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Abstract
Purpose of Review The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb
weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP.
Recent Findings There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing
panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in
choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the
use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for
HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments.
Summary Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate
genetic diagnosis.

Keywords Hereditary spastic paraplegia . HSP . Diagnosis . Genetics .Whole-exome sequencing .Whole-genome sequencing

Introduction

The hereditary spastic paraplegias (HSPs) are a group of con-
ditions characterised by progressive weakness and spasticity
of the lower limbs [1, 2]. They can have autosomal dominant
(AD), autosomal recessive (AR), X-linked and mitochondrial
modes of inheritance [3]. The HSPs can be classified as either

‘pure’ (uncomplicated) or ‘complex’ (complicated). Pure
forms involve lower limb spastic paraplegia and may include
bladder involvement and subtle sensory signs such as im-
paired vibration sense. Complicated forms include additional
neurological and non-neurological manifestations, such as
cognitive impairment, dysarthria, optic atrophy and peripheral
neuropathy [1]. There are also syndromic forms such as Silver
syndrome (spastic paraparesis with distal amyotrophy pre-
dominantly of the hands). The different genetic forms are
assigned spastic paraplegia loci (SPG), although the HSP
genes may also be listed according to the new MDSGene
nomenclature, e.g. SPAST-HSP for SPG4 [4]. The prevalence
of AD HSP ranges from 0.5 to 5.5 per 100,000 and that
of AR HSP from 0.3 to 5.3 per 100,000 [5]. Although
the HSPs are rare, the progressive and disabling nature
of these disorders means that they warrant greater atten-
tion from clinicians and researchers.

In this review, we discuss current challenges to reach a
genetic diagnosis in HSP. These include (i) the large number
of genes involved and the rapid rate of gene discovery, (ii)
major phenotypic overlap between HSP and other disorders
and (iii) disorders that mimic HSP. Further adding to the com-
plexity is that a single HSP gene can have different patterns of
inheritance, for example both autosomal dominant and reces-
sive. Additionally, a single patient with HSP can have
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concurrent independent genetic diagnoses. Moreover,
pseudodominant inheritance of autosomal recessive disease
can occur when an individual with mutations on both copies
of the gene has a partner carrying a heterozygous mutation,
which may result in an affected offspring, a situation that
typically occurs when there is a high carrier frequency in the
population. In light of these challenges, we discuss the pros
and cons of common genetic testing strategies in HSP such as
multi-gene panels, whole-exome sequencing (WES) and
whole-genome sequencing (WGS). An accurate, timely genet-
ic diagnosis in HSP may become particularly relevant as new,
targeted therapies are on the horizon.

Challenges to a Genetic Diagnosis

Multiple Genes and a Rapidly Increasing Gene List

There are many genes causative of HSP resulting in a high
level of genetic heterogeneity. Different forms of HSP are
assigned a genetic locus according to the order in which they
are discovered (spastic paraplegia loci, SPG). Currently, the
Online Mendelian Inheritance in Man (OMIM) lists 81 dis-
tinct genetic forms of HSP (Table 1, excluding SPG40 and for
SPG65 see SPG45). Of these 81 genetic forms, 13 do not have
a specific gene identified. Furthermore, while 55 had been
identified in more than 1 family, twenty-six were reported in
single families, warranting further confirmation.

Due to the rapid rate of progress of HSP research, new
genes are being identified on a regular basis. Examples of
recently identified HSP genes include UCHL1 (SPG79),
UBAP1 (SPG80), SELENOI (SPG81), PCYT2 (SPG82),
HPDL (SPG83), and those not yet assigned a locus
(RNF170 and FAR1) [7–16]. Some genes are much rarer than
others, and it cannot be excluded that certain mutations may
be ‘private’ to individual families. For example, a SCL33A1
mutation was implicated as a cause of AD HSP (SPG42) in a
large Chinese pedigree [17], but mutations in this gene were
not identified in a large sample of European HSP cases [18].
In contrast, multiple groups have reported that UBAP1 causes
AD HSP with a pure phenotype [8–11]. This suggests that
UBAP1 mutations are a relatively frequent cause of HSP,
and that UBAP1 warrants inclusion on current HSP gene test-
ing panels.

Overlap with Other Inherited Disorders

There is a large overlap between HSP and other disorders such
as inherited forms of hereditary ataxia, peripheral neuropathy,
amyotrophic lateral sclerosis (ALS) and Parkinson’s disease.
Twenty-eight of 81 genetic forms of HSP are assigned alter-
native phenotypes on OMIM (Table 1) and this presents fur-
ther diagnostic complexity (Fig. 1). Genetic testing is often

performed with gene panels that are tailored to a specific dis-
ease category, and therefore an accurate clinical classification
becomes a critical step able to significantly influence the di-
agnostic yield.

Overlap with the Hereditary Cerebellar Ataxias

Inherited ataxias commonly overlap with HSP [19], with a
typical example being SPG7 [20, 21]. SPG7 mutations result
in mitochondrial dysfunction [22] and may present with ataxia
evolving to spastic ataxia phenotypes, as well as other features
such as ophthalmoplegia and ptosis. SPG7 accounted for
2.3% of cerebellar ataxia cases in an Italian population [23].
Similarly, mutations in CAPN1 cause HSP with or without
ataxia [24–27]. It has been suggested that ataxia and spasticity
should not be considered separate phenotypes, but rather as
existing on a ‘continuous ataxia-spasticity disease spectrum’
[19]. KIF1Amutations can cause both HSP and ataxia pheno-
types (discussed below) [28•]. Mutations in SACS cause auto-
somal recessive spastic ataxia of Charlevoix-Saguenay
(ARSACS), a disorder characterised by the triad of cerebellar
ataxia, peripheral neuropathy, and spasticity; however not all
features of the triad may be present and there is a phenotypic
overlap with the AR HSP with a thin corpus callosum (AR-
HSP-TCC) [29]. VPS13D mutations cause a recessive ataxia-
spasticity spectrum movement disorder [30] but have also
been reported to cause a pure or complicated form of HSP
(Table 1) [31]. Additionally, HSP-like phenotypes can also
be caused by expansions in triplet-repeat ataxia loci [32] and
thus, may not be detected on a sequencing panel.

Overlap with the Inherited Neuropathies

Many forms of HSP overlap with the inherited neuropathies.
Notable examples include mutations in BSCL2, which cause
Silver syndrome, a complicated form of HSP in which affect-
ed individuals present with early-onset hand muscle wasting
and leg spasticity [33]. BSCL2 mutations can also cause a
range of phenotypes with lower motor neurone involvement
including multifocal motor neuropathy with conduction
block, Charcot-Marie-Tooth neuropathy type 2 and distal he-
reditary motor neuropathy type V [33, 34]. SPG11 mutations
are a major cause of AR-HSP-TCC [35], but may also cause
AR Charcot-Marie Tooth disease [36]. Mutations in MARS1
cause AR HSP complicated by cognitive impairment and ne-
phrotic syndrome [37], as well as AD Charcot-Marie-Tooth
Disease type 2 U [38]. Mutations in REEP1, the cause of
SPG31, have been shown to cause distal hereditary motor
neuropathy type V (Table 1). Recessive RNF170 mutations
have recently been confirmed as a cause of HSP [14, 39]**,
but a heterozygous mutation in RNF170 (p.Arg199Cys) was
found to cause autosomal dominant late-onset progressive
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sensory ganglionopathy as a cerebellar ataxia, neuropathy,
and vestibular areflexia syndrome (CANVAS) mimic [40].

Overlap with Hereditary Amyotrophic Lateral Sclerosis

There are many shared genes between HSP and ALS. For
example, mutations in ERLIN1 have been implicated in
SPG62, but may also be the cause of a slowly progressive
early-onset ALS [41]. ERLIN2 mutations, causing SPG18,
can evolve into rapidly progressive ALS [42] or cause juvenile
primary lateral sclerosis [43]. Notably, Erlin1 and erlin2 are
highly homologous endoplasmic reticulum membrane pro-
teins that assemble into a ring-shaped complex [44]. Other
examples of HSP genes implicated as causing ALS pheno-
types include SPG11 [45] and BSCL2 [34].

Overlap with Monogenic Parkinson Disease

SPG11 has been linkedwith parkinsonism or dystonia-parkin-
sonism. This is highlighted by a recent study which showed
that disruption of presynaptic dopaminergic pathways was a
widespread phenomenon in individuals with SPG11 muta-
tions, even without clinical manifestations of parkinsonism
[46]. Of note, patients were unresponsive to levodopa, a find-
ing which may relate to post-synaptic damage [46].

Recently, ATP13A2 mutations have been described as
a cause of HSP complicated by cognitive impairment,
cerebellar ataxia, and axonal motor and sensory
polyneuropathy (SPG78) [47]. Mutations in this gene
were first reported as a cause of an AR form of early-

onset parkinsonism with pyramidal degeneration and de-
mentia known as Kufor-Rakeb syndrome [48].

There has been a suggestion of a link between UCHL1 and
Parkinson’s disease [49], although this association has not
been confirmed. Mutations in UCHL1 have subsequently
been implicated in an early-onset neurodegenerative syn-
drome, which may be considered HSP complicated by optic
atrophy, cerebellar ataxia, seizures, myotonia, fasciculations,
dorsal column signs, facial dysmorphism, myopathic facies,
microcephaly and fasciculations [50, 51].

HSP Mimics: Other Mendelian Causes and
Management Implications

HSP may be due to mutations in many other genes outside of
the SPG loci, typically causing complicated phenotypes. For
example, pathogenic variants in OPA3 can cause an optic
atrophy plus syndrome, characterised by optic atrophy and
lower limb spasticity [52]. Mutations in PEX16 have been
shown to cause HSP complicated by cerebellar ataxia
and dystonia [53, 54]. TUBB4A mutations have been
initially described as a cause of whispering dysphonia
(DYT4 dystonia) [55], but have subsequently been re-
ported as a cause of HSP [56].

Several of the HSP mimics may be neurometabolic disor-
ders with whose timely diagnosis has relevant implications for
therapeutic strategies and management [57]. These disorders
may have distinctive clinical features and biochemical find-
ings (Table 2). Important examples include mutations in
ABCD1, the gene associated with adrenoleukodystrophy and

Hereditary 
spastic 
paraplegia

Hereditary 
cerebellar 
ataxia

Hereditary 
neuropathy

Familial 
amyotrophic 
lateral 
sclerosis

Monogenic 
Parkinson’s 
disease/ 
parkinsonism

SPG7
CAPN1
KIF1A
SACS
VPS13D

BSCL2
MARS1
SPG11
REEP1
RNF170

BSCL2
ERLIN1
ERLIN2
SPG11

ATP13A2
SPG11
UCHL1

Fig. 1 Examples of overlapping
genes and shared phenotypes with
hereditary spastic paraplegia
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Table 2 Examples of ‘treatable’ inherited mimics in HSP

Disorder Genetic
basis

Mode of
inheritance

Additional clinical features Biochemical findings Treatment References

Adrenoleukodystrophy,
MIM 300100; adult
adrenomyeloneuropat-
hy, MIM 300100

ABCD1 XLR Sphincter disturbances,
sexual dysfunction,
adrenocortical
dysfunction

Elevated very long chain
fatty acids

Corticosteroid
replacement therapy
for adrenal
insufficiency

Kim et al.
[24•],
Raymo-
nd et al.
[62]

Argininemia, MIM
207800

ARG1 AR Dystonia, dementia,
peripheral neuropathy,
epilepsy

Newborn screening,
elevation of plasma
arginine concentration

Measures to reduce
ammonia, such as
protein-restricted diet,
branched-chained
amino acids
supplement and
sodium benzoate.

Tsang
et al.
[63]

Biotinidase deficiency,
MIM 253260

BTD AR Seizures, hypotonia, limb
weakness, ataxia,
developmental delay,
visual impairment,
hearing loss, cutaneous
abnormalities

Newborn screening or
deficient biotinidase
enzyme activity in
serum/plasma

Treatment with biotin Wolf [64],
Wolf
[65]

Primary coenzyme Q10
deficiency 8, MIM

COQ7 AR Primary coenzyme Q10
(CoQ10) deficiency is
usually associated fatal
neonatal encephalopathy
with hypotonia,
multiple-system
atrophy-like phenotype,
dystonia, spasticity,
seizures, intellectual
disability, sensorineural
hearing loss,
steroid-resistant
nephrotic syndrome,
hypertrophic
cardiomyopathy

Reduced levels of CoQ10
in skeletal muscle or
reduced activities of
complex I+III and II+III
of the mitochondrial
respiratory chain on
frozen muscle
homogenates

2,4-Dihydroxybenzoate
bypass treatment,
high-dose oral CoQ10

supplementation

Wang
et al.
[66],
Salviati
et al.
[67]

Cerebrotendinous
xanthomatosis, MIM
213700

CYP27A1 AR Cerebellar signs,
intellectual impairment,
seizures, peripheral
neuropathy, cataract,
tendon xanthomas

Elevated levels of
cholestanol and bile
alcohols in serum and
urine

Chenodeoxycholic acid Nicholls
et al.
[61],
Verrips
et al.
[68]

DOPA-responsive
dystonia, MIM 128230

GCH1 AD, AR Foot dystonia, later
development of
parkinsonism, diurnal
variation in symptoms,
dramatic and sustained
response to levodopa

Reduced concentrations of
total biopterin and total
neopterin in the
cerebrospinal fluid

Levodopa/decarboxylase
inhibitor

Fan et al.
[58]

Methylmalonic aciduria
and homocystinuria
cblC typeMIM 277400

MMACHC AR Cognitive impairment (5/8),
spastic dysuria (3/8),
personality change and
depression (3/8), ataxia
(2/8), seizures (2/8), limb
numbness (2/8) and
developmental delay
(2/8). When patients
were diagnosed, the
mean serum
homocysteine level, the
methylmalonic acid level
in urine, the serum
propionylcarnitine (C3)
level and the ratios of

Elevated urine
methylmalonic acid and
serum homocysteine
levels

Intramuscular cobalamin,
oral betaine and folate

Wei et al.
[59]
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adrenomyeloneuropathy, which can cause spastic paraplegia
in males and carrier females [24•]. Dopa-responsive dystonia
may be misdiagnosed as HSP and is typically responsive to
l e v o d o p a t h e r a p y [ 5 8 ] . R e c e n t l y , c omb i n e d
homocysteinaemia with methylmalonic aciduria due to path-
ogenic recessive variants in the MMACHC gene has been
highlighted as a treatable cause of HSP [59]. Testing urine
methylmalonic acid and serum homocysteine levels and se-
quencing theMMACHC gene is critical when this rare condi-
tion is suspected [59]. Severe 5,10-methylenetetrahydrofolate
reductase deficiency has also been reported as a cause of a
complicated HSP phenotype, responsive to treatment with be-
taine and vitamins [60]. Additionally, cerebrotendinous
xanthomatosis may mimic HSP and is treatable with
chenodeoxycholic acid [61].

HSP Mimics: Overlap with Disorders Without Clear
Mendelian Inheritance

Several disorders that do not have a readily recognisable
monogenic cause may be difficult to differentiate from HSP,
such as primary lateral sclerosis (PLS). PLS is a degenerative,
mainly sporadic neuronopathy with primarily upper motor

neurone features [71]. PLS frequently presents with spastic
paraplegia, affects older, predominantly male patients and in-
variably progresses to involve cervical and bulbar regions
[71]. However, the disease often remains as an isolated spastic
paraplegia for many years and bulbar symptoms can appear
after 10 years in up to 20% of patients [71]. Consequently, in
the absence of family history, PLS and HSP may be clinically
indistinguishable for longer than a decade [71]. However, cor-
tical excitability studies may be used to differentiate these two
conditions in a clinical setting [72], and genetic testing for
HSP genes may also help [73].

It may also be challenging to differentiate between HSP
and cerebral palsy. HSP may be distinguishable from spastic
diplegic cerebral palsy by the absence of perinatal risk factors
for brain injury and normal brain imaging, or specific findings
indicative of an HSP syndrome, such as thinning of the corpus
callosum [74]. Genetic testing may also be helpful, for exam-
ple, a patient with childhood onset, non-progressive, spastic
diplegia with no previous family history of HSP was long
considered as affected by cerebral palsy, until his son also
developed the same phenotype: genetic testing in these pa-
tients disclosed a heterozygous pathogenic variant in ATL1
(SPG3A) which had arisen de novo in the affected parent [75].

Table 2 (continued)

Disorder Genetic
basis

Mode of
inheritance

Additional clinical features Biochemical findings Treatment References

C3-to-acetylcarnitine
(C2) and free carnitine
(C0) were all
dramatically elevated.
Cranial MRIs showed
nothing remarkable
except mild brain
atrophy.

Homocystinuria due to
MTHFR deficiency,
MIM 236250

MTHFR AR Polyneuropathy,
behavioural
abnormalities, cognitive
impairment, psychosis,
seizures,
leukoencephalopathy

Severe
hyperhomocysteinemia
associated with the
characteristic amino
acid profile

Betaine and vitamins Lossos
et al.
[60]

Phenylketonuria, MIM
261600

PAH AR Cognitive impairment Serum phenylalanine
concentrations

Classic phenylketonuria
diet/protein restricted
diet

Kasim
et al.
[69]

Dystonia 9, MIM 601042;
GLUT1 deficiency
syndrome 1, MIM
606777; GLUT1
deficiency syndrome 2,
MIM 612126;
Stomatin-deficient
cryohydrocytosis with
neurologic defects,
MIM 608885

SLC2A1 AD Seizures, delayed
neurologic development,
acquired microcephaly,
intermittent ataxia,
paroxysmal
exercise-induced
dyskinesia,
choreo-athetosis,
alternating hemiplegia

Cerebrospinal fluid
analysis for
hypoglycorrhachia

Ketogenic diet Verrotti
et al.
[70]

AD, autosomal dominant; AR, autosomal recessive; XLR, X-linked recessive

15    Page 8 of 15 Curr Neurol Neurosci Rep (2021) 21: 15



There may also be diagnostic uncertainty in differentiating
HSP from multiple sclerosis. A personal observation is that
patients may be referred to the neurogenetics clinic with HSP,
only to find evidence of demyelinating lesions consistent with
MS on upon repeating brain or spinal cord MRI. Conversely,
mutations in HSP genes may be identified in individuals for-
merly diagnosed with MS. For example, SPG2 has been
shown to mimic MS [76], and rare variants in genes including
KIF5A and REEP1 were identified in patients with primary
progressive MS [77].

When Should a Complex Disorder Be Diagnosed as
HSP?

It may be difficult to decide when to categorise a disorder as
HSP when the phenotype is complex. A chief consideration
should be whether lower extremity weakness and spasticity
are the predominant clinical manifestations [78]. For example,
ATP13A2 mutations are known to cause Kufor-Rakeb syn-
drome [48], neuronal ceroid lipofuscinosis [79] and neurode-
generation with brain iron accumulation (NBIA) [80]. More
recently, ATP13A2 mutations have been described as a cause
of HSP complicated by cognitive impairment, cerebellar atax-
ia, and axonal motor and sensory polyneuropathy (SPG78)
[47]. However, there is debate over whether an HSP predom-
inant phenotype is a clinical outlier and if a new HSP locus
was warranted [81]. Similarly, hypomorphic mutations in
POLR3A were reported as a cause of HSP and ataxia [82],
however, other authors considered that this condition should
be defined as a ‘POLR3-related disorder’ instead [83].

HSP Genes with Different Modes of Inheritance

Variants in some HSP genes may be inherited with different
modes of transmission, adding further complexity to the inter-
pretation of genetic findings. As an example, biallelic muta-
tions in KIF1A cause spastic paraplegia, distal wasting, pe-
ripheral neuropathy and mild cerebellar signs (AR SPG30)
[84]. KIF1A mutations can also cause hereditary sensory and
autonomic neuropathy type 2 with AR inheritance (Table 1).
However, de novo dominant KIF1Amutations may result in a
phenotypic spectrum overlapping with AR SPG30 including
mental retardation, speech delay, epilepsy, optic nerve atro-
phy, thinning of the corpus callosum, periventricular white
matter lesion and microcephaly [85–88]. A recent study
showed that heterozygous mutations in KIF1A may result in
two distinct phenotypes, a pure to complex HSP phenotype
and a congenital or early-onset ataxia phenotype [28•].
Additionally, mutations in REEP2 have been identified in
families with both AD and AR inheritance [37, 89]. A muta-
tion in REEP2 has been found to cause AD HSP with a pure,
early-onset phenotype [89], while the AR form is
characterised by early-onset HSP with delayed motor

milestones and normal cognition [37]. Similarly, ATL1 muta-
tions are usually associated with dominant HSP (SPG3A), but
recessive mutations in ATL1 have been shown to cause both
pure and complex forms of HSP [90, 91].

Individuals with Concurrent Independent Genetic
Diagnoses

Individuals presenting with HSP may have concurrent inde-
pendent genetic diagnoses, further complicating genetic test-
ing. As an example, a recent study showed two possible ge-
netic diagnoses in a non-consanguineous family with 3 affect-
ed siblings: two brothers with intellectual impairment and
spastic paraplegia, and a sister with behavioural disturbance
and pes cavus. All affected siblings carried a maternally
inherited interstitial 15q duplication and a paternally inherited
REEP1 variant [92•]. In this case, it was thought that the 15q
duplication was causing intellectual impairment and behav-
ioural abnormalities, with supportive evidence from methyla-
tion and functional studies. On the other hand, the dominant
HSP phenotype was attributed to the REEP1 variant. This in
keeping with a large study of 7374 consecutive unrelated pa-
tients referred to a clinical diagnostic laboratory for WES,
which demonstrated multiple molecular diagnoses in 4.9%
of cases in whom WES was informative [93]. The results of
these studies suggest that perhaps we too often claim a ‘phe-
notypic expansion’ to explain a phenotype that is different or
more complicated than previously reported for a given gene,
while in some of these cases the reasonwould be a ‘double hit’
and not a phenotypic expansion.

Pseudodominant Inheritance and Intronic Variants

In a recent study, a patient with spastic paraplegia and ataxia
was investigated with WES, revealing a novel missense vari-
ant in SPG7 (c.2195T>C; p.Leu732Pro) [94•]. To seek a sec-
ond variant, WGS was performed, revealing an unreported,
deep intronic variant (c.286 + 853A>G), shown to activate a
cryptic splice site [94•]. The deep intronic variant would not
have been identified with WES alone, highlighting the useful-
ness of WGS to increase diagnostic yield [94•]. Furthermore,
it sheds light on the apparent dominant pattern of inheritance
of SPG7 [95], which may be due to the mutation on the other
allele being missed [94•]. Another report highlights the impor-
tance of an intronic variant in POLR3A, a gene previously
associated with hypomyelinating leukodystrophy type 7
(Table 1), as a frequent cause of HSP and cerebellar ataxia
[82]. Compound heterozygous mutations in POLR3A were
found in approximately 3.1% of index cases of HSP and cer-
ebellar ataxia, with over 80% carrying the same intronic mu-
tation (c.1909+22G>A) which activates a cryptic splice site
[82]. This suggests that non-coding DNA variants may ac-
count for a substantial number of unsolved cases of HSP.
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Strategies for a Genetic Diagnosis

There are several options for reaching a genetic diagnosis in
individuals with HSP and it can be challenging for the clini-
cian to decide upon which approach to adopt. Different strat-
egies include targeted sequencing gene panels, whole-exome
sequencing (WES), or whole-genome sequencing (WGS)
(Table 3). Targeted sequencing gene panels are commonly
used but will overlook a diagnosis if the mutation is in a gene
that is outside the panel. Furthermore, gene panels also are not
reliable in detecting copy number variants (CNVs), structural
variants (SVs) and intronic variants. WES can be a useful
approach but again may not be reliable for CNVs, SVs, and
will fail to detect deep intronic variants.WGSmay be the most
complete approach [24•, 54, 96], with uniformity of coverage
that allows for the accurate detection of CNVs, SVs [97, 98],
in addition to the detection of non-coding variants. However,
this approach is limited by the expense and difficulty process-
ing, storing, and interpreting the large amounts of genomic

data. Both WES and WGS allow for testing of many genes
and so may not be restricted to single panel, e.g. patients can
be tested for both ‘ataxia’ and ‘HSP’ genes in a single test
[24•]. The WES and WGS data can be used in several ways.
For example, a panel of relevant HSP genes may be analysed,
such as those listed in Table 1. A larger, less specific panel of
genes can also be interrogated, such as the TruSight One
‘clinical exome’—a panel of 4813 genes that have been asso-
ciated with human disease [99]. WES or WGS family studies
may provide valuable additional information regarding segre-
gation of genetic variants with the disease phenotype. For
example, parent-child trios of healthy parents and an affected
child may facilitate the detection of homozygous, compound
heterozygous or de novo variants.

It is critical to remember that CNVs (e.g. exonic deletions
in SPAST [100]) are important to consider and may require a
separate test (e.g. multiplex ligation probe amplification or
MLPA), unless using a method that provides reliable detection
such as WGS. Furthermore, testing for repeat expansion dis-
orders will often require a separate test such as a fluorescent
repeat-primed PCR assay. However, a recent study suggests
that long repeat expansions may be detectable from PCR-free
WGS data using a software tool called ExpansionHunter
[101]. Furthermore, a homoplasmic m.9176 T>C mutation
in the mitochondrial ATP6 gene has been found to cause
HSP.WESmay allow for the detection of mitochondrial point
mutations using ‘off-target reads’, providing additional diag-
noses [102]. WGS provides exceptionally high coverage of
the mitochondrial genome, allowing for accurate detection
of mitochondrial point mutations even at low levels of
heteroplasmy [103]. Hypothesis-free methods such as WES
andWGSmay also detect multiple concurrent genetic defects,
as described above [92•].

Benefits of a Genetic Diagnosis in HSP

There are numerous benefits of a genetic diagnosis in HSP
which may prompt the decision to undertake genetic testing.
As an example, it may provide for prognostic informa-
tion and facilitate genetic counselling and family plan-
ning. It may also allow for a prenatal diagnosis/
preimplantation genetic diagnosis.

A genetic diagnosis rarely leads to findings with direct
management implications (as discussed earlier, see Table 2).
However, it may hold future value in that it could be used to
enrol patients in clinical trials that target the disease mecha-
nism. A targeted, disease-modifying treatment appears most
likely for two forms of HSP—SPG4 and SPG5.

Microtubule-targeting drugs hold great promise for HSP
due to SPAST mutations (SPG4). Supporting this concept,
vinblastine has been shown to ameliorate the disease pheno-
type in a Drosophila model of SPG4 [104]. Additionally,

Table 3 Comparison of different approaches for the genetic diagnosis
of hereditary spastic paraplegia

Technique Pros Cons

Targeted
sequencing
panels

- Less expensive*
- Reduce incidental

findings

- Gene list may be
restrictive, missing
unexpected findings or
mutations in genes
implicated in
overlapping
phenotypes

- Inadequate coverage of
CNVs, SVs; MLPA
may be required

- Inadequate coverage of
deep non-coding
variants

Whole-exome
sequencing

- Gene panel not
restrictive

- Less expensive
compared to
whole-genome
sequencing*

- Inadequate coverage of
CNVs, SVs; MLPA
may be required

s- Inadequate coverage of
deep non-coding
variants

- Challenge of incidental
findings

Whole-genome
sequencing

- Gene panel not
restrictive

- Detection of CNVs, SVs
(e.g. deletions in
SPAST)

- Detection of non-coding
variants (see example of
deep intronic variants
reported in SPG7)

- Expensive*
- Challenge of processing,

storing and analysing
large amounts of data

- Challenge of incidental
findings

*Note that to our knowledge, a cost-effectiveness study for genetic testing
in hereditary spastic paraplegia comparing the different approaches has
not yet been performed.
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microtubule-targeting drugs have been shown to rescue axo-
nal swellings in cortical neurons in a mouse model of SPG4
[105]. In human patient-derived olfactory neurosphere-
derived cells, SPAST mutations result in decreased levels of
acetylated α-tubulin, a marker of stabilised microtubules, as
well as reduced speed of peroxisome trafficking [106].
Tubulin binding drugs such as taxol, vinblastine, epothilone
D and noscapine may increase acetylated alpha tubulin and
thereby restore axonal transport, directly targeting the mecha-
nism involved in SPG4 [106, 107].

Several genes associated with HSP phenotypes disturb lip-
id metabolic pathways as a potential therapeutic target, includ-
ing CYP7B1, EPT1, PCYT2, DDHD1, DDHD2, PNPLA6,
B4GALNT1, CYP2U1, FA2H, GBA2, PLA2G6, ATP13A2,
BSCL2, C19orf12, ERLIN2, SPART, SPAST, SPG11,
SPG15, ATL1 and REEP1 [108]. SPG5 is a recessive cause
of HSP due to mutations in the CYP7B1 gene encoding a
distinct microsomal oxysterol-7α-hydroxylase. This enzyme
is involved in the degradation of cholesterol into primary bile
acids. CYP7B1 deficiency results in accumulation of neuro-
toxic oxysterols, with elevation of 25-hydroxycholesterol (25-
OHC) and 27-hydroxycholesterol (27-OHC) in the plasma
and a much higher increase of 27-OHC in the CSF [109,
110]. Two recent studies have explored the use of drugs to
lower cholesterol biomarkers in HSP. A study by Marelli and
colleagues used atorvastatin, chenodeoxycholic acid and res-
veratrol in 21 patients with SPG5A and assessed 25-OHC and
27-OHC as diagnostic biomarkers [111••]. Treatment with
atorvastatin decreased plasma 27-OHC but did not change
the 27-OHC to total cholesterol ratio or 25-OHC levels.
Marelli and colleagues also identified an abnormal bile acids
profile in patients with SPG5, with a reduction in total serum
bile acids and a decrease of ursodeoxycholic and
lithocholic acids in comparison to deoxycholic acid.
Treatment with chenodeoxycholic acid restored the bile
acid profile. The authors concluded that atorvastatin and
chenodeoxycholic acid may be worth considering for
the treatment of SPG5A. A randomised placebo control
trial by Schols and colleagues found that atorvastatin
treatment reduced 27-OHC and 25-OHC in the serum,
although 27-OHC was not significantly reduced in the
cerebrospinal fluid [109••]. It is important to note that
both these trials have demonstrated a reduction in
cholesterol/bile acid biomarkers, but without benefit in
terms of clinical, imaging, or electrophysiological out-
come measures.

A more recent study explored the use of intravenous for-
mulated mouse and human CYP7B1 mRNA in mice lacking
the endogenous Cyp7b1 gene mutated in SPG5A. Results
indicated that the treatment was safe and demonstrated a re-
duction in neurotoxic oxysterols in the liver, serum and to
some degree in the brain, suggesting that this may be a valid
strategy for the treatment of this condition [112].

Conclusion

The genetic diagnosis of HSP is complex and can rep-
resent a major challenge for clinicians. The complexity
arises in part because of the high degree of genetic
heterogeneity, with over 80 different genetic forms,
and a growing number of genes being identified.
Furthermore, there is a high level of phenotypic com-
plexity, with HSP clinically and genetically overlapping
with a variety of neurological phenotypes, including
inherited forms of cerebellar ataxia, ALS, Parkinson’s
disease, and peripheral neuropathy. There are many con-
ditions that mimic HSP that the clinician should be alert
for, and it may be particularly important to detect the
rare HSP mimics that have management implications.

An understanding of the genetic and phenotypic com-
plexity underlying HSP is essential to guide genetic
testing strategies. Gene panels are commonly used, but
the gene panel itself needs to be comprehensive to en-
compass the large number of genes involved. Panels
must be regularly curated given that the rapid rate of
gene discovery as they can quickly become obsolete.
Furthermore, gene panels are typically based on a spe-
cific phenotypic category, and a genetic diagnosis may
be missed if the responsible mutation is in a gene out-
side of that disease category. Thus, directed testing ap-
proaches such as gene panels may miss unanticipated
findings [54].

Hypothesis-free approaches such as clinical WES, WES and
WGS somewhat overcome the potential problems of gene panels
by allowing for the potential interrogation of many relevant genes.
However, clinicalWESandWESmaymiss certainmutation types
such as CNVs, SVs and repeat expansions, potentially detectable
withWGS. In fact,WGSmay be themost comprehensivemethod
for coverage and detection of mutation types but is unfortunately
limited by cost.

Next-generation sequencing has greatly improved our ability
to detect a genetic diagnosis in HSP. Yet, large studies have
shown that the diagnostic rate for HSP is still only about 45–
50% of cases [113, 114]. The genetic diagnosis of HSP still
represents a great challenge for clinicians, and there are no clear
guidelines available about which approach to choose. However,
it will become increasingly important to identify a genetic diag-
nosis in a rapid and accurate manner for enrolment in clinical
trials and as targeted treatments become available.
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