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Abstract
Purpose of Review Traumatic spinal cord injury (SCI) is a life-changing event with drastic implications for patients due to
sensorimotor impairment and autonomous dysfunction. Current clinical evaluations focus on the assessment of injury level and
severity using standardized neurological examinations. However, they fail to predict individual trajectories of recovery, which
highlights the need for the development of advanced diagnostics. This narrative review identifies recent advances in the search of
clinically relevant biomarkers in the field of SCI.
Recent Findings Advanced neuroimaging and molecular biomarkers sensitive to the disease processes initiated by the SCI have
been identified. These biomarkers range from advanced neuroimaging techniques, neurophysiological readouts, and molecular
biomarkers identifying the concentrations of several proteins in blood and CSF samples. Some of these biomarkers improve
current prediction models based on clinical readouts. Validation with larger patient cohorts is warranted.
Summary Several biomarkers have been identified—ranging from imaging to molecular markers—that could serve as advanced
diagnostic and hence supplement current clinical assessments.
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Introduction

Traumatic spinal cord injury (tSCI) is a devastating event and
most often leads to serious sensorimotor deficits and autono-
mous dysfunctions. The worldwide yearly incidence of SCI is
estimated at 40 up to 80 cases per million [1]. While traumatic
causes such as road traffic incidents and falls are the predom-
inant etiology in the younger population, non-traumatic
causes, including neoplastic tumors and degenerative condi-
tions, increase with age. Currently there is no cure, and func-
tional recovery is limited, leaving the majority of patients with
severe and permanent impairments [2]. Accordingly, patients
are eager to know their prognosis soon after the injury, as to
whether they will regain voluntary control of upper and lower
limbs as well as autonomous function [3]. Therefore, ad-
vanced diagnostic measures that can increase the accuracy of

prediction models which ultimatively can predict individual
trajectories of recovery are required.

Routine clinical evaluations for assessing the current clin-
ical impairment include performing the International
Standards for the Neurological Classification of Spinal Cord
Injury (ISNCSCI) protocol at admission. Based on this assess-
ment, the patient’s overall impairment is classified on the
American Spinal Injury Association (ASIA) Impairment scale
(AIS) [4, 5]. This scale represents the gold standard assess-
ment for documentation of the level and severity of a SCI [5].
It classifies patients according to their motor and sensory im-
pairment into five categories (A–E) with category A corre-
sponding to the most severely impaired patients and category
E indicating no clinically relevant impairment. A recent re-
view analyzing multiple clinical and demographic factors and
their contribution to the prediction of global functional out-
come concluded that the severity of SCI measured by the AIS
was the strongest predictive factor [6]. However, the major
limiting factor for using the AIS scores for prediction is the
substantial heterogeneity of individual recovery potentials in
each category. This may lead to a diverse range of recovery
trajectories between patients with similar initial clinical im-
pairment and result in different long-term functional
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outcomes, which highlights the need for more refined assess-
ments and the incomplete understanding of the exact patho-
physiological mechanisms [7, 8]. Moreover, differences in
neurological examination timing introduce additional hetero-
geneity in the classification of patients due to higher variabil-
ity in spontaneous recovery during the early phase after injury.
Therefore, outcome prediction based on neurological assess-
ments performed very early after injury may differ from pre-
dictions based on neurological examinations at later stages
[9]. Another drawback arises in cases of intoxication, seda-
tion, or patients with concomitant brain injuries, which makes
the initial neurological assessment challenging [10•, 11].
Hence, advanced diagnostics which can describe the impact
of the trauma independent from the neurological assessment
are required. This narrative review critically evaluates the lit-
erature from the past 5 years and provides an overview of the
developments in identifying biomarkers which can potentially
serve as advanced diagnostics in tSCI.Wewill first provide an
overview of current predictive models based on clinical eval-
uation and then continue describing biomarkers derived from
neuroimaging, blood and CSF concentrations of several com-
pounds, and the value of neurophysiologic readouts.

Clinical Outcome Measures

Trying to predict recovery based on clinical parameters, a
prognostic model was formulated including the five variables:
age (<65 years vs ≥65 years), L3 and S1 motor, and light
touch scores, which were acquired within 15 days post injury.
It serves to predict independent walking 1-year post injury
[12]. This model was simplified having only the three remain-
ing variables: age (<65 years vs ≥65 years), L3 motor score,
and S1 light touch score [13]. Critical analysis of both models
with different patient cohorts revealed that these models
achieved high prognostic accuracy for combined AIS catego-
ries, whereas applying these models to single AIS sub-groups
led to considerably lower accuracy, thus limiting their appli-
cability [14•, 15]. Models that include additional parameters
or use machine learning algorithms have been developed but
showed comparable or inferior predictive accuracy of pa-
tient’s mobility [16–19].

A recent approach for classifying a patient population into
more homogeneous sub-groups is the unbiased recursive
partitioning technique called conditional inference tree
(URP-CTREE) that defines simple decision rules for
partitioning the population [20]. This model was used for
sub-classifying cervical sensorimotor complete (AIS A) SCI
patients into sub-groups based on clinical parameters obtained
within the first 2 weeks after injury [21]. The patients within
one of these newly defined sub-groups expressed a more ho-
mogeneous recovery pattern. These results suggest that the
use of such regression tree algorithms provides an easy

method for partitioning a heterogeneous SCI patient popula-
tion into homogenous sub-groups for improving prognostica-
tion [22, 23].

Neuroimaging Biomarkers

Radiologic examinations are an integral part of the diagnostic
evaluation following SCI and play an important role in
assessing the level and severity of injury. Computed tomog-
raphy (CT) provides excellent visualization of osseous anato-
my and fractures and allows fast image acquisition [24].
However, its lack of soft tissue contrast and the insensitivity
for visualization of neural damage might lead to underestima-
tion of canal compromise and misdiagnosis in the clinical
setting [25, 26]. In contrast to CT, conventional magnetic
resonance imaging (MRI) helps to evaluate the damage to
discoligamentous and neural structures after tSCI. It improves
clinical decision-making early after trauma and facilitates
finding the appropriate treatment [27]. The following para-
graphs discuss both imaging parameters derived from conven-
tional neuroimaging and advanced neuroimaging protocols
that provide further insights into microstructural alterations.

Conventional MRI at Lesion Site

The standard protocol in clinical routine after SCI comprises
T1-weighted (T1w) and T2-weighted (T2w) MR images of
the lesion level [24]. It serves to rapidly screen patients and
represents an important prognostic indicator in the current
clinical routine [28]. These sequences allow to measure sev-
eral lesion characteristics such as maximum canal compro-
mise (MCC), maximum spinal cord compression (MSCC),
and intramedullary lesion length (IMLL) (see Fig. 1A–C for
illustration). The MCC is calculated as the ratio of the
anteroposterior (a-p) diameter of the spinal canal at the level
of maximum injury (Di) to the a-p diameter at the nearest
normal levels (Da and Db) as measured on mid-sagittal T1w
images. Similarly, the MSCC is derived as the ratio of the a-p
spinal cord diameter at the level of maximum injury (di) to the
a-p diameter at the nearest normal levels (da and db), measured
on mid-sagittal T2w images [26]. Some studies demonstrated
high inter- and intra-observer reliability of the MCC and
MSCC measurements and correlation with injury severity
and neurologic outcome [25, 26]. However, their predictive
value disappeared, when the initial neurological status was
available, demonstrating the limits of prognostication based
on these measures [30, 31].

The IMLL, measured as the length from the most rostral to
the most caudal apices of hyperintensive signal changes with-
in the spinal cord onmid-sagittal T2w images, was found to be
a good measure for assessing the severity of SCI and showed
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greater predictive value when compared to MCC and MSCC
[32, 33••]. Despite this superiority, its clinical benefit is limit-
ed when the initial AIS grade is available, suggesting that the
neurological status is more important to predict neurological
outcome [31].

An alternative to these measures is the Brain and Spinal
Injury Center (BASIC) score, which was proposed to improve
the assessment of injury severity prognostication [34]. This
classification system qualitatively grades the extent of
intramedullary T2w signal abnormalities in the axial plane
on a 5-point classification scheme. It was demonstrated that
the BASIC score is a superior predictor of AIS grade com-
pared to MCC, MSCC, and IMLL, and prognostication could
be improved by integrating the clinical status and BASIC
score [30, 33••, 35].

Important points to consider when assessing the lesion se-
verity on conventional MR images are the exact anatomical
location and local extent of the lesion, as lesions of similar size
but different orientations can cause a diverse range and pattern
of spared fiber tracts around the lesion [36]. An approach to
include information about spared axonal fibers is measuring
both ventral and dorsal tissue bridges on a mid-sagittal slice of
a T2w image of the spinal cord (see Fig. 1D for illustration).
The extent of preserved ventral and dorsal tissue paralleled
patients’ recovery and electrophysiological recordings in sev-
eral studies and was significantly related to patients’ walking
ability [37–39]. Moreover, the width assessed at 1 month after
injury was significantly associated with long-term neurologi-
cal and neurophysiological outcome and could provide a more
reliable prognostic measure [37, 38, 40••, 41]. In particular,
the distinction between tract-specific impairment could serve
as motor- and sensory-specific predictors separately, as ven-
tral tissue bridges were significantly related to motor function
and dorsal tissue bridges to sensory function [40••]. The

assessment of tract-specific spinal cord damage on axial
MRI slices might add valuable prognostic information in the
future as well [42].

However, the T2w signal changes are not specific to the
underlying pathophysiology and could represent both transient
and irreversible pathologies. Furthermore, there is consider-
able variation over time and patients, and their quantification
relies strongly on the subjective interpretation by the examiner
[29, 31]. This highlights the need for further validation of
measures derived from conventional MR imaging in the future
in order to evaluate their diagnostic and prognostic value.

Advanced Neuroimaging Markers

In contrast to conventional MRI sequences, which allow macro-
structural assessment of neural tissue damage, new imaging pro-
tocols aiming at the quantification of specific tissue parameters
serve to assess changes at the microstructural level [43, 44].

A prospective quantitative imaging modality that could
serve as diagnostic and prognostic measure after SCI is diffu-
sion tensor imaging (DTI). DTI assesses the microstructural
integrity of fiber tracts and, thus, has higher sensitivity to early
structural changes [28, 45]. Measuring spared white matter by
means of non-invasive DTI as well as in post-mortem histo-
logical samples showed a strong correlation between both
measures, pointing at the usefulness of DTI for assessing neu-
ronal tract integrity non-invasively [46]. In both preclinical
animal models of SCI and human SCI patients, differences
in DTI parameters between SCI and healthy control groups
were detected. In particular, SCI patients exhibited increased
values of mean diffusivity (MD), indicating disorganization
within the fiber tracts and decreased values of fractional an-
isotropy (FA), representing reduced axonal count and myelin

Figure 1. Lesion characteristics derived from standardMRI sequences.A
Mid-sagittal T1-weighted MR image with the a-p diameters of the spinal
canal at injury site (Di) and at nearest normal levels above (Da) and below
(Db) the lesion, including the equation for MCC. B Mid-sagittal T2-
weighted MR image with the a-p diameters of spinal cord at maximum
injury site (di) and at nearest normal levels above (da) and below (db) the

lesion, including the equation for MSCC. C IMLL measured on a mid-
sagittal T2-weighted MR image as the rostrocaudal length of the T2w
hyperintense lesion. D Mid-sagittal T2-weighted MR image with a T2w
hyperintense lesion for the determination of ventral and dorsal tissue
bridges as indicated. Modified from Freund et al. [29]
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content, at the level of injury [45, 47, 48]. Differences in these
parameters between healthy controls and SCI patients were
also found at levels above and below the lesion [49–51].
Furthermore, several studies showed significant associations
between DTI measures and the functional outcome, pointing
out the prognostic potential of this imaging technique [45,
48–53]. Contrasting these findings, one recent study compar-
ing DTI and conventional MRI parameters could not prove
superiority of DTI measures in predicting neurological out-
come, although this study only comprised a small patient co-
hort [54].

Quantitative parameters for the assessment of microstruc-
tural changes are magnetization transfer saturation (MTsat)
and longitudinal and effective transverse relaxation rates (R1
= 1/T1, R2* = 1/T2*) as implemented in the multi-parameter
mapping protocol (MPM) [55]. These quantitative parameters
are closely associated with myelin (MTsat, R1) and iron con-
tent (R2*) and thereby provide additional pathophysiologic
insights into processes following spinal trauma as well as al-
ternative advanced measures for tracking alterations after SCI
[56–59]. It could be demonstrated in primates that quantitative
MTsat is a robust parameter for tracking demyelination and
loss of macromolecules after SCI [60]. Applied to SCI, MPM-
based readouts could demonstrate reductions of myelin-
sensitive parameters and increase in iron content in areas un-
dergoing atrophy [61–64]. This is suggestive of demyelination
and iron deposition within these atrophying areas. Changes in
myelination and iron deposition were not only restricted to the
proximity of the lesion site but also affected remote areas in
both the spinal cord and the brain. Moreover, it could be
demonstrated that these changes were correlated with long-
term neurological outcome, speaking to their potential as
new biomarkers for assessing injury severity and predicting
outcome in SCI patients [61–63].

In summary, recent developments of MRI sequences allow
for the assessment of microstructural neuronal integrity and
pathophysiological alterations in myelination and iron depo-
sition and might add valuable information for clinical
decision-making and outcome prediction. Future studies are
necessary for validating and implementing these methods into
clinical practice.

Markers in Cerebrospinal Fluid and Blood
Serum

SCI usually leads to the disruption of the blood spinal cord bar-
rier, resulting in the leakage of several neural tissue components
into cerebrospinal fluid (CSF) and blood. Additionally, during
the pathophysiological events following SCI, each stage is char-
acterized by up- and downregulations of specific proteins, which
renders them an optimal target as biomarker for tracking the
stages after SCI [65]. Particularly, assessing the injury severity

of unresponsive patients by blood- or CSF-derived markers
might facilitate diagnostic workup [66]. Due to the plethora of
different compounds, we focus in this review on the most prom-
ising factors, whose diagnostic and prognostic usefulness could
be replicated (Table 1).

These CSF based biomarkers can broadly be categorized
into structural and inflammatory factors, as well as markers
measured in routine blood analysis [85, 86]. Recent research
focuses on the usefulness of microRNAs, an abundant class of
small non-coding RNAs that were identified as tissue-specific
markers of injury. These four classes of biomarkers will be
discussed in the subsequent sections.

Structural CSF/Serum Biomarkers

Structural biomarkers are mostly cell-specific proteins from
neuronal tissue that leak into CSF and blood after trauma.
These tissue-specific proteins are produced by different cells
such as neurons or glia cells. Changes in the blood and CSF
concentrations of several of these proteins following SCI were
observed and are described in the following section.

Glial fibrillary acidic protein (GFAP) and calcium-binding
protein S-100β are mainly derived from glial cells and were
repeatedly shown to be elevated in both CSF and blood serum
in the early acute phase after SCI in humans and animal models
[10•, 67–70]. The levels of both proteins differed significantly
between patients with different AIS grades, where most severely
affected AIS-A patients expressed the highest measured levels.
Additional to the differences between initial AIS categories, pa-
tients with lower protein levels exhibited a better neurological
recovery than those patients with higher levels. These findings
speak to their diagnostic and prognostic potential to assess the
severity in the early phase of SCI [10•, 67, 68, 70].

Neurofilaments are abundant axonal cytoskeletal proteins
that can be divided into three subunits, light (NF-L), middle
(NF-M), and heavy chain neurofilament (NF-H), of which
NF-L and NF-H have been studied most widely as potential
biomarkers in SCI [87]. CSF and serum levels of both NF-H
and NF-L were significantly higher in SCI patients compared
to controls during the acute phase after SCI [68, 69, 71, 72].
However, the discrimination between individual AIS catego-
ries was not possible. Regarding the predictive potential, NF-
L concentrations correlated with long-term motor outcome,
whereas no significant associations between NF-H levels
and functional outcome were found [71, 72].

Another protein that is expressed at high levelswithin neurons
is Tau. It has an important function as stabilizer of microtubules
and has been studied extensively in the context of Alzheimer’s
disease due to its involvement in pathogenesis [88]. Increased
extracellular levels might be indicative of neuronal damage; thus
Tau could serve as a potential biomarker after SCI. In human SCI
patients and animal models of SCI, Tau was elevated both in the
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blood and CSF during the acute phase following SCI with the
concentration being related to injury severity and allowing to
discriminate between AIS categories [10•, 67, 73, 74].
Moreover, the levels correlated with long-term functional out-
come pointing at its predictive utility [10•, 67].

Neuron specific enolase (NSE), an enzyme that is mainly
located in neuronal cytoplasm, was identified as a biomarker
for neuronal damage in different pathologies [89]. NSE expres-
sion in neuronal tissue was shown to be upregulated in SCI
models at the injury site [75]. Increased NSE concentrations in
the serum were measured in SCI patients during the first days
after trauma, although a clear categorization into individual
AIS sub-groups was not possible [68, 70, 76]. Regarding its
predictive utility, significantly lower concentrations in patients
that had a better functional long-term outcome than in patients
with only minor functional improvements were found [70].
Contrasting these findings, another study did not detect a
strong correlation with long-term functional outcome [76].

Inflammatory CSF/Serum Biomarkers

Markers of inflammation are upregulated and secreted by various
cell types due to the neuro-inflammatory processes elicited by the

trauma that may further worsen the injury. Therefore, they do not
represent specific predictors of neuronal damage but rather reflect
the general inflammatory reaction [85]. This section discusses the
potential of some of these inflammatory cytokines as novel di-
agnostic measures after SCI.

Interleukins (IL) are a large family of cytokines having a
diverse range of functions in immune response. Of these, par-
ticularly the pro-inflammatory IL-6 and IL-8 have been stud-
ied in SCI and seem the most promising biomarkers. IL-6 was
reported to be elevated during the acute and subacute phase of
SCI in a severity-dependent manner [10•, 67, 76]. Moreover,
patients experiencingAIS improvement had significantly low-
er levels than patients not improving indicating its usefulness
for prognostication [10•, 67]. Likewise, IL-8 was predictive of
AIS conversion in the same manner, although IL-6 showed
better performance [10•, 67].

Monocyte chemoattractant protein-1 (MCP-1) is a chemotac-
tic cytokine (chemokine) produced by various cell types and
plays an integral role for immune response [90]. It was found
to be elevated in CSF and serum during the early acute phase of
SCI and was predictive of neurological recovery [10•, 67, 77].
Contrasting these findings, Casha et al., although measuring an
early increase in MCP-1 in CSF after SCI as well, did not detect
significant correlations with neurological recovery [72].

Table 1. Summary of spinal cord injury serum/CSF biomarkers

Biomarker Pathophysiological
process/origin

Main findings and diagnostic/prognostic utility Reference

GFAP Glial cell injury Discrimination between AIS sub-groups by concentrations
during early phase after SCI. Lower levels associated with
better neurological recovery

Dalkilic et al, 2018 [10•], Kwon et al, 2017 [67],
Ahadi et al, 2015 [68], Yang et al, 2018 [69]

S-100β Glial cell injury Discrimination between AIS sub-groups by concentrations
during early phase after SCI. Lower levels associated with
better neurological recovery

Dalkilic et al, 2018 [10•], Kwon et al, 2017 [67],
Du et al, 2018 [70], Yang et al, 2018 [69]

NF-L, NF-H Axonal injury Higher levels in SCI patients compared to controls during acute
phase. NF-L was correlated with long-term outcome, while
NF-H showed no significant associations

Ahadi et al, 2015 [68], Yang et al, 2018 [69],
Kuhle et al, 2015 [71], Casha et al, 2018 [72]

Tau Neuronal injury Elevated levels during acute phase after SCI and discrimination
between AIS sub-groups. Levels correlated with long-term
functional outcome

Dalkilic et al, 2018 [10•], Kwon et al, 2017 [67],
Tang et al, 2019 [73], Caprelli et al, 2018 [74]

NSE Neuronal cell body
injury

Elevated levels in SCI patients without differences between AIS
sub-groups. Inconsistent findings regarding predictive utility

Ahadi et al, 2015 [68], Du et al, 2018 [70], Li
et al, 2014 [75], de Mello Rieder et al, 2019
[76]

IL-6, IL-8 Inflammation Increased levels during acute and subacute phase. Predictive of
AIS conversion in patients

Dalkilic et al, 2018 [10•], Kwon et al, 2017 [67],
Yang et al, 2018 [69], de Mello Rieder et al,
2019 [76]

MCP-1 Inflammation Elevated early after SCI. Results about prognostic utility are
inconsistent

Dalkilic et al, 2018 [10•], Kwon et al, 2017 [67],
Casha et al, 2018 [72], Heller et al, 2017 [77]

Albumin Hepatic synthesis Hypoalbuminemia after SCI was associated with poor long-term
neurological outcome

Tong et al, 2018 [78], Vo et al, 2020 [79]

microRNAs Various Severity-dependent distinct changes in the expression profile
after SCI with up- and downregulation of certain microRNAs

Sun et al, 2018 [80], Ding et al, 2020 [81], Park
et al, 2019 [82], Li et al, 2019 [83],
Tigchelaar et al, 2019 [84]

Overview of serum/CSF biomarkers with their pathophysiological origin and a short summary of their diagnostic/prognostic utility after SCI
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Similar to structural CSF and serum biomarkers, some
markers of inflammation seem to have the potential of im-
proving the assessment of SCI patients. However, it must be
noted that these factors only represent the general inflamma-
tory reaction and are not specific to SCI injury.

Markers in Routine Hematology

Investigating the utility of routinely measured blood parame-
ters such as blood albumin levels for the assessment of injury
severity and outcome prediction, it could be shown that hypo-
albuminemia was associated with poor long-term neurological
outcome and thus could serve as a marker for prognostication
[78, 79]. Additionally, albumin levels measured during the
subacute phase were significantly lower in the most severely
affected AIS-A patients compared to other AIS groups,
pointing at its utility in clinical risk assessment.

Two studies included a plethora of blood parameters mea-
sured during the first 2 weeks after SCI into predictive models
and tested their contribution to improve the model [91•, 92].
Initial neurological function assessed by clinical evaluation
was the most powerful predictor. However, blood measures
of liver and kidney function, inflammation, and complete
blood count (as marker for blood loss) could add significant
prognostic value. These results suggest that prognostication
might be improved by including regularly measured blood
analytes as surrogates for general body function and second-
ary organ complications [93–95].

MicroRNAs

MicroRNAs, a class of short non-coding RNAs, have drawn a
particular interest during recent years as they are involved in
several regulatory processes including processes after SCI such
as regulation of post-injury inflammation, neuroplasticity, and
axon and neuron regeneration [96, 97]. Following SCI, some
of these microRNAs are upregulated leading to a decrease in
expression of their target genes while others are downregulated.
This in turn leads to a change in the microRNA expression
profile and thereby to a different measurable spectrum of
microRNAs in blood and CSF [80, 81]. This expression profile
varies over time after SCI providing the possibility of character-
izing each post-injury stage [82, 83]. A recent study that mea-
sured microRNA profiles in CSF and serum of SCI patients
showed a severity-dependent expression profile in CSF with
AIS-A patients expressing highest concentrations of total
microRNAs in CSF shortly after trauma [84]. The extent of up-
and downregulation of specific microRNAs in CSF varied be-
tween different AIS groups as well. Most severely affected pa-
tients expressed highest up- and downregulations pointing at the
diagnostic utility of microRNAs. Using a distinct set of these up-

and downregulated microRNAs, AIS grade improvement could
be predicted for patients that were classified asAIS-A at baseline.

Neurophysiologic Markers

Neurophysiologic techniques, such as measuring nerve
conduction, motor-evoked potential (MEP), and
somatosensory-evoked potentials (SEP), provide objec-
tive measures of neuronal integrity and allow the differ-
entiation between demyelination and axonal damage
[98••, 99]. Their value as independent tool for stratify-
ing SCI patients into sub-groups and their predictive
utility were already demonstrated and validated several
years ago [99–102]. However, some questioned whether
these electrophysiological parameters could add valuable
information for improving functional outcome predic-
tion. Hupp et al. could show in a multicenter study that
including electrophysiological multimodal parameters in-
to the prediction model leads to better prediction preci-
sion of this model, even if the clinical neurological sta-
tus is available [98••]. These results suggest that the
assessment of neurologic function and prognostic accu-
racy in SCI patients can be improved by adding neuro-
physiological methods to standardized clinical evalua-
tion. Nonetheless, this study also identified total motor
score as the best single prediction parameter, which
once more highlights the importance of clinical evalua-
tion during the diagnostic workup for the assessment of
severity in SCI.

Conclusion

This review described the latest progress in identifying reli-
able biomarkers for traumatic SCI and improving predictive
models. Clinical evaluation by standardized neurological ex-
amination constitutes the gold standard for assessing injury
severity and predicting functional outcome. Nevertheless,
these models can be improved by including advanced diag-
nostics, suggesting that a multimodal approach—including
neuroimaging and CSF/blood markers—improves the accura-
cy of predicting individual trajectories of recovery. Future
studies investigating the exact potential of this approach with
multivariate models that can accommodate multimodal data
are required for demonstrating the utility of combinations of
these advanced biomarkers.
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