
NEUROIMAGING (N. PAVESE, SECTION EDITOR)

Locus Coeruleus Magnetic Resonance Imaging in Neurological
Diseases

Alessandro Galgani1 & Francesco Lombardo2
& Daniele Della Latta3 & Nicola Martini3 & Ubaldo Bonuccelli1 &

Francesco Fornai4,5 & Filippo Sean Giorgi1,4

Accepted: 17 November 2020
# The Author(s) 2020

Abstract
Purpose of Review Locus coeruleus (LC) is themain noradrenergic nucleus of the brain, and its degeneration is considered to be key in
the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects
and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting
them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool.
Recent findings LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not
significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of
LC signal was observed in patients suffering from neurodegenerative disorders, with specific features.
Summary LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early
biomarker for degenerative diseases.

Keywords Locus coeruleus . Magnetic resonance imaging . Neuromelanin . Noradrenaline . Alzheimer’s disease . Parkinson’s
disease

Introduction

The locus coeruleus (LC) is the main noradrenergic (NA)
nucleus of the central nervous system and its fibers widely
innervate cortical and subcortical structures [1]. LC contrib-
utes to several brain functions. In particular, it plays a key role
in sleep-waking cycle [2], modulates the neuro-glial homeo-
stasis [3], regulates neurovascular unit proper functioning [4],

and is key in specific neuropsychological processes, such as
novelty-oriented attention and learning [5].

A significant LC degeneration occurs in the early stages of
some neurodegenerative disorders (NDD), such as Parkinson’s
Disease (PD)(reviewed in [6]) and Alzheimer’s Disease (AD)
[7]; this has been suggested to be not just a mere epiphenom-
enon but to play a key pathogenetic role. The mechanisms
through which LC degenerates in PD and AD differ: in AD,
it is related to progressive accumulation of Tau pathology,
starting from hyperphosphorylated TAU (pTAU) up to neuro-
fibrillary tangles (NFT) [8], while in PD, it is related to Lewy-
body pathology (i.e., to alpha-synuclein accumulation) [9].

A large amount of histological data concerning LC in-
volvement in NDD [8, 10••, 11–15] has been produced in
the last decades. Conversely, its estimation in vivo in patients
has been obtained only recently by magnetic resonance imag-
ing (MRI) with LC-sensitive sequences (LC-MRI) [16].

The latter tool has been used ever since by several authors
to estimate LC features in vivo in physiological and patholog-
ical conditions.

In the following paragraphs, we will briefly describe the
anatomy of LC and the potential pathogenetic role of LC
degeneration as assessed by models of AD and PD. Then,
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we will describe the state of the art of LC-MRI, both by sum-
marizing the main MRI sequences used and by reviewing the
available data in healthy subjects and in NDD, with particular
attention on AD and parkinsonism. In Table 1, it is provided a
list of LC-MRI studies which have been performed in the
latter populations of subjects, together with an overview of
their features.

LC Anatomy

LC is the main source of NA in the brain. It is a tube-shaped
and symmetric nucleus, placed in the pons, right below the
floor of the fourth ventricle. According to Dahlström and
Fuxe’s classification of brainstem nuclei [17], LC is also
named as NA nucleus A6 and it is considered as a NA neuro-
nal complex, together with its most rostral extension, the nu-
cleus epi-coeruleus (A6e), and its most ventral one, the nucle-
us sub-coeruleus (A6sc); for the sake of simplicity, such a
complex is often named just as LC [18].

LC is 12–17-mm-long and 2.5-mmwidth. Each LC includes
approximately 12.000–60.000NA cells [19, 20], which are rich
in neuromelanin (NM) [21]. NM is a pigmented molecule
which gives LC its characteristic color; it is a by-product of
NA metabolism and a chelator of metal ions, and therefore it
is thought to protect NA cells from oxidative damage caused by
these ions within LC neurons [22]. It has been proposed that the
combination of NM with ions and macromolecules (including
proteins and lipids) within LC neurons contributes to its T1-
shortening effects and can be visualized on T1-weighted MR
images [23••] (but see also paragraph 1.3).

LC belongs to the so-called iso-dendritic core, a group of
brainstem nuclei characterized by great convergence of affer-
ent inputs and by sending diffuse projections throughout the
whole brain [24]. LC neurons are organized according to a
topographical distribution based on their specific projections
targets: neurons projecting to cortical and subcortical struc-
tures (e.g., limbic lobe, basal forebrain, neocortex) are placed
mainly in the rostral part of the nucleus, while neurons
targeting the cerebellum and spinal cord are located in in the
ventral and caudal part of LC [25].

Potential Role of LC in the Pathophysiology in
Neurodegenerative Disorders

An early impairment of LC occurs both in AD [8] and PD [9]
(see also par. 4 and 5) and it is considered to be crucial in their
pathogenesis for two main reasons; on the one hand, LC-NA
system breakdown may hamper the maintenance of neuronal
homeostasis [26, 27]; on the other, the diffuse and wide pro-
jections from LC may concur to the spreading of neurodegen-
erative process toward other brain structures [28].

In AD, several studies performed in experimental models
have linked LC impairment with amyloid/tau pathology,

neuroinflammation, and neurovascular disfunction [29–31]. In
particular, selective LC lesion in AD transgenic mice causes a
dramatic increase in amyloid plaques burden compared with
LC-intact animals, in parallel with increased neuroinflamma-
tion [29]. In another AD mouse model, LC stimulation induces
a significant reduction of cytokine levels in the cortex, together
with increased microglial amyloid phagocytosis; on the con-
trary, LC lesion induces an increase in cytokine production
and leads to aberrant microglial activation [30]. Thus, Heneka
and colleagues concluded that LC-NA may be key in promot-
ing amyloid clearance system and in modulating microglial
activity [29, 30, 32], and several more recent experimental
studies support this hypothesis [3, 33–35]. Furthermore, LC
impairment has also been linked to AD vascular pathology by
Kelly and colleagues who observed a significant exacerbation
of microvascular injury and amyloid angiopathy, in AD trans-
genic mice submitted to selective LC lesion [31].

Apart from amyloid pathology and neuroinflammation, LC
degeneration has been shown to be strongly related to tau
pathology; as abovementioned, the first signs of AD-related
pathological alterations (years before the first clinical symp-
toms and the occurrence of amyloid plaques) occur in LC and
are represented by the accumulation of pTAU (also
denominated “pre-tangle Tau”) [8]. Moreover, it has been
observed that the NA metabolism by-product DOPEGAL,
when produced in excess by NA neurons, is associated with
tau aggregation [36], and that spreading of Tau pathology
toward other brain structures might occur, at least in part,
through LC efferents themselves [37]. Finally, it has been
observed that LC lesion can worsen neurodegeneration and
increase tau accumulation in AD transgenic mice [38].

In the last decades, several authors reproduced LC lesion
also in animal models of PD (such as those in which substantia
nigra (SN) pars compacta (SNpc) dopamine (DA) loss is in-
duced by the neurotoxin MPTP or by substituted amphetamine
administrations in rodents or primates) to assess whether LC
degeneration might concur to PD pathogenesis rather than be-
ing just an epiphenomenon. In the early 1990s, Colpaert’s
group showed that LC lesion could strongly potentiate
nigrostriatal DA damage induced by MPTP in primates and
in mice [39, 40]. Fornai and colleagues significantly extended
these findings by showing that (a) LC lesion makes toxic for
DA SNpc neurons otherwise sub-toxic doses of methamphet-
amine [41] and significantly potentiates nigrostriatal loss in-
duced by systemic methamphetamine administration in mice
and rats [42]; (b) the potentiating effects of LC lesion in these
rodent models of PD are not due to a change ofMPTP/MPP+ or
methamphetamine pharmacokinetics, or to an impairment of
DA loss recovery, but rather to a potentiation of the neurotoxic
effects/mechanisms of MPTP/Methamphetamine themselves
[41, 43]. Thus, such an effect of LC pre-lesion was obtained
in different animal species [41, 44] and using different DA
neurotoxins. This has been interpreted as a proof that the role
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Table 1 LC-MRI studies performed in healthy subjects and patients suffering from neurodegenerative diseases or other neuropsychiatric disorders

Authors and year Population MR scan LC T1 -
sequences

LC Parameter(s)
assessed

Interpretation

Healthy subjects and normal aging

Shibata et al. 2006 64 HC 3 T
(GE)

FSE Intensity LC intensity increases until 5–6th decades of
life,
and then it decreases in the elderlies

Clewett et al. 2016 56 HC (33 Y, 23 E) 3 T
(Siemens)

FSE Intensity LC intensity is higher in the elderlies and it
positively correlates with cognitive reserve

Betts et al. 2017 82 HC (25 Y, 57 E) 3 T
(Siemens)

FLASH Intensity LC intensity increases with aging, reaching its
maximum in the elderlies

Mather et al. 2017 45 HC (27 Y, 18 E) 3 T
(Siemens)

FSE Intensity LC intensity positively correlates with heart
requency parasympathetic modulation, both
in young and elderly subjects

Clewett et al. 2018 22 HC 3 T
(Siemens)

FSE Intensity LC intensity positively correlates with
cognitive performances (prioritized memory
under arousal)

Hammerer et al. 2018 50 HC (28 Y, 22 E) 3 T
(Siemens)

FLASH Intensity,
volume

In elderly subjects, LC intensity positively
correlates with emotional memory
performance

Dahl et al. 2019 294 HC (66 Y, 228
E)

3 T
(Siemens)

TSE Intensity Intensity of LC the rostral third correlates
with verbal memory performances in
elderlies

Liu et al. 2019 605 HC 3 T
(Siemens)

3D SPGR MT Intensity,
volume

LC intensity homogenously increases in young
subjects, while intensity of LC rostral third
decreases in the elderlies

Liu et al. 2020 613 HC 3 T
(Siemens)

3D SPGR MT Intensity Intensity of LC rostral third correlates with
global cognitive performances

Alzheimer’s disease

Miyoshi et al. 2013 20 HC
6 ADD

3 T
(GE)

FSE Intensity No difference between ADD and HC

Takahashi et al. 2015 26 HC
38 MCI
22 ADD

3 T
(GE)

FSE Intensity LC intensity is significantly reduced in ADD
and MCI when compared to HC; no
significant
differences between ADD and MCI

Dordevic et al. 2017 10 HC
10 AD

3 T
(Siemens)

TSE Intensity LC intensity is lower in AD than HC

Betts et al. 2019 25 HC
21 SCI
16 MCI
11 ADD

3 T
(Siemens)

FLASH Intensity LC intensity is significantly reduced in ADD
when compared to HC; no differences
considering MCI and SCI; in ADD, LC
intensity correlated with Ab42/Ab40 ratio

Olivieri et al. 2019 17 HC
21 typical AD
16 atypical AD

3 T
(Siemens)

TSE Intensity LC intensity is reduced both in typical and
atypical AD when compared to HC; LC
intensity correlates to memory performance
in typical AD

Parkinson’s disease and other parkinsonism

Sasaki et al. 2006 22 HC
17 PD

3 T
(GE)

FSE Intensity LC intensity is lower in PD than HC

Matsuura et al. 2013 23 HC
32 PD
9 MSA

3 T
(Siemens)

FSE Intensity LC intensity is reduced both in PD and MSA
when compared to HC; no correlation
with disease severity

Garcia-Lorenzo
et al. 2013

19 HC
12 PD(RBD−)
24 PD (RBD+)

3 T
(Siemens)

TSE Intensity LC intensity is significantly reduced in PD
(RBD+) subjects compared to HC; no
differences between PD (RBD−) and
HC; LC intensity correlated with the
degree of abnormal muscle activity
during. REM sleep
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of LC degeneration on the pathophysiololgy of nigrostriatal DA
loss occurring in PD could be a sound phenomenon, which
could be extended also to the human disease, according to
the temporal sequence of events in which LC degener-
ation precedes DA loss [6].

LC Assessment by MRI

LC can be visualized by MRI scan, profiting from specific
MR sequences (see below, paragraph 1.4). However, its small
size and the physiological inter-subjects variability [20]

Table 1 (continued)

Authors and year Population MR scan LC T1 -
sequences

LC Parameter(s)
assessed

Interpretation

Ohtsuka et al. 2014 22 HC
30 mild PD
31 severe PD

3 T
(GE)

TSE Intensity LC intensity is significantly reduced in
PD compared to HC; no correlation
with disease severity

Castellanos et al. 2015 37 HC
23 sporadic PD
13 genetic PD

3 T
(Siemens)

FSE Volume LC volume is significantly reduced both
in sporadic and genetic PD compared
to HC; no differences between sporadic
and genetic PD

Ehrminger et al. 2016 21 HC
21 RBD

3 T
(Siemens)

TSE Intensity LC intensity is significantly decreased
in RBD when compared to HC

Isaias et al. 2016 18 HC
18 PD

3 T
(Phillips)

FSE Intensity LC intensity is lower in PD and it
correlates with the degree of SPECT
DAT SCAN impairment

Schwarz et al. 2017 30 HC
39 PD

3 T
(GE)
(Phillips)

Inversion
recovery

T1-MT
SE-MT

Volume LC volume is reduced in PD when
compared to HC

Sommerauer et al.
2018

12 HC
16 PD(RBD+)
14 PD(RBD-)

3 T
(Siemens)

TSE Intensity LC intensity is reduced in PD when
compared to HC and it is lower in
PD (RBD+) than PD (RBD−). In
RBD+ patients, LC intensity correlated
with dysautonomic dysfunction and
cognitive performances

Wang et al. 2018 28 HC
23 PD(DEP+)
28 PD(DEP−)

3 T
(GE)

FSE Intensity Left LC intensity is reduced in PD when
compared to HC and it is significantly
lower in PD (DEP+) than in PD (DEP−)

Li et al. 2019 32 HC
48 PD-NCI
23 PD-MCI

3 T
(GE)

FSE Intensity LC intensity is significantly reduced in
PD-MCI when compared to HC and
it is lower (even not significant) in
PD-NCI than HC; LC intensity
correlates with TMT scores

Other neurological disease and psychiatric disorders

Shibata et al. 2007 20 HC
43 DEP

3 T
(GE)

FSE Intensity Intensity of LC rostral third is
significantly reduced in depression
when compared to HC

Shibata et al. 2008 34 HC
20 SCHIZ
18 DEP

3 T
(GE)

FSE Intensity LC intensity is significantly reduced in
depression, while it is not affected by
schizophrenia

Morris et al. 2020 14 HC
8 ANX
7 PTSD

7 T
(Siemens)

TFL/MT Intensity,
Volume

LC volume is significantly increased in
subjects suffering from anxiety
disorders and PTSD; no significant
alteration of LC intensity

Gollion et al. 2020 23 HC
23 MIG

3 T
(Phillips)

SE Intensity,
Volume

LC-MRI parameters are not affected in
patients suffering from migraine with aura

AD, Alzheimer’s disease; ADD, AD dementia; ANX, anxiety disorder; DEP, depression; E, elderly subjects; FLASH, fast low angle shot; FSE, fast spin
echo; GE, general electrics; HC, healthy control; LC, locus coeruleus;MCI, mild cognitive impairment;MIG, migraine with aura;MSA, multisystemic
atrophy;MT, magnetization transfer;NCI, non-cognitive impairment;NM, neuromelanin;PD, Parkinson’s disease; PTSD, post-traumatic stress disorder;
RBD, REM behavioral disorder; SCI, subjective cognitive impairment; SCHIZ, schizophrenia; SPGR, spoiled gradient echo; T, Tesla; TFL, turbo
FLASH; TMT, trail making test; TSE, turbo spin echo; Y, young subjects
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complicate the interpretation of LC-MRI findings. Also for
these reasons, in recent years, specific studies have been de-
signed to evaluate the correspondence between imaging and
anatomical data, as well as to assess technique reliability.

In particular, in 2009, Keren and colleagues submitted 44
healthy subjects (HC), aged between 19 and 79 years, to 3 T
(Tesla) LC-MRI and produced a probabilistic map of the LC.
They found that the highest T1 signal could be observed in the
rostral pons, and that the position and density of pontine T1-
hyperintense voxels had a strong correspondence with LC
placement data obtained in post-mortem specimens [45]. To
further strengthen their observations, the same group per-
formed a second study in 2015, in which they assessed LC
in post-mortem brains both by histological and 7-T-MRI anal-
ysis. They observed that the highest intensity detected by MR
occurred at the same level of LC NA complex as assessed by
immunohistochemistry for tyrosine beta-hydroxylase [46].
These two studies had been performed by MR scans with
different magnetic fields (3 T and 7 T), and in the majority
of studies on LC-MRI, a 3 T apparatus has been used;
Priovolous et al. have recently shown that data obtained with
a 7 T MR scan are highly superimposable with the ones reg-
istered with a 3 T scan. Thus, the anatomical confirmation of
T1-weighted MRI imaging provided by Keren et al. (2015)
may apply to LC-MRI assessment, independently from the
field of the MR machine used [47].

Moreover, it has been proposed that LC-MRI may have a
good reproducibility, as elegantly shown by Langley and col-
leagues, which compared LC volume estimation by two dif-
ferent types of MRI scan in eleven subjects [48]. Furthermore,
recently Tona and colleagues quantified the test-retest reliabil-
ity both between different scans and between different opera-
tors and they observed a good stability of measured LC inten-
sity and a low variability between different operators [49].

The Source of LC Signal

The source of LC hyperintensity at MRI is still a matter of
debate. The earliest studies, performed at the beginning of
2000s, profited from fast spin echo (FSE)/turbo spin echo
(TSE) or gradient echo (GRE) sequences [16, 50–53], accord-
ing to the hypothesis that NM was the sole responsible for LC
signal; in fact, as said, NM binds iron, and this was believed to
significantly contribute to T1-shortening effect. Several stud-
ies on LC were performed using these sequences in the fol-
lowing years (see Table 1). Such an approach was chosen on
the basis of former studies on the SN; since NM accumulates
also in SNpc, SN has been extensively evaluated by using the
MRI sequences similar to the ones used for LC [54].

Nonetheless, in 2015, Keren and colleagues suggested that a
potential source of hyperintense signal was not only the para-
magnetic property of NM but rather mainly the magnetization
transfer (MT) effect [46]. MT is a MR phenomenon that takes

place when magnetization pulses are applied to structures
where protons exist in three different states: bounded to macro-
molecules, in free water, and as a layer between the two latter
states. Broadly speaking, MT signal can be obtained thanks to
the different frequencies of stimulation that different protonic
states have and, in line with this, specific sequences with MT
preparation have been developed [55]. In brain imaging, such a
technique is widely used both in physiological and pathological
conditions, thanks to its ability to increase the contrast between
the examined structures and the background [56].

According to Keren and colleagues, the LC-related signal
observed by authors using T1-weighted sequences could be
even attributed to an “incidental” MT effect, since the high
number of radiofrequency pulses in a 2D-FSE scan results in
off-resonance magnetization saturation [46, 57].

LC-MRI in Healthy Subjects (Table 1)

LC development begins in the fetal brain and continues up to
late post-natal stages [58], even though remodeling of LC can
occur also at later stages [59]. Along adulthood, LC does not
undergo major macroscopic changes, except for NM intracel-
lular accumulation, which starts during fetal life and reaches
its maximum in the 6th–7th decade [21]. In the past, it had
been proposed the occurrence of a reduction of NA cells in LC
in healthy elderly subjects compared with younger ones [60].
However, recent stereological analysis (i.e., precise cell-count
in post-mortem brain samples) excluded the occurrence a
“physiological” degeneration of LC, as it showed a stable
NA cells count from adulthood to aging, even when analyzing
the brain of oldest subjects [19••].

LC-MRI studies reported results partly in agreement with
these observations. In the first study performed in healthy
subjects, Shibata and colleagues observed a progressive in-
crease of LC Contrast-Ratio (LC-CR, i.e., the ratio between
LC intensity and tegmentum pontis one, the latter being con-
sidered as a reference region) in parallel with age in young
subjects, which reached a plateau in adults and then decreased
in elderlies. Such a tendencywas not linear, but it fitted into an
inverted U shaped curve [53]. Other, more recent MRI studies
showed an increased LC intensity in elderly subjects [61–63]
but in those reports, the authors compared “young” with “el-
derly” subjects while they did not specifically analyze the LC
features along the whole lifespan. In 2019, Liu et al. per-
formed a large analysis on 605 healthy subjects, aged 18–88,
and showed an initial increase of LC-CR with age, which
reaches its peak in the 6–7th decades and then it decreases in
elderly subjects; although a significant reduction of LC signal
was not observed in elderlies, a negative correlation between
LC rostral third intensity and aging was found [64•].
Intriguingly, variation of LC intensity has been related to cog-
nitive performances in healthy subjects. A higher LC intensity
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in healthy elderlies was observed to be associated with better
cognitive reserve [61] and better emotional memory [65]; it is
noteworthy that in one study, such a relationship was found
also in young subjects [66]. The variability of the intensity
signal in the rostral part of LC has been linked to memory
[63] and global cognitive performances [67].

LC-MRI in Parkinson’s Disease and Other
Parkinsonisms (Table 1)

LC degeneration is an early pathological feature of PD, ac-
cording to Braak et al. [9] who clearly demonstrated that
alpha-synuclein accumulation occurs in the LC years before
its accumulation at the level of the SNpc. In PD, LC impair-
ment has been put in relation with a variety of non-motor
symptoms of PD, ranging from psychiatric alterations to sleep
disruption (especially REM behavior disorder (RBD)), to
dysautonomic and cognitive impairment [68].

In PD, several authors have shown the occurrence of sig-
nificant reduction of LC-MRI intensity [16, 69–76].
Noteworthy, and in line with post-mortem pathological obser-
vations [13], in PD patients, LC-MRI alteration is even more
severe than the SN-MRI one [72, 73]. Even though LC-CR
did not show to be correlated with PD disease severity [69, 71,
72], it may be theoretically useful for identifying patients suf-
fering from non-motor symptoms, either as comorbidities in
PD patients or as prodromal symptoms of the disease. RBD
can occur either alone (idiopathic RBD, iRBD) or after the
clinical onset of PD (PD-RBD); LC signal has been shown to
be significantly reduced in iRBD [77] and even more in PD-
RBD patients [74, 78]. Noteworthy, Sommerauer et al.
showed that in PD-RBD patients, LC signal was lower not
only compared with HC but also with PD patients lacking
RBD [74]. Remarkably, Wang et al. recently found that PD
patients suffering from depression showed a more severe al-
teration of LC signal than those without psychiatric comor-
bidities; moreover, they observed a significant inverse corre-
lation between LC intensity and depression severity [75].
Such a strict correlation with LC-MRI features was not ob-
served for cognitive and dysautonomic symptoms. In fact, in
PD patients suffering from mild cognitive impairment (PD-
MCI), LC intensity was reduced compared to HC, but there
were no differences between cognitively unimpaired PD pa-
tients and PD-MCI ones [74, 76]. Similar results were ob-
served in parkinsonian subjects suffering from dysautonomic
dysfunctions [74]. Interestingly, the relationship between LC
and autonomic system has been assessed in two further stud-
ies; in 2013,Matsuura and colleagues observed that in patients
suffering from multi-systemic atrophy (MSA), an atypical
parkinsonism type which is very often associated with auto-
nomic system involvement, LC-CR was significantly lower
than in HC even in patients lacking a concomitant significant

SN-MRI alteration [72]. In 2017, Mather et al. assessed
the correlation between LC intensity and high-frequency
heart rate variability (HF-HRV) in healthy subjects, the
latter being considered as an index of parasympathetic
system activity; they observed that LC intensity nega-
tively correlated with HF-HRV and interpreted such a
result as a proof of the modulation that LC exerts on
the parasympathetic system [79].

LC-MRI in Alzheimer’s Disease (Table 1)

The occurrence of LC degeneration in AD is a well-
established feature of this disorder. Remarkably, as said, LC
is the first structure to show AD pathological alterations—
namely pTAU protein—already years before the first occur-
rence of memory complaint [8], and LC shows a significant
neuronal loss already in the prodromal stage of AD [10••]. In
particular, the latter observation has been obtained by stereo-
logical post-mortem analysis, confirming previous evidences
[11, 12, 80]. Nonetheless, thus far only few studies have ex-
plored LC-MRI features in AD patients. The first ones, which
were performed in a limited number of subjects, showed a
reduction of LC signal in AD dementia (ADD) patients com-
pared to age-matched healthy controls [81, 82] except for one,
which, however, analyzed only a very few patients [83]. In
2019, Betts et al. observed a reduction of LC-MRI intensity in
ADD patients and they found that LC-CR correlates with
Aβ42/Aβ40 ratio measured in the cerebrospinal fluid
(CSF); nonetheless, they did not observe any significant dif-
ference between HC and subjects with mild cognitive impair-
ment (MCI) [84•]. An alteration of LC in AD was found also
by Olivieri et al. in 2019, which further extended this obser-
vation showing a similar degree of LC-CR alteration in typical
and atypical ADD [85].

LC-MRI in Other Neurological Diseases
and Psychiatric Disorders

LC impairment has been suggested to play a role also in other
neurological diseases, such asmigraine [86] and epilepsy [87],
as well as in psychiatric disorders [88, 89]. While no studies
on LC-MRI have been yet performed in epileptic patients, in
2020, Gollion and colleagues performed an LC-MRI assess-
ment in patients suffering from migraine with aura and they
did not find any difference between patients and controls [90].
Concerning psychiatric disorders, LC intensity was found to
be reduced in depression [50, 51], while LC volume was in-
creased in subjects suffering from post-traumatic stress disor-
ders (PTSD) and anxiety disorders [91].
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Discussion

In the last decade, LC-MRI studies have provided quite a large
amount of data concerning in vivo LC features in physiolog-
ical and pathological conditions; nonetheless, as described in
the “Introduction” section, it is worth mentioning once again
that the source of LC contrast is still not fully clear. LC has
been assessed by using T1-weighted sequences, either with or
without MT preparation; in the first case, the source of MR
signal is considered to be directly related to the paramagnetic
properties of NM, while for MT, it is considered to be more
related to the high protonic density of LC cells.

In an attempt of solving such a question, in 2019,
Watanabe and colleagues performed an MRI study (with both
FSE andMT approaches) in animal models; in particular, they
compared to control mice the LC-MRI scans of two different
transgenic mice models: one which was knock-out (KO) for
Ear2 gene, a mutation that causes LC agenesis, and one which
was KO for dopamine beta-hydroxylase (DBH) gene (the key
enzyme for NE synthesis) and thus devoid of NM. They did
not observe any LC signal in Ear2-KO mice, while in DBH-
KO ones, the signal was detectable and similar to control
animals. Since the absence of NM did not hinder LC assess-
ment, these authors hypothesized that MT is the real source of
LC signal, rather than NM [92].

According to these findings, some authors supported the
latter hypothesis concerning MT and LC [46, 47]; nonethe-
less, evidences obtained in several LC-MRI studies are hard to
interpret with such a view. In particular, LC-CR was found to
increase along the life span, with the highest signal observed
in elderlies [63, 64•]. This trend could be easily explained
considering NM accumulation within LC cells during aging
[21] and NM itself as the source of LC intensity, while other
interpretations regarding MT-related LC signal variations
would be too speculative. Since understating the real source
of LC-MRI signal is fundamental for result interpretation, fur-
ther studies are needed to better clarify this aspect.

In healthy subjects, LC signal shows high inter-subjects
variability, an observation largely in agreement with anatom-
ical data [20, 93], and it is independent from age. Interestingly,
such variability has been related to cognitive performances
[66] and autonomic functions [79]; while in elderlies this re-
lation might herald a latent pathological process (see below),
in younger subjects, it might be related to other, not patholog-
ical, aspects; LC, similar to other monoaminergic nuclei in the
brainstem, is known to undergo neuronal plasticity, in partic-
ular in response to hormonal and physical stimulation
[94–96]. Thus, such variability may be interpreted not only
on the basis of individual characteristics but also as a morpho-
logical counterpart of functional modification.

As said, the correlation between memory performance and
LC signal in the elderlies [61, 63, 97] could reflect the occur-
rence of degenerative phenomena. NA is a key modulator of

learning processes; thus, the alteration of LC-NA system
could hamper memory formation [10••]. Interestingly, studies
on HC revealed that LC intensity reduction during aging oc-
curs in the rostral third of LC [63, 97], the same part of LC
which projects to hippocampal structures [98] and is more
susceptible to AD-related pathology [19••]. Considering that
AD incidence increases with age, an alteration of LC-MRI
may represent an initial sign of a latent degenerative process
in the elderlies, before the occurrence of the first clinical signs.

In line with this, some authors showed that LC signal is
reduced in patients suffering from ADwhen compared to HC,
although only few LC-MRI studies, in limited number of pa-
tients, have been performed in this disease.

On the other hand, LC-MRI failed to distinguish MCI pa-
tients from HC. Since histological studies clearly showed that
LC degeneration already occurs in MCI patients [99], the ab-
sence of significant differences may be due to study limita-
tions, such as the low number of included subjects. Future
studies should focus on detecting LC alterations in early
stages of AD pathology, with the aim of developing an LC-
related early biomarker.

Finally, it is worth noting that Betts and colleagues ob-
served a relation between CSF amyloid and LC-CR, in line
with preclinical data. Indeed in animal model of AD, LC dam-
age has been associated to increased amyloid burden [29, 33],
in parallel with a more severe neuroinflammation [30] and to
worse neurovascular pathology [31], and neuropathological
post-mortem data in humans support these observations [10,
100]. Since neuroinflammatory, amyloid and vascular bur-
dens can be evaluated in vivo by specific neuroimaging ap-
proaches (e.g., TSPO-specific PET tracer for neuroinflamma-
tion [101], amyloid PET and specific MRI sequences for am-
yloid and vascular alterations, respectively), LC-MRI repre-
sents a very interesting opportunity to assess the
abovementioned correlations in vivo also in AD patients.

In PD, LC-MRI showed to be able to distinguish patients
from HC (see Table 1); LC-MRI signal loss can be found
already at early PD stages, and its involvement is even more
severe than that observed in the SN [69, 72, 73] in line with
histological post-mortem data [13–15]. Interestingly, Isaias
and colleagues recently showed in PD patients that LC signal
correlates with SNpc signal andDopamine Transporter (DAT)
binding at SPECT DAT scan [73]. It could be hypothesized
that patient suffering from a more severe LC-NA degeneration
may undergo a greater nigrostriatal impairment. This would
be in line with preclinical studies clearly showing that LC
lesion leads to a more severe damage of the nigro-striatal
DA pathways [39–44].

Moreover, LC-MRI may be potentially used in the future
for early diagnosis of PD, already in prodromal stages of the
disease. It is worth noting that, since LC-MRI could detect LC
impairment in patients suffering from RBD [77, 78] and late
onset depression [50, 74], it may be used to assess the risk of
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developing PD in subjects suffering only from prodromal
symptoms. However, several more studies are needed to con-
firm the specificity of these alterations, by comparing LC-
MRI in patients who will develop PD at follow-up with those
experiencing only isolated late-onset depression.

Conclusion and Future Perspective

LC-MRI is a promising technique, which allows the in vivo
assessment of LC both in physiological and pathological con-
ditions. This may represent a useful indirect tool to improve
our knowledge on the pathogenesis of neurodegenerative dis-
eases; this could be particularly true for AD, for which LC-NA
impairment is receiving growing attention. Moreover, LC-
MRI is a non-invasive and reproducible assay, thus having
the potential to become a new biomarker for degenerative
diseases, as recently proposed also by ad-hoc expert consen-
sus [23••]. The possibility of evaluating its integrity may lead
to the development of new therapeutic strategies targeting the
LC-NA system itself. Indeed, LC degeneration has been
linked to increased neuroinflammation and neurovascular dis-
function in AD [31, 32], while the administration of NA syn-
thetic precursors (e.g., Threo-DOPS) or NA receptor-agonists
has been shown to improve cognitive impairment in AD ani-
mal model [102]. Finally, LC-MRI may be used in the future
to assess the NA system also in pathological conditions other
than NDD, providing a more comprehensive understanding of
LC-NA pathophysiology.
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