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Abstract
Purpose of Review According to the amyloid cascade hypothesis, removing amyloid beta (Aβ) should cure Alzheimer’s disease
(AD). In the past three decades, many agents have been tested to try to lower Aβ production, prevent Aβ aggregation, and
dissolve Aβ deposits. However, the paucity in definitive preventative or curative properties of these agents in clinical trials has
resulted in more avant-garde approaches to therapeutic investigations. Immunotherapy has become an area of focus for research
on disease-modifying therapies for neurodegenerative diseases. In this review, we highlight the current clinical development
landscape of monoclonal antibody (mAb) therapies that target Aβ plaque formation and removal in AD.
Recent Findings Multiple potential disease-modifying therapeutics for AD are in active development. Targeting Aβ with mAbs
has the potential to treat various stages of AD: prodromal, prodromal to mild, mild, and mild to moderate. Monoclonal antibodies
discussed here include aducanumab, lecanemab, solanezumab, crenezumab, donanemab, and gantenerumab.
Summary The final decision by the FDA regarding the approval of aducanumab will offer valuable insight into the trajectory of
drug development for mAbs in AD and other neurodegenerative diseases. Future directions for improving the treatment of AD
will include more inquiry into the efficacy of mAbs as disease-modifying agents that specifically target Aβ peptides and/or
multimers. In addition, a more robust trial design for AD immunotherapy agents should improve outcomes such that objective
measures of clinical efficacy will eventually lead to higher chances of drug approval.
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Introduction

Alzheimer’s disease (AD) is the most prevalent type of de-
mentia, affecting 5.8 million people ages 65 and older in the
USA alone, and this number is estimated to grow to 13.8
million by mid-century [1]. In other words, one in ten people
ages 65 and older (10%) have AD in the USA [1]. Following
the onset of AD dementia, the median survival time ranges
from 3.3 to 11.7 years. [2]. Because the number of deaths
continues to increase, and because of the tremendous financial
burden to society, the need for disease-modifying treatments
for AD is dire.

The two neuropathological hallmarks of AD are amyloid β
(Aβ) plaques and neurofibrillary tangles (NFT) [3, 4]. NFTs
consist of filamentous inclusions or aggregates of aberrantly
misfolded and hyperphosphorylated tau proteins that accumulate
intra-neuronally [3]. Aβ peptides (molecular weight ~4 kDa) are
the product of the successive cleavage of amyloid precursor pro-
tein (APP; molecular weight ~ 120 kDa) by β- and γ-secretases,
which is referred to as the amyloidogenic pathway [5].
Alternatively, APP can be first cleaved by an α-secretase inside
the amyloid peptide sequence (i.e., amino acid 16), then γ-
secretase to generates shorter soluble extracellular fragments,
termed p3, that are thought to be non-amyloidogenic [5].

During the course of AD, Aβ peptides that are 36–43 ami-
no acids long (e.g., Aβ40, Aβ42, Aβ43) can assemble into
insoluble beta-sheet fibrillar aggregates that deposit extracel-
lularly in the brain parenchyma and cerebral vasculature [6, 7].
Over time, amyloid plaques may grow from a single Aβ fibril
extracellular nucleation site [8]. Amyloid deposition is accom-
panied with the disruption of synaptic structure and function,
and neuronal atrophy often starting in the hippocampus area
then spreading to cortical regions, which ultimately induces
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cognitive impairment and dementia symptoms [9–11].
Cerebral vasculature deposits (also known as cerebral amyloid
angiopathy; CAA) can cause hemorrhages, strokes, and in-
flammation [6, 7]. The mechanism of toxicity of amyloid pep-
tides is widely debated. The mechanism can be viewed either
as a gain-of-toxicity in the amyloid peptides and their soluble
misfolded oligomeric antecedents [12–14], or as a loss of
function due to the adoption of misfolded conformations
[15]. Some argue that Aβ is intrinsically toxic. Others suggest
Aβ seeds the formation of tau tangles [14, 16].

According to the amyloid cascade hypothesis, which was
introduced in 1992, deposition of Aβ peptides is the main
causative agent of AD pathology, i.e., NFT, cell loss, CAA,
vascular damage, and dementia follows as a direct result of
this deposition [17]. Phenotypic heterogeneity of AD pathol-
ogy is suggested to be induced by polymorphic Aβ fibrils that
precipitate as heterogeneous plaque pathology, such as cored
(mature) plaques and diffuse plaques [18–20]. Importantly,
based upon the amyloid cascade hypothesis, the removal of
brain Aβ plaques should stop the progression of AD. This
concept stimulated the development and testing of highly in-
novative anti-Aβ therapeutic agents in the past three decades
to lower Aβ production, prevent Aβ aggregation, and dis-
solve Aβ deposits. However, this idea is currently debated
due to the failure of all clinical trials testing this concept until
now [32657175].

Diffuse plaques are frequently observed in cognitively un-
affected, amyloid positive (CU-AP) individuals [21]. Diffuse
plaques have been found to have a capacity to convert into
cored plaques in sporadic AD (s-AD) [21]. Maturation of dif-
fuse into cored plaques in s-AD was found to correlate with
increased deposition of Aβ40 at the center of the cored plaques
[21]. Diffuse plaques in both s-AD and CU-AP are character-
ized by deposition of Aβ42 [21]. Moreover, diffuse plaques in
s-AD show increased levels of pyroglutamate-modified N-
terminally truncated Aβ42 species (N-pyro-E-Aβ; AβpE3-
42, AβpE11-42) in comparison with diffuse plaques in CU-
AP [21]. The correlation of s-ADwith deposition of Aβ40 and
the finding of increased diffuse Aβ42-rich plaques in CU-AP
patients is contrary to the current understanding that Aβ42 is
the major Aβ toxic species associated with AD pathogenesis,
and suggests a more complex mechanism involving Aβ40 as
well [21–24].

Aβ peptides vary in toxicity, with Aβ43 being the most
cytotoxic and Aβ40 being the most benign as it is produced
physiologically throughout life [5, 25–27]. Aβ42 demon-
strates neurotoxicity and has the faster aggregation rate [28].
The most synaptotoxic species of Aβ are the small oligomers
(2–10 monomers), and pyroglutamate forms of Aβ oligomers
[29]. The current hypothesis is that both soluble and insoluble
Aβ fibrils may contribute to the pathogenesis and progression
of AD [28]. Thus, using Aβ lowering agents is still considered
a viable approach as a disease-modifying treatment for AD.

Below, we review the main Aβ lowering approaches tested in
humans and an accurate update on their clinical testing.

Aβ Synthesis Inhibitors

Several mechanisms have previously targeted the inhibition of
Aβ production, namely through inhibition of β-site amyloid
protein cleaving enzymes 1 and 2 (BACE1 and BACE2), and
γ-secretase. BACE1, which is an enzyme from the aspartyl
protease class, is the major β-secretase in the brain [30].

In transgenic mouse models of AD, BACE1 inhibitors
dose-dependently lowered Aβ levels in the brain and CSF;
however, very few studies have shown the ability to reduce
the memory and behavioral deficits in suchmouse models [30,
31]. Many BACE1 inhibitors clinical trials showed signifi-
cantly lowered Aβ levels in the plasma and CSF, and reduced
brain amyloid loads but without cognitive, clinical, or func-
tional benefit [30]. A few of these clinical trials were termi-
nated prematurely due to toxicity or cognitive and behavioral
worsening compared to placebo-treated patients [30].
Elenbecestat was the last BACE1 inhibitor in phase III clinical
trials (NCT02956486) [30]. However, the sponsors, Eisai and
Biogen, reported during a press release the discontinuation of
the phase III clinical trial due to “unfavorable risk-benefit
ratio” [30]. Other BACE1 inhibitors such as LY3202626
(Eli Lilly & Co) and umibecestat/CNP520 (Novartis
Pharmaceuticals Corporation and Amgen, Inc.) were also
abandoned due to no clear effects on cognition for
LY3202626 and worsened cognition, brain atrophy and
weight loss for umibecestat [30]. There are currently no
BACE1 inhibitors in active clinical trials [30].

Drugs targeting γ-secretase also showed unfavorable re-
sults in clinical trials. For example, a phase II clinical trial
for avagacestat (Bristol-Myers Squibb) given orally showed
no evidence of efficacy and was associated with adverse dose-
limiting effects (predominantly gastrointestinal and dermato-
logic) [32, 33]. Many γ-secretase inhibitors were also associ-
ated with significantly increased risk of serious adverse events
(SAEs) such as skin cancers and cognitive decline. The high
frequency of AEs associated with these drugs is making them
less likely to be widespread agents for the pharmacological
treatment of AD [34].

Since γ-secretase inhibition was unsuccessful, some efforts
were getting directed towards γ-secretase modulators instead,
which were expected to be safer as they target the γ-secretase
complex through allosteric binding and modify its enzymatic
activity instead of competing for substrates [35]. In pre-
clinical settings, γ-secretase modulators such as rofecoxib
(Merck), tarenflurbil (Myriad Genetics), or naproxen
(Procter & Gamble) were able to reduce levels of Aβ42 and
produce shorter peptides that are non-amyloidogenic [36–38].
However, γ-secretase modulators failed to show efficacy in
clinical trials, which was explained by the very poor blood-
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brain barrier (BBB) crossing ability of these drugs [38].
Nonetheless, a new generation of γ-secretase modulators is
currently under pre-clinical investigation [33479693].

Aβ Agglomeration Inhibitors

Agents such as metal chelators, resveratrol, cromolyn sodium,
and ibuprofen have been explored as potential agglomeration
inhibitors. However, and as detailed below, as the date of
writing of this paper, none of these agents have shown any
substantial effects on improving cognitive abilities in AD clin-
ical trials.

Deferiprone (Chiesi Pharmaceuticals Inc. and Apotex Inc.)
is an iron chelator that is undergoing a phase II clinical trial
(NCT03234686). The reasoning behind iron chelation is that
Fe3+ is able to bind to Aβ42 via His 6, Asp7, Tyr10, and His14,
which all facilitate Aβ aggregation [39 40]. Previously, the
metal chelator clioquinol (also called iodochlorhydroxyquin
or PBT1; Prana Biotechnology Limited) was being developed.
But it was terminated due to a toxic contaminant [39]. The
second-generation compound following PBT1, termed PBT2,
had improved BBB crossing abilities and pharmacokinetics
compared to PBT1. PBT2 reduces extracellular copper and zinc
ions by translocating them into the cells and thus reduces metal-
mediated Aβ aggregation [40–42]. PBT2 underwent two phase
II clinical trials. The first one (NCT00471211) showed a de-
crease in Aβ42 in CSF but no cognitive improvement. The
second one (ACTRN12611001008910) showed no difference
between the treatment and placebo groups [43].

Resveratrol is a polyphenol found in some more than 70
plant species, most predominantly in grapes’ skin and seeds,
and even in red wine [44]. The reasoning behind using resver-
atrol for AD treatment is that it can inhibit oxidative stress and
activate the anti-aging gene SIRT1, which both are associated
with decreased Aβ deposition [45, 46]. For example,
Tg19959 mice treated with resveratrol showed a significant
reduction in Aβ plaque formation by up to 90% [45]. There is
currently one active phase I clinical trial for resveratrol that is
recruiting patients with mild cognitive impairment, and pa-
tients that are pre-diabetic or type II diabetes mellitus
(NCT02502253). The reasoning why pre-diabetic and diabet-
ic patients are investigated is because high glucose levels in-
crease the risk of incident cognitive impairment and possibly
AD [47].

ALZT-OP1 (AZTherapies, Inc.) is a combination of
cromolyn sodium and ibuprofen that is used in clinical trials
to assess effects on Aβ plaque aggregation [48]. There is
currently one active phase I/II clinical trial (NCT04570644)
for ALZT-OP1 assessing the effects on AD patients and
healthy volunteers. Cromolyn sodium is a prescription drug
used in the treatment of asthma, and its mechanism of action is
inhibition of mast cell degranulation, hence the modulation of
inflammatory events [48]. Ibuprofen is a non-steroidal anti-

inflammatory drug (NSAID) that inhibits cyclooxygenase
(COX) 1 and 2. Although ibuprofen alone had no significant
cognitive effect, cromolyn alone or combined with ibuprofen
was found to inhibit the deposition of Aβ via the promotion of
microglia recruitment and phagocytosis [48, 49].

Immunotherapies as Aβ Deposition Inhibitors and
Plaques Dissolution Agents

Since it was reported in 1999 that active immunization against
Aβ reversed amyloid pathology in transgenic mice, academia
and industry have worked intensively on the development of
passive and active anti-Aβ immunotherapeutics for AD [50].

Active immunization entails a vaccination approach with
the administration of Aβ as the antigen to elicit an immune
response against Aβ [51]. Such an approach was first pursued
in 2002 by administering pre-aggregated Aβ42 along with the
immunological adjuvant QS-21 [51]. Although this innova-
tive paradigm significantly reduced Aβ brain deposits in AD
patients, it did not produce any cognitive or clinical benefits
[51].

Monoclonal anti-Aβ antibodies (mAbs) are passive immu-
notherapy initiatives that have been investigated thoroughly as
a treatment for AD. The current armamentarium of mAbs
differs in selectivity for polymorphic variants and may recog-
nize epitopes either based on a specific portion of the Aβ
sequence, or one of the multimeric Aβ conformations [52].
Although up until early 2019 all mAb therapeutics failed in
phase III clinical trials, the relative “success” of aducanumab
with their phase III study that was reported in December of
2019 rendered some excitement among the AD researchers
and patients [53]. Furthermore, the recent reports on
donanemab are reinvigorating hope for the use of anti-Aβ
mAbs in the treatment of AD. Below, we describe the major
immunotherapies applied to lower brain Aβ levels that are still
currently investigated in clinical trials. The current mABs are
summarized in Table 1.

Aducanumab

Aducanumab (ADU) is currently one of the most promising
mAbs approaching approval by the U.S. Food and Drug
Administration (FDA). ADU is a recombinant human IgG1
antibody that primarily binds to both soluble and insoluble Aβ
amyloid aggregates with > 10,000-fold selectivity over mono-
mers [52]. It was derived from a blood lymphocyte library
collected from a healthy donor population of elderly subjects
who were lacking signs of cognitive impairment or with un-
usually slow cognitive decline [52]. ADU binds to Aβ resi-
dues 3–7 in an extended conformation [52]. It is capable of
selectively targeting the pathological oligomeric and fibrillar
forms of Aβ [52].
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Preclinical studies in Tg2576 mice have shown reduced
Aβ plaque size in a dose-dependent manner in young (9
months old) but not aged (22 months old) animals [54, 55],
suggesting this mAb prevents Aβ aggregation more than it
helps sorbing existing plaques. To note, however, this reduc-
tion in Aβ plaques was not accompanied by any cognitive or
behavioral improvement [55].

A phase Ia clinical trial (NCT01397539) completed in 2016
tested single ascending intravenous doses of aducanumab in 53
AD patients to evaluate the safety, tolerability, and pharmacoki-
netics [56]. Low doses of ≤30 mg/kg did not show SAEs [56].
All three patients receiving a 60 mg/kg ADU developed SAEs
consisting of amyloid-related imaging abnormalities (ARIA)
[56]. None of the patients discontinued or withdrew from treat-
ment due to SAEs, and all SAEs completely resolved within 8–
15 weeks following the single 60 mg/kg dose administration,
which was the final titration dose [56]. Interestingly, at the 60
mg/kg dose, Aβ40 andAβ42 levels increased in the plasma for ~3
weeks, suggesting that high levels of ADU bind to soluble mo-
nomeric Aβ in humans [56]. However, after 24 weeks of treat-
ment, there was no significant difference in cognitive abilities
compared with placebo as measured by the 13-item
Alzheimer’s Disease Assessment Scale–Cognitive (ADAS-
Cog13) [56], positively demonstrating the absence of toxicity
on cognition due to ADU.

Analysis of the phase Ib study, PRIME (NCT01677572)
showed a significant reduction in brain Aβ loads in prodromal
or mild AD subjects when monitored via florbetapir positron
emission tomography (PET) imaging. The results were dose-
and time-dependent when observed over one year of monthly
intravenous infusions [54]. The PRIME analysis also showed that
ADU injections result in a slowing of clinical decline at 1 year, as
measured by Mini-Mental State Examination (MMSE) and
Clinical Dementia Rating Scale-Sum of Boxes (CDR-SOB) [54].

ADU recently underwent two large phase III clinical trials
dubbed “ENGAGE” (NCT02477800) and “EMERGE”
(NCT02484547). Both studies were conducted on individuals

showing signs of mild cognitive impairment and mild demen-
tia due to AD. The trials used the CDR-SOB as their primary
endpoint measurement [57•]. Unfortunately, both trials were
terminated in March 2019 by the sponsor, Biogen, due to
interim post hoc analyses showing “futility.” The data showed
EMERGE trending positive and ENGAGE unlikely to meet
its primary endpoints. Later in October 2019, Biogen held a
press conference to announce that further analyses suggest the
benefits of high-dose (100 mg/kg) ADU in both trials. This
prompted Biogen to formally submit a new request for drug
approval to the FDA [57•]. However, Biogen claims have
been received with some skepticism. For example,
Knopman et al. recommended running another trial using
high-dose ADU of at least 78 weeks in duration [58]. This
recommendation is suggested since post hoc analyses can be
fickle and unreliable, indicating that more information needs
to be collected to strengthen the existing data before seeking
FDA approval [58].

ADU is currently in the pipeline to be reviewed by the FDA
[59]. However, a medical advisory committee convened by the
FDA did not recommend approval yet, based upon skepticism of
adequacy of existing evidence of efficacy [59]. Currently,
Biogen has another phase III trial (NCT04241068), which is
recruiting patients who were participating in one of the previous
ADU studies at the time of the announcement of early termina-
tion of ENGAGE and EMERGE.

Lecanemab

Lecanemab (BAN2401) is a humanized IgG1 version of the
mouse monoclonal antibody mAb158. It selectively binds to
large, soluble Aβ protofibrils [60]. Preclinical studies have
demonstrated its ability to decrease levels of pathogenic Aβ,
prevent Aβ deposition, and selectively reduce Aβ protofibrils
in the brain and CSF in AD animal models [61, 62].

Based on favorable preclinical findings, as well as phase I
(NCT02094729) and II (NCT01230853) clinical trial results

Table 1 Properties of selected anti-Aβ antibodies currently tested in clinical trials for AD

mAb clinical
candidate

Mouse antibody
analog

Clinical stage
and status

Aβ selectivity
(monomer,
aggregate)

Epitope (residues) Sponsor

Aducanumab aducanumab Phase III, Enrolling by
invitation

A>>M 3-7 Biogen Inc.

Lecanemab
(BAN2401)

mAb158 Phase III, recruiting A>>M 1-16 Biogen Inc. and Eisai
Co.

Solanezumab M266 Phase III, recruiting M>>A 16-26 Eli Lilly and Co.

Crenezumab
(MABT5102A)

MABT5102A Phase III, terminated A=M 13-24 Genentech Inc.

Donanemab mE8-IgG2a Phase II, recruiting A>M N-terminal
pyroglutamate

Eli Lilly and Co.

Gantenerumab gantenerumab Phase III, recruiting A>M 3–11,18–27 Hoffman-La Roche Inc.
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[60], multiple trials are currently investigating BAN2401 as a
potential viable treatment option for AD. For example,
ClarityAD (NCT03887455) is a phase III randomized, place-
bo-controlled, double-blind, parallel-group trial that is active-
ly recruiting participants with mild cognitive impairment due
to AD. The aim of the study is to evaluate the efficacy of
lecanemab in participants with early Alzheimer’s disease
(EAD) by determining the superiority of lecanemab compared
with placebo on the change in cognition from baseline via the
CDR-SOB. In this trial, lecanemab 10 mg/kg will be admin-
istered intravenously once every 2 weeks. The anticipated
completion date for ClarityAD is June 2022.

Another actively recruiting trial investigating BAN2401 is the
AHEAD3-45 trial (NCT04468659). This study aims to the eval-
uate efficacy and safety of lecanemab in patients with preclinical
AD, such as having a first-degree relative diagnosedwith demen-
tia onset before age 75, possessing at least one apolipoprotein E4
(APOE4) allele, or elevated amyloid levels in the central nervous
system (CNS) demonstrated by previous amyloid PET imaging
or CSF measurements. Participants will receive lecanemab 5
mg/kg, administered as intravenous (IV) infusions every 2weeks
through 8 weeks, then 10 mg/kg administered as IV infusions
every 2 weeks through 96 weeks, and 10 mg/kg administered as
IV infusions every 4 weeks through 216 weeks.

Results from these trials will offer clinical evidence to de-
termine whether lecanemab is a robust anti-Aβ agent in
humans as was observed in murine-based studies. Additional
long-term trials such as ClarityAD andAHEAD3-45 are need-
ed to continue the quest for definitive clinical outcome results
in individuals with early AD.

Solanezumab

Solanezumab is a humanized monoclonal antibody that prefer-
entially binds to the mid-region of the Aβ peptide and reduces
brain Aβ burden by altering CNS and plasma Aβ clearance in
transgenic mouse models of AD [63, 64]. This is achieved by
solanezumab sequestering all plasma Aβ and creating an efflux
of CNSAβ into the plasma, thus causing a decrease in CSFAβ
levels [65]. Two previous clinical trials investigating
solanezumab have been completed, i.e. Expedition 1
(NCT00905372) and Expedition 2 (NCT00904683), while an-
other two trials were recently terminated, i.e., Expedition 3
(NCT01900665) and ExpeditionPRO (NCT02760602). The
primary objective of each study was to slow down cognitive
decline in patients with mild dementia due to AD [66]. More
specifically, Expedition 3 was terminated due to the failure of
solazenumab to significantly reduce cognitive decline in pa-
tients with mild AD dementia [67]. Further, ExpeditionPRO
was terminated due to insufficient scientific evidence that
solanezumab would likely demonstrate a meaningful benefit
to participants with prodromal AD.

Resulting from the termination of the Expedition studies,
researchers have continued to search for a definitive answer
on the efficacy of solanezumab. The only trial currently en-
rolling participants is the DIAN-TU trial, a phase II/III ran-
domized, double-blind, placebo-controlled study which aims
to assess whether IV infusion of solanezumab slows the rate of
progression of cognitive impairment and improves disease-
related biomarkers in individuals with mutations causing
dominantly inherited AD (NCT01760005). In this parallel as-
signment study, solanezumab administered every 4 weeks at
escalating doses will be compared with gantenerumab, which
is a fully humanized IgG1 that has demonstrated high-affinity
binding to cerebral Aβ and to significantly reduce Aβ plaques
in both AD transgenic mouse models [68••] and after 2 years
of treatment in humans [69•]. Efficacy will bemeasured by the
change from baseline in the DIAN-multivariate cognitive end-
point which consists of four measures: Wechsler Memory
Scale-Revised Logical Memory Delayed Recall Test,
Wechsler Adult Intelligence Sale Digit Symbol Substitution
Test (WAIS), International Shopping List Task (ISLT), and
MMSE. This DIAN-TU study is expected to enroll 490 par-
ticipants and is projected to reach completion in July 2022.
Building on findings from previous clinical studies, this trial,
and future trials will assist in determining tolerability, toxicity,
and adequate dosing for solanezumab in the AD population.
Additionally, the efficacy of solanezumab will be determined
as more studies with improved designs investigate its Aβ-
lowering abilities.

Crenezumab

Crenezumab (MABT5102A) is a humanized anti-Aβ mono-
clonal IgG4 with affinity to multiple Aβ species, especially
for pentameric and fibrillary 16-mer assemblies of aggregated
Aβ [70, 71]. Consequently, crenezumab is able to bind both
monomeric and aggregated forms of Aβ. Crenezumab also
possesses anti-aggregative properties towards Aβ, promotes
disaggregation, and protects neurons from oligomer-induced
cytotoxicity [70, 72]. Crenezumab was created based on the
hypothesis that the human IgG4 constant region would mod-
ify Fc effector function and reduce vascular side effects [70].

Preclinical studies in Tg2576 mice showed no inflamma-
tory response following intracerebral injection [72]. A com-
pleted phase Ib study (NCT02353598) called GN29632 dem-
onstrated tolerability of ≤ 120 mg/kg doses administered in-
travenously every 4 weeks [73]. Although ~94% of partici-
pants in GN29632 experienced at least one adverse event
(AE), most AEs were mild or moderate [73]. Only 4.9%
(double-blind treatment period) and 9.9% (combined
double-blind treatment and open-label extension periods)
showed new ARIA-micro hemorrhages and hemosiderosis
(ARIA-H), which was not enough to identify any new prom-
inent safety issues [73].
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Completed phase II clinical trials of crenezumab in patients
with mild-to-moderate AD include ABBY (NCT01343966)
and BLAZE (NCT01397578) studies [74, 75]. The primary
objective for ABBY was an improvement in ADAS-Cog12
and CDR-SOB scores from baseline to week 73 [74]. The
primary objective for BLAZE was a favorable change in Aβ
burden from baseline to week 69 as measured by florbetapir
PET in the modified intent to treat population [75].
Additionally, secondary outcomes for BLAZE were changes
in CSF biomarkers and fluorodeoxyglucose PET from base-
line to week 69, and changes in ADAS-Cog12 and CDR-SOB
from baseline to week 73 [75]. Although neither of these two
studies met their primary or secondary endpoints, positive
post hoc analyses in a subset of patients with very mild AD
and treated with high dose validates the idea of testing high-
dose crenezumab in patients in an early stage of AD [74].
Testing with a higher dose is also supported by a phase Ib
study (GN29632) [76].

Two recent phase III studies, i.e., CREAD (NCT02670083)
and CREAD2 (NCT03114657), have investigated the efficacy
and safety of crenezumab at 60 mg/kg, which is 4 times higher
than the previous phase II trials. These studies were discontinued
following the interim analysis of CREAD,which showed unlike-
liness to meet the primary endpoint of change from baseline to
week 105 in the CDR-SOB score [76, 77]. The overall safety
profile was similar to that seen in previous trials with no obvious
safety signals [76].

There is currently one active phase II clinical trial for
crenezumab that is recruiting patients in the preclinical phase
of AD that carry the presenilin 1 (PSEN1) E280A autosomal
dominant mutation (NCT01998841). This study is scheduled
for completion in February 2022.

Donanemab

The latest and most promising mAb against Aβ is donanemab
(LY3002813, or N3pG). It is a humanized IgG1 that reduces
amyloid plaques in AD by targeting Aβ(p3-42), which is an
N-terminal pyroglutamate Aβ epitope [78]. Lowe et al. re-
cently investigated donanemab in patients with MCI due to
AD. Donanemab demonstrated general safety and tolerability
in this double-blind, randomized, placebo-controlled, parallel-
group, single-dose followed by a multiple-dose, dose-
escalation study [79••]. Patients were assigned to five dosing
cohorts, ranging from 0.1 to 10 mg/kg, or a placebo cohort
followed by a 12-week follow-up period for each dose.
Interestingly, amyloid PET showed that the 10-mg/kg dose
led to brain amyloid load reduction of 40–50% [79••].

Recent results from the TRAILBLAZER-ALZ trial
highlighted donanemab as a promising mAb treatment of ear-
ly symptomatic AD [80]. In this multicenter, randomized,
double-blinded, placebo-controlled phase II trial, Mintun
et al. assessed whether donanemab administration would

improve cognition in patients with prodromal or mild AD.
For up to 72 weeks, patients were intravenously administered
either 700 mg donanemab (~10 mg/kg) or placebo for the first
three doses and 1400 mg (~20 mg/kg) thereafter every 4
weeks. The primary outcome of TRAILBLAZER-ALZ was
the change from baseline on the iADRS at 76 weeks.
Secondary outcomes included change in scores on the CDR-
SB, ADAS-Cog13, MMSE, and Alzheimer’s Disease
Cooperative Study - Instrumental Activities of Daily Living
(ADCS-iADL), along with changes in amyloid and tau levels.
At 76 weeks, the donanemab group demonstrated significant
improvement on the Integrated Alzheimer’s Disease Rating
Scale (iADRS) over the placebo group. While donanemab
did not lead to improvement in most secondary outcomes,
florbetapir and tau PET scans illustrated significant decreases
in brain amyloid and tau loads, respectively. These results
show the ability of donanemab to positively affect the cogni-
tive and functional decline in early symptomatic AD, which
could be applied to other stages of AD.

As a follow-up to the TRAILBLAZER-ALZ study, Eli
Lilly and company are currently recruiting participants for a
phase II, randomized, parallel assignment study investigating
intravenous donanemab in early symptomatic AD
(NCT04437511). The primary outcome measure of the
TRAILBLAZER-ALZ2 study is the change from baseline
on the CDR-SOB. An important inclusion criterion is a grad-
ual and progressive change in memory function reported by
participants or informants for ≥ 6 months. The trial is estimat-
ed to reach completion in 2024. It is our opinion that research
efforts should place additional focus on donanemab, since it is
showing the highest potential as an Aβ-lowering agent ac-
companied by cognitive improvement among all immunother-
apies investigated to date. Future trials will ultimately deter-
mine the efficacy of this novel mAb in the AD population.

Gantenerumab

Gantenerumab is a human IgG1 antibody that binds to aggre-
gated Aβ in the brain and lowers amyloid-β by eliciting ef-
fector cell-mediated clearance [81]. Klein et al. recently re-
ported that gantenerumab doses up to 1200 mg administered
subcutaneously once every 4 weeks demonstrated significant
Aβ removal in patients with prodromal to moderate AD [69•].
The main endpoint of this open-label study was the change in
the Aβ plaque burden from baseline to week 52 and week
104. Florbetapir PET was used to assess the efficacy of
gantenerumab in Aβ plaque reduction. Earlier this year,
Klein et al. reported that subcutaneous gantenerumab doses
up to 1200 mg continued to reduce Aβ plaque burden at 36
months following treatment initiation [68••].

In addition to the DIAN-TU phase II trial (NCT01760005),
gantenerumab is being investigated in a phase II, multicenter,
open-label, single-arm, pharmacodynamic study in

39    Page 6 of 10 Curr Neurol Neurosci Rep (2021) 21: 39



participants with early AD (NCT04592341). The study is cur-
rently recruiting and is planned to be completed in February
2024. Its primary outcome measure is the change from base-
line to week 104 in brain amyloid as measured by brain am-
yloid PET centiloid levels. Enrolled patients will initially be
administered a single subcutaneous injection of gantenerumab
120mg once every 4 weeks for 12weeks, followed by 255mg
every 4 weeks for 12 weeks, and 255 mg every 2 weeks for
another 12 weeks, followed by 255 mg once every week for
up to week 103.

A randomized, double-blind, placebo-controlled, parallel-
group phase III study is currently recruiting participants for a
study investigating gantenerumab in early AD (NCT03444870).
The study will evaluate the efficacy and safety of gantenerumab
versus placebo in participants with early AD and is planned to be
completed in November 2023. The primary outcome measure is
the change from baseline to week 116 in CDR-SOB score. Trial
eligibility includes a diagnosis of probable AD dementia or pro-
dromal AD, evidence of the AD pathological process as con-
firmed byCSF tau/Aβ42 or amyloid PET scan, and demonstrated
abnormal memory function. Findings from this study combined
with results from previous studies will determine future investi-
gations of gantenerumab in the prevention and treatment of AD.

Conclusion

Highly specific mAbs targeting Aβ are positioned to lead a
new generation of disease-modifying therapies for AD. We
have assessed the current mAb drug development landscape,
which continues to offer additional therapeutic options. If the
FDA approves aducanumab, this would mark a turning point
in the drug development landscape since no drug has been
approved for the treatment of AD since 2003. Data from
aducanumab studies of EMERGE and ENGAGE makes con-
sideration of approval feasible. First, aducanumab resulted in
a significant 22% slowing of decline on the CDR-sb. Second,
other measures including the Mini-Mental State Examination,
Alzheimer’s Disease Assessment Scale -cognitive subscale,
and mild cognitive impairment (MCI) version of the
Alzheimer’s Disease Cooperative Study Activities of Daily
Living scale (ADCS ADL) demonstrated statistically signifi-
cant drug-placebo differences in favor of active therapy.
Third, care partners reported 84% less associated distress at
week 78 compared to care partners of those on placebo.
Finally, in ENGAGE AND EMERGE, participants who re-
ceived the highest dose of aducanumab for 14 months showed
similar levels of slowing on the CDR-sb (30% slowing in
EMERGE, 27% slowing in ENGAGE).

While approval would offer a much-anticipated treatment
option to millions of patients, rejection by the FDA would
leave a void in the toolkit of physicians who desperately desire
additional options to offer their patients, and a tremendous

level of uncertainty in AD patients and their caregivers.
Limited positive outcomes in trials due to the small number
of studies investigating other mAbs in AD such as lecanemab,
solanezumab, crenezumab, donanemab, and ganterenumab
should be further investigated in additional studies.

Each of the mAbs we discussed here has proven to be
relatively safe in humans. Results from the phase III trials of
ClarityAD, CREAD, and CREAD2 will offer details on the
efficacy of their respective drug in improving cognitive and
functional impairment as well as imaging indicators of amy-
loid presence, thus contributing to the growing evidence sur-
rounding mAb viability in treating neurodegeneration. Future
directions should focus on bidirectional studies that may as-
certain mechanisms by which immunotherapy leads to im-
provements in AD.
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