic asso-
ciation studies have been performed in childhood brain 
and other CNS tumors and therefore our knowledge about 
genetic risk factors for these tumors in this age group 
is very limited. Some candidate gene studies have been 
performed and provide some evidence for shared genetic 
risk factors for brain and other CNS tumors between age 
groups (as reviewed in [6•]). Some recent work in child-
hood ependymoma suggests that European ancestry is 
associated with higher risk of a childhood ependymoma 
[10] and that genetic risk for longer telomere length was 
associated with a higher risk of ependymoma in children 

Fig. 1  Incidence and survival for primary brain and other CNS 
tumors by age group, behavior and histology (CBTRUS inci-
dence: data provided by CDC’s National Program of Cancer Reg-
istries (NPCR) and NCI’s Surveillance, Epidemiology and End 
Results (SEER) Program, 2013–2017; NPCR Survival Analytic file 
(2001–2016)), distribution of primary brain and other CNS tumors 
by behavior for a children (0–19 years), and b adults (20 years and 
older); CBTRUS: data provided by CDC’s National Program of 
Cancer Registries and NCI’s Surveillance, Epidemiology and End 
Results Program, 2013–2017; Kaplan–Meier survival curves for 
the five most common histologies within c children (0–19  years), 
and d adults (20  years and older); National Program of Can-
cer Registries SEER*Stat Database: NPCR Survival Analytic file 
(2001–2016).*Percentages may not add up to 100% due to rounding. 
“All Other Malignant” includes histologies with ICD − O − 3 behav-

ior code of /3 from choroid plexus tumors, neuronal and mixed neu-
ronal − glial tumors, tumors of the pineal region, embryonal tumors, 
nerve sheath tumors, mesenchymal tumors, primary melanocytic 
lesions, other neoplasms related to the meninges, lymphoma, other 
hematopoietic neoplasms, germ cell tumors, cysts and heterotopias, 
tumors of the pituitary, craniopharyngioma, hemangioma, neoplasm 
unspecified, and all other. “All Other Non-Malignant” includes his-
tologies with ICD − O − 3 behavior code of /0 or /1 from neuronal and 
mixed neuronal − glial tumors, tumors of the pineal region, embryo-
nal tumors, other tumors of cranial and spinal nerves, mesenchy-
mal tumors, primary melanocytic lesions, other neoplasms related 
to the meninges, other hematopoietic neoplasms, germ cell tumors, 
cysts and heterotopias, craniopharyngioma, hemangioma, neoplasm 
unspecified, and all other
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and adolescents aged 12–19 but not for those younger than 
12 years old at diagnosis [11•].

Some of the newest environmental risk factors to be stud-
ied in relation to risk for childhood and adolescent brain and 
other CNS tumors are birth weight and non-chromosomal 
structural birth defects. There is reasonably consistent evi-
dence that higher birth weight is associated with a higher 
risk of childhood brain and other CNS tumors as provided 
by 3 large meta-analyses [12–14]. Georgakis et al. performed 
a systematic review and meta-analysis and showed that birth 
weight > 4000 g was associated with in increased risk of a 
childhood brain and other CNS tumor (Odds Ratio 1.14, 95% 
confidence interval (1.08–1.20); higher risk for astrocytoma 
and embryonal tumors and non-significant for ependymoma 
[12]. Dahlhaus et al. performed a meta-analysis and showed 
that high birth weight (> 4000 g) increased the risk of astro-
cytoma and medulloblastoma and not for ependymoma [13]. 
However, Bailey et al. pooled data from multiple population-
based case–control studies in France and found no associa-
tion between birth weight and childhood brain and other 
CNS tumor risk [14].

Non-chromosomal structural birth defects are a strong 
and consistent risk factor for childhood cancers in general 
[15–17]; these findings were most pronounced in young 
children, aged 5 years or younger with cancer [18, 19]. For 
brain and other CNS tumors, ~ 7% of childhood brain and 
other CNS tumors are attributable to these defects [15–17]. 
Previous studies had suggested ~ twofold increased risk of 
childhood brain and other CNS tumor associated with a birth 
defect [18–21]. However, a very recent study using records 
from 10 million live births showed that particularly for chil-
dren with a defect of the central nervous system or other 
neurological anomaly they are at a higher risk of develop-
ment of a brain and other CNS tumor, with hazard ratios as 
high as 10 [17].

Updates on Causes and Risk Factors for Brain 
and Other CNS Tumors in Adults

Brain and other CNS tumors are the 8th most common can-
cer in adults 40 + [4••]. The majority of brain and other CNS 
tumors diagnosed in adults 20 + years old are non-malignant 
tumors (age-adjusted incidence of 22.38 per 100,000) while 
malignant brain and other CNS tumors are less common 
in this age group (age-adjusted incidence 8.5 per 100,000) 
[4••]. The most common malignant histology in adult is 
glioma, while the most common specific non-malignant 
histologies are meningioma and tumors of the pituitary 
(Fig. 1b). There have been no significant changes in inci-
dence of glioma in this age group over the last few decades 
[4••, 5]. Malignant brain and other CNS tumors are the 6th 

most common cause of cancer death in adults 40 + years old 
in the USA [4••]. Overall, survival for adult brain and other 
CNS tumors varies greatly by brain and other CNS tumor 
histology (Fig. 1d).

Numerous environmental exposures have been evaluated 
as potential risk factors for brain and other CNS tumors in 
adults, but the only consistent risk factor that has been iden-
tified is exposure to high-dose ionizing radiation [22]. For 
meningioma, the excess relative risk (ERR) associated with 
one Gy of exposure to ionizing radiation was 4.63, while the 
ERR associated with glioma was 1.98. History of respiratory 
allergies has been consistently associated with decreased 
risk of glioma [23]. Due to the rarity of this level of radia-
tion exposure, this does not account for the vast majority of 
brain tumor incidence.

Many environmental risk factors are still under investiga-
tion, though these have mixed or null results of association 
with brain and other CNS tumors. One of the most thor-
oughly investigated is cellular phones due to their frequent 
use globally. Cellular phones emit radiofrequency fields 
(RF), which were classified as a possible carcinogen by the 
International Agency for Research on Cancer (IARC) in 
2011 [24]. The majority of epidemiological studies since 
the publication of the IARC report have found no significant 
associations between cellular phone use and risk of any type 
of brain and other CNS tumor. Extremely low frequency 
magnetic fields (ELFs) have also been studies extensively in 
relation to brain and other CNS tumor risk. The INTEROCC 
consortium was formed to evaluate the association between 
ELF and brain and other CNS tumors, and did not find an 
association with lifetime cumulative occupational exposure 
to ELF [25]. Power lines are another source of EMF expo-
sure that have been investigated in relation to brain and other 
CNS tumor risk. A recent case–control study found a signifi-
cant association between the highest level of estimated ELF 
from power lines and increased risk of brain and other CNS 
tumors, and glioma in particular [26]. More investigation is 
necessary to confirm this association. Other non-radiation 
occupational exposures have also been studied extensively in 
relation to risk for brain and other CNS tumors, and to date 
none have been consistently associated with risk of brain and 
other CNS tumors [6•].

While the vast majority of brain and other CNS 
tumors occur in individuals without a known cancer syn-
drome, ~ 5–10% have a family history of brain and CNS 
tumor [27]. There are numerous mendelian cancer syn-
dromes that affect risk of brain and other CNS tumors, 
including neurofibromatosis types I and II, tuberous sclero-
sis, and Li Fraumeni syndrome (as reviewed [6•]; Table 1). 
Due to the lack of known environmental risk factors, investi-
gations into common inherited genetic polymorphisms have 
been conducted to identify genetic risk factors in individuals 
with no family history. The majority of these studies have 
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Table 1  Genes implicated in inherited and sporadic brain tumor risk by chromosomal position (as reviewed in in [6•])

Chromosomal location Gene Associated tumor type Mendelian associations disor-
der/syndrome (OMIM ID)

Single SNP associations from 
genome-wide association studies

2p16.3 MSH6 Medulloblastoma, glioma, 
glioblastoma,

Lynch syndrome (120435), 
Biallelic mismatch repair defi-
ciency, constitutional MMR 
deficiency

Mismatch repair deficiency 
syndrome (276300)

None

2p21-p16.3 MSH2 Medulloblastoma, glioma, 
glioblastoma,

Lynch syndrome (120435), 
Biallelic mismatch repair defi-
ciency, constitutional MMR 
deficiency

Mismatch repair deficiency 
syndrome (276300)

None

2q33.3 C2orf80 Lower grade glioma None rs7572263
2q33.3 IDH1 Glioma Ollier disease None
3p14.1 LRIG1 Lower grade glioma None rs11706832
3p21.1 BAP1 Meningioma BAP1 tumor predisposition 

syndrome (614327)
None

3p22.2 MLH1 Medulloblastoma, glioma, 
glioblastoma,

Turcot’s syndrome type 1
Lynch syndrome (120435), 

Biallelic mismatch repair defi-
ciency, constitutional MMR 
deficiency

Mismatch repair deficiency 
syndrome (276300)

None

3p25 VHL Hemangioblastoma Von Hippel-Lindau syndrome 
(193300)

None

3q26.2 TERC All glioma None rs1920116
5p13.3 DROSHA Pineoblastoma, pituitary 

blastoma
DICER1 syndrome None

5p15.33 TERT All glioma None rs10069690
Astrocytoma None rs2853676

5q21 APC Medulloblastoma, glioma Familial adenomatous polyposis 
(FAP, 175100), Turcot’s 
syndrome type 2

None

7p11.2 EGFR All glioma None rs2252586
Glioblastoma None rs11979158; rs730437; 

rs1468727
7p22.1 PMS2 Medulloblastoma, glioma, 

glioblastoma,
Turcot’s syndrome type 1
Lynch syndrome (120435), 

Biallelic mismatch repair defi-
ciency, constitutional MMR 
deficiency

Mismatch repair deficiency 
syndrome (276300)

None

8p12 RECQL2 Meningioma Werner syndrome (277700) None
8q24.21 CCDC26 Lower grade glioma, in particu-

lar IDH-mutant tumors
None rs55705857

9p21.3 CDKN2A Glioma Melanoma-neural system tumor 
syndrome (155755)

None

CDKN2B-AS1 Lower grade glioma, in 
particular WHO grade II-IV 
astrocytic tumors

None rs4977756

9q22.3 PTCH1 Medulloblastoma, meningioma Gorlin’s syndrome (nevoid 
basal cell carcinoma)

None

9q34.14 TSC1 Giant cell astrocytoma Tuberous sclerosis (TSC) 
(191100, 613254)

None
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Table 1  (continued)

Chromosomal location Gene Associated tumor type Mendelian associations disor-
der/syndrome (OMIM ID)

Single SNP associations from 
genome-wide association studies

10p12.31 MIR4675, NEBL Pituitary adenoma None rs2359536

MLLT10 Meningioma None rs11012732
10q21.1 PCDH15 Pituitary adenoma None rs10763170
10q23.31 PTEN Cerebellar gangliocytoma, 

meningioma
Cowden syndrome 1 (158350) None

10q24.32 SUFU Meningioma Familial meningiomatoses 
(607174)

None

10q24.33 OBFC1 Lower grade glioma None rs11598018
10q25.2 VTI1A Lower grade glioma None rs11599775
11p15.5 RIC8A Meningioma None rs2686876
11q13.1 MEN1 Pituitary prolactinoma, menin-

gioma
Multiple endocrine neoplasia, 

type 1 (131100)
None

11q13.2 AIP Pituitary adenomas Pituitary adenoma predisposi-
tion (102200)

None

11q14.1 Intergenic Glioblastoma None rs11233250
11q21 MAML2 Lower grade glioma None rs7107785
11q22.3 ATM Astrocytoma and medulloblas-

toma
Ataxia-telangiectasia (208900) None

11q23.2 PHLDB1 All glioma None rs648044; rs17748; rs2236661; 
rs494560

All glioma None rs494560
Lower grade glioma, in particu-

lar IDH-mutant gliomas
None rs498872

12p11.23 STK38L All glioma None rs10842893
12q21.2 Intergenic Lower grade glioma None rs1275600
13q12.13 CDK8 Pituitary adenoma None rs17083838
13q14 RB1 Retinoblastoma, pineoblastoma, 

Malignant glioma
Retinoblastoma None

14q12 AKAP6 Lower grade glioma None rs10131032
14q32.13 DICER1 Pineoblastoma, pituitary 

blastoma
DICER1 syndrome None

15q21.3 RAB27A All glioma None rs4774756
15q24.2 ETFA Lower grade glioma None rs1801591
15q26.1 IDH2 Glioma Ollier disease None
16p13.3 CREBBP Medulloblastoma, oligodendro-

glioma, and meningioma
Rubinstein-Taybi syndrome 

(180849)
None

16p13.3 RHBDF1 Glioblastoma None rs2562152
Lower grade glioma None rs3751667

TSC2 Giant cell astrocytoma Tuberous sclerosis (TSC) 
(191100, 613254)

None

16q12.1 HEATR3 Glioblastoma None rs10852606
16q24.3 FANCA Medulloblastoma Fanconi anemia (227650) None
17p13.1 TP53 All glioma Li-Fraumeni syndrome 

(151623)
rs78378222

17q11.2 NF1 Astrocytoma, schwannomas, 
optic nerve glioma

Neurofibromatosis 1 (NF1) 
(162200)

None

17q21.2 SMARCE1 Meningioma Familial meningiomatoses 
(607174)

None

17q24.2 PRKAR1A Pituitary adenomas Carney complex (160980) None
1p31.3 RAVER2 Glioblastoma None rs12752552
1q32.1 MDM4 Lower grade glioma None rs4252707
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focused on glioma, which is responsible for the vast majority 
of deaths due to malignant brain and other CNS tumors. In 
total, these have identified 25 single nucleotide polymor-
phisms (SNPs) associated with risk for glioma. The risk 
conferred by these variants is histology specific. There are 
11 risk SNPs for glioblastoma and 19 risk SNPs for non-
glioblastoma, where 5 SNPs are shared between these two 
broad glioma types [28••] (Table 1). The function of many 
gliomas associated SNPs are currently unknown, though 
some are part of known oncogenic pathways. The most 
common pathway identified as conferring risk in glioma 
are those associated with telomere maintenance, including 
risk variants near TERT and RTEL1. Many of these SNPs 
have further molecular subtype associations ([29•]; Table 1). 
Several candidate SNP studies have been conducted in East 
Asian populations, which have found novel association loci 
for glioma as well as validated those discovered in Euro-
pean-ancestry populations, including loci in TERC, TERT, 
EGFR, and PHLDB1 [30, 31] (Table 1). The only GWAS of 
glioma in an East Asian population confirmed associations 
near TERT, PHLDB1 and RTEL1, and identified two new 
variants [32•] (Table 1).

Ancestry and Brain Tumor Risk

Genetic studies have also been conducted in other brain and 
other CNS tumor types. In European ancestry populations, 
two SNPs have been identified as affecting risk for menin-
gioma [33•] (Table 1), while two SNPs have been identified 
for primary CNS lymphomas [34•] (Table 1). In individu-
als of East Asian ancestry, three SNPs have been identi-
fied as increasing risk in pituitary adenoma [35]. Genetic 
factors other than specific SNPs have also been associated 
with risk of developing a brain tumor. Increased leukocyte 
telomere length (LTL) has been associated with increased 

risk of both glioma and meningioma [36, 37]. In addition to 
individual level variation in LTL, analysis of glioma sam-
ples has demonstrated that these tumors have significantly 
longer telomere length as compared to other cancers [38]. 
Malignant brain tumor incidence is highest in countries with 
primarily European-ancestry populations (such as Europe, 
the USA and Canada), and in white non-Hispanics in the 
USA [6•, 39]. Similar to associations identified with pedi-
atric tumors, increased overall European-ancestry has been 
detected in African American and Hispanic glioma cases as 
compared to controls [40•].

Immune Related Factors: Viruses, Allergy, and HLA

Several infections have been epidemiologically evaluated 
in glioma. Members of the polyomavirus family including 
BK, JC, and SV40 have been inconsistently associated with 
glioma risk [41, 42]. Members of the family herpesviridae 
have been evaluated in multiple studies with inconsistent 
results. The herpesvirus’s Epstein-Barr virus, herpes-sim-
plex 1/2, has been extensively evaluated in human cancers; 
yet, the evidence in central nervous system tumors is con-
tradictory [43, 44]. Cytomegalovirus (CMV) was associated 
with glioma where serologic investigations into risk/survival 
and the presence of CMV within tumors have again provided 
inconsistent evidence of a causal link between CMV and gli-
oma development [45–48]. However, recently two anti-CMV 
therapeutics have provided evidence of increased patient sur-
vival after receiving valganciclovir or a pp65 based treat-
ment [49, 50]. Those observations and mechanistic studies 
have bolstered a theory of CMV as an ‘oncomodulator’ in 
glioma, where CMV may not necessarily be involved in the 
initiation of glioma but may play a role in tumor growth 
and immune evasion [51•]. The most recently associated 
infection with glioma risk is not a virus but a protozoan, 

Table 1  (continued)

Chromosomal location Gene Associated tumor type Mendelian associations disor-
der/syndrome (OMIM ID)

Single SNP associations from 
genome-wide association studies

1q44 AKT3 Lower grade glioma None rs12076373
20q13.33 RTEL1 All glioma None rs6010620
22q11.23 SMARCB1 Meningioma Familial meningiomatoses 

(607174)
None

22q12.1 MN1 Meningioma Familial meningiomatoses 
(607174)

None

22q12.2 NF2 Acoustic neuromas, meningi-
omas, Ependymoma

Neurofibromatosis 2 (NF2) 
(101000)

None

22q13.1 PDGFB Meningioma Familial meningiomatoses 
(607174)

None

SLC16A8 Glioblastoma None rs2235573
22q13.2 EP300 Medulloblastoma, oligodendro-

glioma, and meningioma
Rubinstein-Taybi syndrome 

(180849)
None
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toxoplasma gondii (T. gondii). In a relatively small study 
of serum samples from two separate cohorts antibodies to 
T. gondii were significantly associated (OR: 2.70; 95% CI: 
0.96–7.62; OR: 1.32, 95% CI: 0.85–2.07) with glioma risk 
before diagnosis, eliminating reverse causation biasing the 
association [52]. Further serologic studies examining T. gon-
dii are needed.

The only consistently associated infection tied to glioma 
risk is the herpesvirus varicella zoster virus (VZV), the 
nearly ubiquitous virus that causes chickenpox and shingles 
[53]. Serologic studies of VZV antigens have also shown a 
similar reduction in glioma risk [54, 55]. In a large interna-
tional meta-analysis of self-report VZV infection reported 
from 8704 cases included in the Glioma International Case 
Control Study, infection with VZV conferred a 20% reduced 
risk of glioma [56]. Although the mechanism remains a mys-
tery, it has been hypothesized that interactions between the 
VZV and host immune response may be mediating glioma 
development. Parallel to the inverse association with VZV 
is the observation that allergic and ectopic conditions reduce 
glioma risk [23]. Allergies and other atopic conditions have 
consistently been shown to reduce risk of brain tumors, par-
ticularly glioma (as reviewed in [6•]).

Two large international meta-analyses have also con-
cluded that allergy and ectopic conditions reduce the risk 
of glioma ~ 20% [23, 57]. Measurements of serum IgE in 
glioma cases and controls have mirrored the questionnaire 
based studies showing that increased serum IgE is associated 
with reduced glioma risk [58, 59]. To further investigate 
the underlying genetic architecture of allergy and its rela-
tion to glioma risk Mendelian randomization studies have 
been utilized to assess the genetic basis for this association 
[60–62]. The results from these studies have been sugges-
tive showing small effects of reduced risk when comparing 
genetically programmed allergy/atopy with glioma risk, but 
not conclusive and may be due to the difficulty of construct-
ing a genetic instrument for allergy and ectopic conditions.

Studies have demonstrated a significant heritable compo-
nent (32–48%) of antibody responses to many viruses and 
have identified multiple host genetic loci relating to immune 
response for a variety of viruses [63]. The hereditable com-
ponent for allergic response is estimated at ~ 65% and genetic 
loci relating to T-cell and signal transduction [64–66]. 
Genetic studies of both allergy and response to infections 
have highlighted the human leucocyte antigen (HLA) as a 
powerful genetic regulator. Specific HLA alleles have been 
associated with glioma, though the complexity of the HLA 
complicates studies based on SNP array data. One of the 
earliest studies to investigate this was the UCSF Adult Gli-
oma Study, with risk-increasing effects observed for B*13 
and B*07 ~ C*07 haplotype, and protective effects for C*01 
allele [67]. In this same study, two class I HLA alleles, A*32 
and B*55, were associated with longer survival in GBM 

AGS patients. A*32 was also inversely associated with 
GBM risk in a separate population [68]. The largest recent 
study of using SNPs1856 glioma cases and 4955 controls, 
observed a 50% greater risk of glioma in heterozygous com-
pared to homozygous carriers of the DRB1*15:01 ~ DQA1*
01:02 ~ DQB1*06:02 haplotype (p < 0.002), with significant 
non-additive/epistatic effects [69]. Intriguingly, this haplo-
type is associated with susceptibility to multiple autoim-
mune conditions, and antibody response to EBV and VZV 
antigens [70, 71], and a new analysis suggested that history 
of auto-immune disease may also decrease risk of develop-
ing a glioma [72•]. Recent analyses of expression of immune 
cell populations using LD score regression showed that the 
genomic architecture of T cells, NK cells, and myeloid cells 
is inversely correlated with glioma and may be mediating 
glioma predisposition [72•]. New approaches to categoriz-
ing immune cells in tumors include traditional immunohis-
tochemistry-based approaches [73] and novel methylation 
based analyses to de-convolute cell types [74•]; both of these 
approaches seek to stratify tumor types based on tumor infil-
trating immune cells. Recent studies show that methylation 
derived neutrophile to lymphocyte ratios less than 4.0 were 
associated with significantly decrease survival times (HR 
2.02, 95% CI, 1.11–3.69) [75]. Further research examining 
the interaction between genetic loci, blood cell proportions 
and their relationship to allergy/infections are required to 
understand the complex involvement to glioma risk.

Socioeconomic Position

Mounting evidence from diverse studies suggests that 
higher socioeconomic position (SEP) is associated with 
an increased risk of adult CNS tumors when compared to 
individuals with a lower SEP [76–79, 80••]. An analysis of 
SEER data showed a significant relationship between the 
first quartile versus the second third, and fourth quartiles 
of county level income revealing a 10%, 11%, and 14% 
higher risk of glioma respectively [77]. A recent analy-
sis of SEER data showed that the increased risk associ-
ated with higher SEP is primarily in non-Hispanic whites 
[80••]. Additionally, two recent registry-based studies of 
childhood CNS malignancies suggest that this relationship 
appears to not only exist in adult CNS tumors but also in 
childhood CNS tumors, where studies in both California 
and Denmark show similar effects in various measures 
of SEP [81•, 82•]. Possible explanations include a diag-
nostic bias where tumors in patients with lower SEP may 
go unreported; yet, the accuracy of surveillance and the 
magnitude of the effect suggest that this bias alone does 
not alone account for the association. Another explanation 
is an unidentified risk factor that is associated with higher 
SEP, possibly related to the ‘hygiene hypothesis’ [83] 
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where immune exposures relating to allergy and infection 
maybe altered according to SEP.

Conclusions

Although no risk factor accounting for a large propor-
tion of brain and other CNS tumors has been discovered, 
there are multiple directions that can be taken to add to our 
understanding of risk for brain and other CNS tumors. Spe-
cifically, the use of high throughput “omics” approaches, 
improved detection/measurement of environmental expo-
sures, expansion to more diverse populations, synergy 
between germline and somatic variants, and incorporation 
of all types of clinical data to comprehensively study this 
disease (such as imaging). These novel directions will help 
us refine our current understanding of these factors and dis-
cover novel risk factors for this disease.
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