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Abstract
Purpose of Review Increasingly sophisticated systems for monitoring the brain have led to an increase in the use ofmultimodality
monitoring (MMM) to detect secondary brain injuries before irreversible damage occurs after brain trauma. This review exam-
ines the challenges and opportunities associated with MMM in this population.
Recent Findings Locally and internationally, the use of MMM varies. Practical challenges include difficulties with data acqui-
sition, curation, and harmonization with other data sources limiting collaboration. However, efforts toward integration of MMM
data, advancements in data science, and the availability of cloud-based infrastructures are now affording the opportunity for
MMM to advance the care of patients with brain trauma.
Summary MMM provides data to guide the precision management of patients with traumatic brain injury in real time. While
challenges exist, there are exciting opportunities forMMM to live up to this promise and to drive new insights into the physiology
of the brain and beyond.
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Introduction

The development of neurocritical care over the last half century
has led to improvements in patient care in part through a focus on
continuous, bedside monitoring of the brain [1]. Technological
innovations have resulted in the widespread adoption of devices
to complement the clinical neurological examination, such as
parenchymal pressure sensors and continuous electroencepha-
lography (cEEG). Increasingly sophisticated devices have been
more recently developed to measure the oxygenation and metab-
olism within the brain tissue. Multimodality monitoring (MMM)
is characterized by the integration and interpretation of these
multiple sources of information to more comprehensively under-
stand and monitor the brain after injury.

The sheer quantity of data available in a typical intensive care
environment is overwhelming [2]. The additional complexity
that results from integrating and responding to multiple real-
time measurements of brain physiology highlights the significant
challenges to the use of MMM in the critically ill [3]. However,
there is promise in the use ofMMM to guide the management of
patients with severe brain injuries more precisely and the next
wave of technological progress in computer science and engi-
neering provides exciting opportunities for the future.
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MMM in TBI

In the US each year, 56,000 people die from severe traumatic
brain injury (sTBI) [4] and an estimated 30,000 with sTBI
require intensive care [5]. Primary brain injuries are charac-
terized by the pathoanatomic damage incurred by the specific
mechanism of trauma, and include contusions, intracranial
hemorrhage, and axonal shear injuries. Secondary brain inju-
ries refer to downstream pathology that evolves following the
primary brain injury. In patients who eventually die after
sTBI, secondary brain injuries such as herniation or necrosis
are seen in half and histopathologic evidence of ischemia has
been reported in more than 90% [6]. However, “secondary
brain injury” is a broad term. Brain injuries such as TBI create
heterogeneous zones of vulnerable tissue at high risk for fur-
ther injury [7••], resulting from mismatches between the met-
abolic supply and demand of the brain. After sTBI, inadequate
perfusion pressure, brain tissue hypoxia, autoregulatory dys-
function, seizures, and spreading depolarizations of brain tis-
sue have been observed in 50–90% of patients with ramifica-
tions for the health and recovery of the brain [8–11].

The goal of neurocritical care is to prevent or mitigate sec-
ondary brain injuries through prediction, early detection, or by
monitoring treatment response [12]. Clinically, secondary
brain injury manifests as neurological deterioration, which
occurs in one-quarter of patients with sTBI, increasing mor-
tality from 10 to 56% [8]. The clinical neurological exam is
the standard for detecting the clinical sequelae of secondary
brain injury. However, early detection is challenging in pa-
tients with sTBI due to coma or concomitant injuries that limit
the sensitivity of the neurological examination. Snapshots of
the brain, such as computed tomography (CT) or magnetic
resonance imaging (MRI) may provide important information
about secondary brain injuries, but typically at a time when
damage is no longer reversible. The central use of MMM is to
leverage real-time objective measurements of the mechanics,
metabolism, and function of the brain to guide clinical man-
agement based on each patient’s individual pathophysiology
and to detect physiologic alterations before secondary brain
injuries can occur.

There are no standards for what technologies constitute
“multimodality monitoring.”An understanding of brain phys-
iology requires standard contextual ICU measurements such
as arterial blood pressure (ABP) or temperature in addition to
brain-specific measurements, such as EEG activity or brain
tissue oxygenation (PbtO2). In the absence of standards, there
is significant variability in the clinical practice of
neuromonitoring. Intracranial pressure (ICP) monitoring is
the most common modality [13]. However, in the USA, as
few as 11.5% of patients who might be eligible for ICP mon-
itoring actually undergo the procedure [14] and international-
ly, significant variability exists in the clinical criteria for its use
[15••]. When brain monitoring is performed, a survey of

primarily US institutions showed that most (95%) reported
monitoring ICP, whereas cEEG was used by only 58% of
the intensivists who responded, followed by transcranial
Doppler (TCD; 49%) [13]. This experience mirrors that across
66 centers in Europe, in which TCD was used by 38% and
brain tissue oxygen monitoring by 19%. The use of other
devices was rare, including jugular venous oximetry (9%),
microdialysis (6%), regional cerebral blood flow (5%), near-
infrared spectroscopy (NIRS; 2%), and EEG (< 5%) [15••].

In contrast to stand-alone measurements, integratedMMM
enables an understanding of physiologic dynamics that may
not be captured or quantified by commercial measurement
devices. For instance, the correlation between ABP and ICP
has been validated as an index of autoregulatory function [16],
but requires time-synchronized capture of both measurements
at a sampling frequency of at least once-per-minute [17].
Furthermore, computational algorithms are required to infer
optimum targets for cerebral perfusion pressure (ICM+®;
Cambridge, UK). Tools such as this highlight the need for
access to time-resolute data and an ability to manipulate that
data through either existing or home-grown software. In a
review of the capabilities of centers involved in TBI research
internationally, barriers to the use ofMMM data included lack
of access to waveform-level data; variability in the recording,
capture, and labeling of specific measurements; a lack of stan-
dard annotations to understand the impact of bedside events;
and a lack of automated integration with other clinical infor-
mation, such as imaging [18••].

Challenges in MMM

Data Acquisition

Multiple challenges restrict the full extent to whichMMM can
be deployed to improve neurocritical care. Neurocritical mon-
itoring involves supplementing standard ICU data such as the
electrocardiogram, ABP, respiratory and ventilator parame-
ters, and temperature with brain-specific measurements such
as ICP, PbtO2, or EEG. The volume of this waveform-level,
high-resolution data at scale is incredibly large precluding
permanent storage at most institutions, although device-
specific data from individual patients can often be acquired
and stored locally. For example, ICP recorded through the
Camino® Intracranial Pressure Monitor (Natus Medical
Incorporated; Pleasanton, CA) can be exported as a continu-
ous, high-resolution waveform. However, this often requires
direct interaction with the monitor itself or additional connec-
tivity solutions to send the data to an intermediary server.
When several such devices are used to generate measure-
ments, a significant barrier occurs when each device manufac-
turer uses proprietary methods for collecting and converting
signals or unique communication protocols. Details about the
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name of the device, the location of the monitoring probe, the
units used to measure the ICP, and the sampling frequency
may bemissing or variably expressed based on the proprietary
format of the metadata. These include important consider-
ations in terms of how the data were recorded, too. The valid-
ity of ICP measurement using an external ventricular drainage
catheter (EVD) depends on whether or not cerebrospinal fluid
drainage was being performed concomitantly with ICP mea-
surements, and at what level the catheter had been leveled.
Additionally, even when signals can be acquired, they lack
synchronization with other contextual data, such as medica-
tion administration. Without adequate synchronized, time-
stamped annotations, data interpretation may be limited.

Obstacles to the clinical use of MMM also involve connec-
tivity with clinical data and a lack of a standard data formats.
Existing electronic health record (EHR) systems do not enable
the collection of waveform-resolution data in neurocritical care
units such that this potentially rich source of data is not inte-
grated with a patient’s clinical record. Systems have been de-
veloped to collect and integrate data from multiple devices,
such as the bedside CNS Monitor (Moberg Solutions, Inc;
Ambler, PA), the BedMasterExTM software platform (Excel
Medical Electronics, Inc; Jupiter, FL), the PC-based ICM + ®
software, or the cloud-based SickbayTM platform (Medical in-
formatics Corp; Houston, TX). Yet, to date, these solutions do
not integrate seamlessly with the EHR. MMM research often
requires development of ad hoc data infrastructures in order to
collect, integrate, and share data between sites. This process can
be extremely time-consuming and expensive, resulting in
scattered systems all attempting to achieve a similar task.
Currently, there is no universally agreed-upon standard format
for multidimensional data including the high-resolution data
recorded in neurocritical care, but there are examples of frame-
works that are being adopted, such as the HDF5 format [19].
For EEG data, the EDF/EDF+ standard has been widely
adopted, and as a result there are data repositories and analysis
software solutions that have grown to support this format inde-
pendent of the EEG platform used for data collection.
Developing a standard data format with defined metadata to
capture critical device information and contextual clinical
events in the form of annotations will prove invaluable for
systems in which collected data then can be easily organized,
shared, and stored for clinical or research use.

Data Curation

The use of continuous physiologic data has been shown to
predict subsequent clinical outcomes, including patient dete-
rioration, better than intermittent data [20]. However, physio-
logic monitoring data is typically linked with EHR data only
as sparse, discrete numerical data validated by ICU staff every
hour. Concurrent clinical data, including medication doses
and administration times, can add valuable information to help

contextualize these physiologic data. As a result, MMM data
is often curated with clinical data post hoc, following the com-
pletion of monitoring. The creation of a platform for seamless,
real-time integration of EHR data with physiologic wave-
forms needed for MMM is an area of opportunity for
streamlining utilization of existing technologies.

Integrating recorded data from different technologies also
poses challenges. Pre-processing, which refers to data cleaning
and manipulation prior to use, is often required to facilitate com-
patibility between data formats. For example, in paradigms that
link EEG temporally to MRI data, pre-processing is required to
remove artifacts prior to source localization. Stimulation-based
paradigms that link clinical activity or neurologic examination to
physiologic data may shed light on phenotypes such as coma
recovery [21, 22], but these techniques similarly require prag-
matic data cleaning in order to facilitate test-retest reliability.
Spatial co-registration is also required for functional imaging,
for instance, merging metabolic imaging data with EEG [23,
24]. Software used for analyzing different data modalities de-
pends upon the type of data and may employ data-specific pro-
cessing (e.g., Persyst® [Persyst; Solana Beach, CA] for EEG
data; ICM + ® for ICP and ABP data) before the data can be
linked. This suggests a role for an application programming
interface (API) to facilitate interoperability and analysis in the
clinical environment.

Physiologic data is increasingly being curated in conjunction
with metabolomic or genomic data. For example, the genotype
of SIRT-1 has been associated with ICP trajectory [25], and
inflammatory markers have been associated with seizures [26]
as well as worsening epileptiform abnormalities [27]. As with
the types of data mentioned above, the process of linkingMMM
data with -omics data requires pre-processing. However, sys-
tematic efforts at research-level prospective data integration are
being developed [28]. The use of -omics data for clinical MMM
will depend on the development of increasingly efficient
methods of both sequencing and analysis.

Metadata

Metadata captures critical context for understanding data at
hand. There is a clear need for metadata related to physiologic
signals in order to better contextualize, utilize, and understand
MMM. For instance, there is limited focus on the location of
MMM devices relative to injury; yet after sTBI, PbtO2 values
have been found to be prognostically significant only when
probes are located near a lesion [29] and nonconvulsive sei-
zures ipsilateral to microdialysis probes have been associated
with greater metabolic crisis [9]. Metadata including informa-
tion about additional devices (including potential interfer-
ence), clinical context such the presence of a decompressive
hemicraniectomy, and signal quality may be similarly impor-
tant to the interpretation of MMM data.
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Collaborative Use

Increased interest in the use of MMM data has resulted in a
number of inter-institutional collaborative research efforts.
Due to HIPAA-related privacy constraints, MMM data may
require deidentification depending on the nature of Data Use
Agreements (DUA) between sites and the intended users of
the data. Fully deidentified data requires all 18 HIPAA-
defined identifiers be removed, which includes date-time in-
formation critical to the time-series data captured in
neurocritical care. Inclusion of this data may be considered
as part of a limited dataset subject to typical human subjects’
research approvals. Currently, there are few available tools to
provide robust deidentification across different types of data.
Data is typically deidentified locally, often manually, prior to
uploading data into common resources, such as a shared da-
tabase or cloud-based storage solution.

In addition to privacy concerns, there are issues related to the
interoperability of terminologies used to describe clinical data,
in particular physiologic data. Terminologies exist broadly for
data captured in EHR systems, such as the Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT®),
and for specific data types such as laboratory data (e.g., Logical
Observation Identifiers Names and Codes [LOINC]). The
National Institutes of Health have further defined core, supple-
mental, and exploratory Common Data Elements for patients
with specific clinical phenotypes, including TBI [30]. In the
case of the Digital Imaging and Communications in Medicine
(DICOM) format used for imaging data, terminologies were
developed in conjunction with the data format, but this standard
has suffered from significant variability in the structure and use
of its metadata. A strategy to define terminology as part of the
core metadata within a data format may allow for hierarchical
file structures that incorporate distinct data types, including
timestamps for high-resolution physiologic data, as in the
open-source HDF5 format [19]. More recently, standards have
evolved to define concepts and their relationship with other
ontologies, including SNOMED and LOINCmentioned above.
The Observational health Data Sciences and Informatics
(OHDSI) consortium has adopted the Observational Medical
Outcomes Partnership (OMOP) Common Data Model. Other
standards such as the Informatics for Integrating Biology at the
Bedside (i2B2) data model have been developed and tools are
now available to harmonize between standards such that an
increasing number of sites may be able to combine health data
for collaborative research [31].

In the space between concerns about privacy and interop-
erability, there are opportunities for federated approaches to
combining MMM data for research. Data federation involves
the creation of virtual database structures, meaning data may
be stored, analyzed, and retained locally while being accessed
using common data models [32]. This approach can be flexi-
ble. For instance, summary descriptive data can be created

prior to aggregation (e.g., PCORnet Common Data Model),
or complex data modeling can be carried out on premises and
the weights calculated for the model may be shared limiting
concerns for patient privacy or inadvertent regulatory non-
compliance within local frameworks [33].

Opportunities in MMM

Data Analytics

Despite challenges in the acquisition, curation, and collaborative
use of MMM data in clinical practice and research, advances in
data science provide exciting opportunities to integrate and sum-
marize complex brain physiology in order to more precisely
guide clinical care. Computational tools that leverage data to
describe, predict, or prescribe a course of action can be collec-
tively referred to as analytics. These tools require methods to
identify clinically relevant featureswithin the data. For instance,
the mean ICP over an epoch may be less important than the
relationship between ICP and perfusion in specific patients
[34]. The features of MMM that map to clinically important
endpoints have yet to be defined [35]. Far from an existential
challenge to the use of MMM, this need provides an exciting
avenue for data science to define the fingerprints of an individ-
ual’s physiologic response to injury—a concept that expands the
systems biology and integrative physiology approaches under-
lying physiomics [36], incorporating patient-specific networks
of physiologic interactions [37] to define physiologic
endophenotypes. This concept may allow for innovations in
treatment strategies to improve outcome after TBI.

Data analytics approaches respond to several of the chal-
lenges discussed above, but also require specific solutions of
their own in order to realize the potential for MMM. For in-
stance, overcoming data acquisition hurdles reduces the need
for pre-processing procedures, thereby fostering real-time use
of MMM data. Efforts are underway to standardize acquisition
of clinical and high-resolution data for research purposes, includ-
ing the Data Access Quality and Curation for Observational
Research Designs (DAQCORD; daqcord.org) project [38••].
Work is also being done to formalize data labels and metadata
specific to brain monitoring data leveraging large multi-
institutional clinical trials as a test bed for data harmonization
(including Transforming Research and Clinical Knowledge in
Traumatic Brain Injury [TRACK-TBI; NIH U01NS086090]
and the Brain Oxygen Optimization in Severe TBI Phase III
studies [BOOSTIII; NIH U01NS099046]. Once data is harmo-
nized, common algorithms for artifact rejection and normaliza-
tion can be deployed, from simple threshold-based tools to AI-
based open-source software solutions [39].

An important opportunity exists in understanding which
aspects of MMMmatter to patient care. The canary in the coal
mine has been the traditional use of average ICP
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measurements to guide management, an approach that has
been recently reframed [34, 35]. Movements to standardize
the clinical reporting and interpretation of MMM data may
serve as a guide to a more systematic understand of how
MMM may be interpreted clinically. Yet, the ability for
humans to process multiple sources of independent data is
inherently limited. Computational analytic approaches inte-
grating MMM data complement these efforts by uncovering
complex inter-relationships between the body and the brain
[40, 41], the network architecture of the brain itself [42], and
the regulation of cerebral blood flow after injury [16]. The
clinical utility of MMM data will require clinical experience
married with sophisticated computational tools. Early exam-
ples of this include cluster-based analyses uncovering patterns
within MMM data that correspond to unique cohorts of pa-
tients with different outcomes and individual physiologic
states that evolve over time [43, 44]. Hidden Markov models
have similarly demonstrated time-dependent physiologic
states defined by time-series ICP, cerebral perfusion pressure
(CPP), autoregulatory capacity, and compensatory reserve
[45].

Traditional statistical learning approaches such as regression
modeling typically focus on discrete clinical data. For example,
in patients with moderate to severe TBI, a combination of clin-
ical and radiologic variables available at the time of admission
have been used to create a model of unfavorable outcome or
death that has been validated across more than 15,000 patients
with an area under the receiver operating characteristic curve
(AUC) of ~ 80% [46]. The addition of physiologic data to this
model has consistently improved its predictive ability. In one
study, the use of cEEG monitoring within the first 24 h of
trauma improved the AUC from 65 to 77% [47]. In another,
the addition of minute-to-minute ICP and ABP values increased
the AUC from 72 to 90% [48]. Further integration of MMM
data with the rich clinical information captured within the EHR
is critical to understanding the impact of injury severity and ICU
care (e.g., sedation) on patient trajectory.

A “Medical Record” for the Brain

MMM serves to guide clinicians in their management of pa-
tients by detecting subtle changes in brain physiology prior to
irreversible secondary brain injury. We describe here our re-
cent work in overcoming many of the challenges to the use of
MMM by designing a dynamic medical record focused on
brain monitoring data, one that ultimately aims to provide
real-time precision management of TBI (Fig. 1).

First, we designed an architecture for a cloud-based analyt-
ics platform for neurocritical care data. In brief, this platform
consists of three basic elements: components, data paths, and
standards. A component is a “node” in the system and can be a
source of data such as a medical device or a data repository.
Data paths refer to getting data from one node to another such

as from the EHR to an analytics tool. Standards are those
required to harmonize data from different patients or multiple
institutions including uniform data labels, archive formats,
and/or transfer protocols.

We have implemented our design using cloud-based object
storage as a repository for high-resolution physiological data
from TBI patients. Nodes consist of devices collecting vital
signs data (Intellivue [Philips North American Corporation;
Andover, MA) and CarescapeTM [GE Healthcare; Chicago,
IL]), ICP (Camino® ICP Monitor [Natus Medical Inc;
Pleasanton, CA], RAUMEDIC DATALOGGER and EASY
logo [Raumedic; River Mills, NC), PbtO2 (Licox® [Integra
LifeSciences; Plansboro Township, NJ] and RAUMEDIC de-
vices), and others. Device data is sent to a bedside CNSmonitor
which acts to aggregate data sources. For the data path from
devices to aggregator, we used the devices’ proprietary proto-
cols since no standard medical device communications protocol
has yet beenwidely adopted. Software waswritten to implement
the data path subsequently from clinical sites to the cloud object
storage repository. This upload portal is capable of user authen-
tication, initial error-checking, and secure transfer to cloud ob-
ject storage. Data is mapped to standardized labels and metadata
is extracted. Events and annotations noted at the bedside are
extracted from a separate data file.

Additional data paths are being developed from the EHR to
the cloud object storage repository to incorporate laboratory
and medication administration information. Interoperable
cloud-based applications comprise additional nodes. For ex-
ample, a visualization tool has been implemented that pro-
vides flexible views of the data alongside events and medica-
tions. An API is currently under development to allow for
modular data analytic “plug-ins” allowing clinicians and re-
searchers to choose computational analytics as needed for
specific applications or specific patients.

Examples of Modular Analytics

EEG and Sedative Medication Data

Seizures and periodic or rhythmic discharges occur in 14–
61% of patients with TBI admitted to the ICU.When recurrent
seizures or status epilepticus (SE) occurs, patients may be
treated with anesthetic coma. However, when sedation is
weaned, uncertain EEG patterns may emerge that mimic SE
[49], albeit transiently, before EEG begins to improve [50]. In
contrast, weaning sedative medications may be informed by
changes in EEG activity not apparent to the human eye [51].
Therefore, inclusion of medication data from the EHRmay be
instrumental to understanding EEG monitoring data during
liberation from anesthetics, limiting morbidity associated with
prolonged mechanical ventilation and sedation.
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Optimum CPP

The concept of optimum CPP (CPPopt) derives from observa-
tions that while autoregulation is frequently dysfunctional fol-
lowing TBI, there is often a narrow range of CPP at which
autoregulatory mechanisms continue to function. Operating at
CPPopt may limit the sequelae of falling below the lower limits
of autoregulation (ischemia, hypoxia, elevations in ICP) or
riding above the upper limits of autoregulation (hyperemia,
elevations in ICP). Identification of CPPopt requires 10-s mea-
surements of average ICP and mean arterial pressure to gen-
erate a 5-min moving average correlation coefficient termed
the pressure reactivity index (PRx), which is mapped against
average CPP values yielding a U-shaped curve [16]. As a
proof of concept, we developed a graphical user interface that
incorporates second-by-second ICP and ABP from the CNS
monitor translated to Matlab (MathWorks; Natick, MA) for-
mat and published multi-windowweighting algorithms [52] to
generate a time-series of estimated CPPopt values.
Communication of CPPopt into the EHR forms a critical next
step through the SubstitutableMedical Applications, Reusable

Technologies (SMART) standard using a Fast Healthcare
Interoperability Resources (FHIR) API.

The Future of MMM

There are several hurdles that will need to be addressed in the
near future. First, data workflows to eliminate artifacts in real
time are critical. For example, ICPmeasurements recordedwhile
an EVD is clamped are not useful for calculating the PRx, but
these epochs can be readily distinguished from valid, pulsatile
ICP waveform data. Artifact reduction technologies for EEG
data are more mature, but there is a need for data-specific algo-
rithms. Second, contextual clinical data requires automated
methods of accurate time-synchronized annotation. Currently,
bedside annotations are not standardized and medication admin-
istration data contained within the EHR may be inaccurate by
minutes or even hours in some cases. Finally, metadata that
captures data critical for the interpretation ofMMMdata is need-
ed, likely as an extension of the existing NIH/NINDS Common

Fig. 1 A medical record for the brain. A schematic depicting an
architecture designed to overcome many of the challenges to the use of
multimodality monitoring for clinical and research use. Nodes refer to
sources of data including devices such as bedside vital sign monitoring
devices, intracranial monitoring devices, or systems designed to capture
electroencephalography activity. Nodes also refer to sources of clinical
and contextual data such as the electronic health record (EHR) or
annotations made at bedside, as shown here through an interactive

touchscreen interface. Blue arrows indicate data pathways, which refer
to methods of moving data from one node to another. Harmonization
mapping refers to methods that allow for disparate data paths to link to
a specific patient encounter and to synchronize with date/time stamps
using standard definitions or labels. These standards further allow
harmonization across patients and institutions. Harmonized data is then
uploaded to a cloud-based object storage repository in order to maximize
collaboration while limiting local resource utilization
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Data Elements and incorporated into Common Data Models
and/or open-source, portable data formats.

Conclusions

While the goal of MMM is to provide critical information
about the health and function of brain tissue in real time to
guide patient-specific management, the promise of MMM for
clinical and research purposes is limited by challenges in data
acquisition, curation, and collaboration. Efforts are underway
to create scalable solutions to overcome these barriers and
provide (a) methods for integrating and harmonizing high-
resolution MMM data with biological, clinical, radiographic,
and outcomes data; (b) a common resource that will leverage
data science tools to derive novel insights into patient-level
physiology; and (c) an open-source API to allow data explo-
ration and analysis ad hoc by clinicians and researchers with-
out the need for computer science expertise. MMM provides
an exciting opportunity to develop tools for clinicians to use in
order to provide patients with TBI the precise management
that they require and to develop new scientific insights into
the physiology of brain trauma and beyond.
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