
NEUROIMAGING (N. PAVESE, SECTION EDITOR)

PET Evaluation of Microglial Activation in Non-neurodegenerative
Brain Diseases

Christine Ghadery1 & Laura A. Best2 & Nicola Pavese2,3
& Yen Foung Tai4 & Antonio P. Strafella1

Published online: 28 May 2019
# The Author(s) 2019

Abstract
Purpose of the Review Microglial cell activation is an important component of neuroinflammation, and it is generally well
accepted that chronic microglial activation is indicative of accumulating tissue damage in neurodegenerative conditions, partic-
ularly in the earlier stages of disease. Until recently, there has been less focus on the role of neuroinflammation in other forms of
neurological and neuropsychiatric conditions. Through this review, we hope to demonstrate the important role TSPO PET
imaging has played in illuminating the pivotal role of neuroinflammation and microglial activation underpinning these
conditions.
Recent Findings TSPO is an 18 kDa protein found on the outer membrane of mitochondria and can act as a marker of microglial
activation using nuclear imaging. Through the development of radiopharmaceuticals targeting TSPO, researchers have been able
to better characterise the spatial-temporal evolution of chronic neurological conditions, ranging from the focal autoimmune
reactions seen in multiple sclerosis to the Wallerian degeneration at remote parts of the brain months following acute cerebral
infarction.
Summary Development of novel techniques to investigate neuroinflammation within the central nervous system, for the pur-
poses of diagnosis and therapeutics, has flourished over the past few decades. TSPO has proven itself a robust and sensitive
biomarker of microglial activation and neuroimaging affords a minimally invasive technique to characterise neuroinflammatory
processes in vivo.
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Introduction

Microglia constitute approximately 5–10% of adult brain cells
and are found throughout brain tissue [1••]. They are the res-
ident immune cells of the brain and represent an important
effector in the innate immunity of the brain [1••]. Their capac-
ities, including phagocytosis, proliferation and secretion of
soluble molecules, mean they are implicated in the
neuroinflammatory pathological processes underpinning a
number of neurological and neuropsychiatric conditions.

Microglia become “activated” when the integrity of the
central nervous system (CNS) is challenged, for example, in
the presence of vascular or tissue damage [2••]. Under these
circumstances, microglia shift from a sensing state to a reac-
tive state, triggering the release of cytokines, proteinases,
complement proteins and reactive oxygen species [3]. The
reactive phenotype can then be further subdivided into a
pro-inflammatory state (M1) or one characterised by anti-
inflammatory reactions (M2) supporting tissue repair,
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regeneration and coordination of the immune response [2••].
Polarisation of microglial cells is a dynamic, context-specific
process depending on the type of stimulus, with temporal
integration determining the neuroinflammatory changes seen
in the acute versus the chronic setting [4, 5].

Targeted positron emission tomography (PET) imaging of
microglia facilitates the in vivo assessment of neuroinflamma-
tion through the development of radiopharmaceuticals that
target biomarkers of microglial activation. Paramount
amongst these is the translocator protein 18-kDa (TSPO),
which was previously described as a peripheral benzodiaze-
pine receptor following its identification in through binding
studies using 3H-diazepam [6]. Under normal circumstances,
TSPO is moderately expressed in healthy brain tissue and only
minimally expressed in resting microglia. However, with the
homeostatic disturbance that inevitably accompanies neuroin-
flammation, TSPO expression substantially increases, and this
is predominantly observed in activated microglia [7]. TSPO
upregulation has also been observed in astrocytes, for example
following cerebral ischaemia [8], and macrophages that infil-
trate the damaged brain due to disruption of the blood-brain
barrier and increased vascular permeability secondary to neu-
roinflammation [9].

The exact role of TSPO, however, remains unclear. It is
postulated to be involved in a number of cellular functions
ranging from regulation of cell proliferation to cell apoptosis,
and its function in the stimulation of microglia is also poorly
understood, with most studies suggesting a possible role in
reactive oxygen species attenuation [2••, 10, 11]. Despite the
lack of functional clarity, TSPO upregulation remains a rele-
vant biomarker, and longitudinal studies utilising TSPO PET
have provided insights into the temporal dynamics of neuro-
inflammation leading to neuronal injury and the progression
of chronic disease. Furthermore, TSPO PET allows re-
searchers to determine the efficacy of emerging anti-
inflammatory therapies.

Over the past two decades a number of TSPO ligands have
emerged, which can be subdivided into first, second and third
generation ligands. The most prominent, and still most widely
used, is the first generation TSPO ligand 11C-PK11195 (PK).
PK shows high affinity for binding to TSPO; however, its
clinical utility is somewhat limited by the relatively short
half-life of carbon-11, requiring an on-site cyclotron, poor
signal-to-noise ratio as a consequence of high non-specific
binding and low brain bioavailability [12, 13•].

In an attempt to overcome the difficulties with PK in the
pursuit of improved image quality, investigators sought to
develop superior ligands, including phenoxyarylactemides de-
rivatives (e.g.11C-PBR28, 11C-DAA1106 and 18F-PBR06),
pyrazolopyrimidines derivatives (e.g. 18F-DPA-714) and
imidazopyridine derivatives (e.g. 11C-CLINME) [2••].
However, the second-generation ligands have not been with-
out their own drawbacks, and the most significant concerns

their sensitivity to the rs6971 polymorphism (Ala147Thr) in
the TSPO gene. This affects binding affinity properties caus-
ing significant heterogeneity in PET imaging and skewing
interpretation of the associated quantitative data.
Consequentially, the third-generation radioligands have
emerged in an attempt to develop rs6971-insensitive ligands.
These TSPO tracers include flutriciclamide (18F-GE180)
[14••] and 11C-ER176 [15]; however, their clinical relevance
is still to be determined.

In this review, we will discuss how TSPO PET imaging has
been utilised to characterise the neuroinflammatory processes
key to the pathogenesis to a number of varied neurological and
neuropsychiatric conditions. We will combine the data from
studies using PK and newer generation TSPO ligands to pro-
vide a detailed overview of how this research has led to a
better understanding of the temporal and spatial relationships
in microglial activation, neuroinflammation and disease man-
ifestation. We will also discuss some of the limitations in
TSPO PET imaging and suggestions for future progress in this
field leading to a more personalised approach to treatment of
neuroinflammation.

Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune chronic condition
characterised by migration of myelin-reactive T-cells, with
subsequent microglial and astrocyte activation and recruit-
ment of peripherally circulating macrophages causing demy-
elination and oligodendrocyte destruction within the CNS
[16]. While MRI demonstration of lesions disseminated in
time and space remains the diagnostic gold standard, TSPO
PET imaging is a potentially promising tool not only in the
diagnosis of MS, but in detecting the conversion from
relapsing-remitting MS (RRMS) to secondary progressive
MS (SPMS).

Studies have shown that activated microglia play a central
role in sustaining chronic neuroinflammation in MS [17] and
are found to have a specific and more diffuse distribution in
SPMSwhen compared with RRMS [18, 19•]. In SPMS, great-
er mean TSPO radioligand uptake has been demonstrated
throughout the white matter, as well as, specifically in the deep
grey matter and the thalami of patients with SPMS [18, 19•,
20]. This increased cortical binding appears to correlate with
disability, including impaired cognitive performance [18,
19•]. Further studies suggest that there is a positive correlation
between TSPO ligand binding and disease severity [21, 22]
and duration [20, 23]; however, the results are not consistent.
In active disease, increased PK binding has been found to
correspond to MRI gadolinium-defined active lesions, but
not in chronic lesions [24, 25].This corresponds to similar
findings by Oh and colleagues using the 11C-PBR28 ligand,
which demonstrated that gadolinium-enhancing lesions had
significantly higher binding compared with the contralateral
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white matter [23]. Additionally, PK binding in seemingly nor-
mal white matter has not only been found to have increased
density in RRMS and SPMS patients compared with healthy
controls, but it also appears to correlate with the degree of
observed cerebral atrophy [26].

In clinically isolated syndrome (CIS), PK binding has been
shown to have a potentially prognostic role. Gianetti and col-
leagues demonstrated that in patients with CIS who went on to
develop MS within 2 years had higher PK binding on their
baseline scans [22]. It has also been demonstrated that TSPO
PET can be utilised to predict the development of MRI active
lesions, suggesting microglial activation may play a pivotal
role in MS lesion formation [23].

In general, PET imaging using second-generation TSPO
tracers has been less successful in yielding results useful to
the understanding of MS [27–29]. However, not all of the
studies considered the implications of the rs6971 polymor-
phism in their analysis [28]. When this is taken into consider-
ation, a study using the 18F-PBR111 radioligand revealed in-
creased total distribution volume (VT, i.e. the ratio of
radioligand concentration in the tissue target region to that in
blood plasma at equilibrium) in MS patients compared with
controls. There results also suggested an association between
TSPO PET white matter signal and disease severity [21].
Similarly, Singhal and colleagues using the 18F-PBR06 ligand
demonstrated its utility in assessing TSBO binding inMS [30,
31•]. They showed a significant correlation between
microglial activation in deep grey matter, cerebellar white
matter and white matter lesions associated with neurological
disability and cerebral atrophy.

Finally, animal models have demonstrated that following
treatment with immunosuppressive drugs, such as fingolimod,
TSPO radiotracer uptake is reduced [32]. Similarly, clinical
studies on patients with MS, published by Ratchford and col-
leagues, demonstrated that PK binding potential per unit vol-
ume was significantly decreased throughout the brain follow-
ing treatment with glatiramer acetate after 1 year [33].
Potentially, therefore, TSPO PET could be used as a non-
invasive biomarker to determine and monitor the efficacy of
immunosuppressive therapies on MS disease activity.

Stroke

Stroke researchers have utilised TSPO PET imaging to under-
stand the role and time course of neuroinflammation following
acute cerebral infarction. We know that following acute cere-
bral hypoxia, there is a significant increase in TSPO expres-
sion, most notably in astrocytes and microglia [34], with the
inflammatory response divided into an initial release of pro-
inflammatory mediators followed by a later neuroprotective
phase distinguished by the release of anti-inflammatory medi-
ators [35]. However, contradictory results [36] to this model
suggest a much more complex and heterogeneously dynamic

process making the development of immunomodulatory ther-
apies problematic. Further complicating this, is the observa-
tion that neuroinflammation is not localised to the immediate
surroundings of the infarct, but is also observed in remote
brain regions that have fibre tract connections with the acutely
affected area [37]. Activated microglia around areas of acute
infarction exhibit distinct immunohistochemical properties
compared with microglia distant from the lesion in the chronic
stages following stroke [38]. Studies have demonstrated that
areas remote to the infarcted area show evidence of extensive
phagocytosis and iron deposition, compared with the relative
resolution of neuroinflammation at the lesional site several
months post-event [39, 40]. Such observations emphasise
the need for reliable imaging biomarkers targeting
neuroinflammation.

Studies using PK PETcomplement the immunohistochem-
ical findings for the acute and chronic stages of stroke. Within
a few days of the insult, increased PK binding is observed,
with activated microglia present in the peri-infarct zone
progressing to the ischemic zone a few days later [41]. The
activation typically peaks approximately 1 week following the
stroke, and thereafter it decreases in the acute region [42].
However, as with the immunohistochemistry, repetitive PK
studies demonstrate marked neurodegeneration at sites remote
from the lesion site as time post-event elapses. Evidence for
this comes from a number of studies [37, 39, 40, 43] and is felt
to represent Wallerian degeneration along connected path-
ways between different anatomical areas [44]. Thiel and col-
leagues described the temporal dynamics of locally activated
microglia and their relationship to pyramidal tract damage in
patients with subcortical stroke. They found that microglial
activity at the infarct site decreases with recovery, with uptake
ratios not significantly different to controls after 6 months,
while activity persists in the brainstem along the affected py-
ramidal tract [37]. Similarly, Walberer and colleagues investi-
gated neuroinflammation in the chronic stage of embolic
stroke using a rat model and the PK ligand. The authors dem-
onstrated that neuroinflammation all but resolved at the lesion
site at 7 months, but with microglia activation detected at sites
remote from the primarily infarcted regions, including the ip-
silateral thalamus [39].

A potential limitation with the PK ligand regards its ability
to differentiate between the infract and the peri-infarct region,
in part due to low signal-to-noise ratio and non-specific bind-
ing. A number of comparative studies have aimed to improve
the diagnostic power of TSPO PET using newer ligands, with
differing degrees of success. Guylas and colleagues using 11C-
vinpocentine measured regional changes of TSPO in the brain
of nine ischemic stroke patients at nine different points be-
tween 1 and 14 weeks after the event [41]. At 1 week post-
stroke, they observed an increased 11C-vinpocentine uptake in
both the ischemic core and the peri-infract zone, with
microglial activation seemingly more intense in the peri-
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infarct area. This increased uptake then decreased steadily
with post-stroke time. Unfortunately, however, the authors
noted that 11C-vinpocentine demonstrated low affinity for
TSPO and in a further study, directly comparing 11C-
vinpocentine with PK, they found that although 11C-
vinpocentine had a greater affinity for TSPO than PK, the
differences were not significant [45].

More promise has been seen with the 18F-DPA-714 and
11C-DPA-713 ligands. In one such study, nine patients
underwent PET imaging using the 18F-DPA-714 radio-ligand
between 8 and 18 days after stroke [46]. The authors demon-
strated that observed increases in ligand uptake co-localised
with the infarcted tissue and extension beyond the region cor-
responding to the damage in the blood-brain barrier. This sug-
gests that 18F-DPA-714 may be useful in assessing the extent
of neuroinflammation associated with acute stroke, although it
must be noted that no correlation was identified between tracer
uptake and infarct volume. A recently published study by
Chaney and colleagues, where mice were subject to middle
cerebral artery occlusion or sham surgery, compared the two
second-generation ligands 11C-DPA-713 and 18F-GE-180
[47•]. While both ligands were able to detect neuroinflamma-
tion at acute and chronic time points following the ischaemic
event, 11C-DPA-713 was found to be more sensitive in
reflecting the extent of glial cell activation and allowed earlier
detection compared with 18F-GE-180 [47•]. Such findings
support TSPO as a useful biomarker of neuroinflammation
in distinguishing the sub-acute and chronic phases post-
stroke.

Both PK and newer TSPO ligands have been key in
elucidating how changes in TSPO expression, both spatially
and temporally, relate to the pathogenesis of stroke and high-
light a conceivable role for novel anti-inflammatory sub-
stances in the long-term management of stroke. Furthermore,
TSPO ligands, such as 18F-DPA-714 and 11C-DPA-713, have
a potential role in tracking in vivomicroglial activation, which
may allow predictions regarding individual functional recov-
ery and assessing the utility of future therapeutic strategies
[46, 48].

Traumatic Brain Injury

Traumatic brain injury (TBI) is a disease with many different
symptoms including cognitive, emotional and physical im-
pairments. In general, the majority of TBIs are single events;
however, repeated injuries among affected people are related
to the development of chronic traumatic encephalopathy
(CTE), even though the pathology of CTE can also be seen
after single TBI [49•]. Mechanisms responsible for these dis-
abilities can be divided into primary and secondary injuries.
While the primary injury is the initial biomechanical trauma
[50], a process involving neuronal, axonal and vascular dam-
age induced by the kinetic energy, this induces a cascade of

secondary processes leading to excitotoxicity, necrosis, apo-
ptosis, autophagy and free radical formation [51]. Hence, TBI
is considered to be a chronic disease [52], implicating that the
pathophysiological and inflammatory processes in the brain
take place at different times after the injury, where some are
beneficial to recovery and others are generated by the injury
and exaggerate the primary damage [53, 54].

Brain injury can trigger neurodegeneration and is consid-
ered a major riskfactor for the development of dementia, as
highlighted in one study b y the accumulation of amyloid-β
plaques in around 30% of post-mortem brain tissue collected
from TBI patients [55]. Interestingly, PET imaging studies in
TBI patients revealed a similar distribution of amyloid plaques
as in patients with Alzheimer’s disease [56]. Further, TBI has
been associated with Parkinson’s disease [57] and various
psychiatric disorders including increased risk of suicide, and
overall increase in mortality [58].

Areas of activated microglia often coincide with observed
neuronal degeneration and axonal abnormality [59, 60].
Studies in animal models [61] and in humans [62, 63] have
detected microglial activation occurring early after TBI, but
then persisting for years, detectable both in vivo and post-
mortem. A study by Ramlackhansingh and colleagues using
PK in patients 11 months to 17 years post-TBI found binding
to be significantly increased in the thalami, occipital cortices,
putamen and posterior limb of the internal capsules, but with
no increase at the original site of injury [62]. High PK binding
in the thalamus corresponded to worse cognitive outcomes
and increased microglial activation was identified up to
17 years following head injury, supporting the premise that
TBI triggers a chronic neuroinflammatory response [62].

These findings have been replicated in further studies, with
one group showing that PK binding was again increased in
subcortical regions remote from acute injury site [64] and in
models of experimental TBI [53]. The prominence of
microglial activation in the subcortical structures may reflect
their dense connectivity and suggests that microglia behave
differently locally to site of injury from those at remotely
connected structures. It is likely that this reflects a slowly
progressive process within damaged white matter similar to
what is observed in stroke [49•].

Recent investigations using 11C-DPA-713, a second-
generation TSPO tracer, in older former National Football
League (NFL) players revealed significantly higher TSPO
PET signal in the right amygdala and bilateral supramarginal
gyri of the players compared with controls [65]. Further,
Coughlin and colleagues [66•] recently reported increased
TSPO binding in predominantly medial temporal lobe regions
and subtle evidence of white matter damage on diffusionMRI
in a group of 14 active or recently retired NFL players with a
history of concussions. Previous PK studies in both TBI and
stroke have demonstrated that ligand binding correlated with
the extent of white matter damage and axonal injury may be
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an important factor in causing persistent microglial activation
leading to progressive degeneration [49•, 62]. Animal models
of closed TBI using 18F-DAP-714 have demonstrated that
uptake correlated with trauma severity, metabolic deficits
and the degree of microglial activation [67•].

The clinical significance of persistent microglial activation
in TBI is unclear, however one can deduce that the balance of
activation states/polarisation varies at different points [49•].
The relevance of microglia in the general pathophysiological
response to TBI is potentially therapeutically relevant, and
there is interest in targeting microglial pathways and immune
modulation to prevent neurodegeneration [68–70].
Longitudinal studies are required to clarify the functional sig-
nificance of microglial activation in remote parts of the brain
and determine the reliability of TSPO ligands as markers for
severity and progression in TBI [62, 71].

Neuroinflammation in Human Immunodeficiency
Virus (HIV) Infection

Microglia activation appears to play a role in the development
of cognitive impairment and dementia associated with HIV
infection. In a pilot study, five healthy volunteers and 10
HIV-positive patients, with and without HIV-associated de-
mentia (HAD), underwent PET with the PK ligand [72]. As
a group, the HIV-positive patients overall showed significant-
ly higher tracer binding than controls in five brain regions, and
similar results have been observed using newer TSPO radio-
ligands, such as 11C-PBR28 [73•].

Patients with HAD did not show any significant difference
in PK-binding compared with HIV-positive, non-demented
patients. However, while non-demented HIV-positive patients
did not show any significantly increased binding compared
with controls, HAD patients demonstrated significantly higher
PK-binding than controls in five out of eight brain regions,
supporting a possible role for microglial activation in HAD
[72]. In contrast to this, another PETstudy using the PK radio-
ligand in 12 HIV-infected patients with minor neurocognitive
impairment and 5 controls found no increase in PK-binding in
the HIV-infected patients compared with controls in any of the
investigated brain regions [74]. The authors concluded that
PK-binding PET might be insensitive to the degree of macro-
phage activation in HIV-associated minor neurocognitive im-
pairment or, alternatively macrophage activation is not impli-
cated in this condition. A third alternative, however, is that the
ROI approach used in this study is not sensitive enough to
detect subtle and localised increases in activated microglia in
cortical areas. In fact, using voxel-by-voxel analysis, Garvey
and colleagues detected the presence of activated microglia in
several focal cortical areas in asymptomatic HIV-infected pa-
tients [75]. Additionally, increased PK-binding in the anterior
cingulate, corpus callosum and posterior cingulate correlated
with poorer executive performance.

TSPO binding using the 11C-PBR28 ligand found global
increases in TSPO expression, with significant regional in-
creases in the occipital lobe, parietal lobe and globus pallidus
in patients who were HIV-positive when compared with con-
trols. This same study found that increased TSPO binding in
the amygdala, thalamus and hippocampus correlated with
poorer global cognitive performance, particularly with verbal
and visual memory [73•]. It remains to be established whether
detection of activated microglia in HIV-positive patients is a
predictor of future neurocognitive decline.

Neuropsychiatric Disease

TSPO PET-studies provide evidence that impaired regulation
of microglia contributes to both neurobehavioural and neuro-
psychiatric disorders. In schizophrenia, for example, one of
the most consistent genetic associations relating to this disor-
der concerns the major histocompatibility complex, and there-
fore the innate immune system [13•]. The pathology of schizo-
phrenia has been associated with neuroinflammation, and the
relevance of microglial activation can be observed in the in-
hibitory effects of both typical and atypical anti-psychotics on
activated microglia [76]. Two small studies utilising PK have
demonstrated increased TSPO signal in the grey matter, hip-
pocampus and temporal cortex of patients with schizophrenia
[77, 78]. Unfortunately, later studies using larger cohorts and
new TSPO radioligands have been unable to replicate these
results in patients with early-stage psychosis or schizophrenia
when compared with healthy controls [79–82]. In one such
study, while Takano and colleagues demonstrated a positive
correlation between positive symptom scores, disease dura-
tion and 11C-DAA1106 binding, there was no significant dif-
ference in total binding in cortical areas when compared with
controls [80]. Another recent study detected no difference in
18F-FEPPA binding between 19 untreated patients with first-
episode psychosis compared with 20 controls [83].

However, more promising insight arises from a study
utilising the 11C-PBR28 radio-ligand. The investigators found
that in schizophrenic patients the total cortical grey matter
volume was significantly lower when compared with healthy
controls [84•]. Patients were genotyped for the rs6971 poly-
morphism. This corresponded to a negative correlation be-
tween TSPO signal and the total cortical grey matter volume.
While these findings suggest that in schizophrenia microglial
activation is related to altered cortical volume, longitudinal
studies will be required to determine the exact relationship
between microglial activation and cortical grey matter loss,
and whether anti-psychotic treatment has any effect on chang-
es in brain volume observed in these patients.

Investigations in depression have also not yielded conclu-
sive results, with one such study concluding that there was no
statistical difference between patients with mild to moderate
depression and healthy controls using 11C-PBR28 PET [85].

Curr Neurol Neurosci Rep (2019) 19: 38 Page 5 of 12 38



However, studies are emerging that challenge this in more
severely affected patients and demonstrating the effect of
treatment on neuroinflammation. Setiawan and colleagues
using the 18F-FEPPA ligand found slightly elevated VT values
in the anterior cingulate cortex of 20 patients with major de-
pressive episode (MDE) compared with 20 controls [86]. This
area is implicated in the control of emotional behaviour, and
this finding represents the first evidence of significant increase
in brain TSPO density in vivo during MDE [86]. This finding
has recently been replicated by Richards and colleagues using
the 11C-PBR28 TSPO radio-ligand in patients with MDE
[87•]. They identified a trend towards increased 11C-PBR28
binding in patients with MDE compared with healthy con-
trols, and post hoc analysis further demonstrated that this ab-
normality was significant in the unmedicated MDE patients.
Similar findings have also been published regarding PK
TSPO binding, which have found that binding was signifi-
cantly elevated in the anterior cingulate and insula in patients
with co-existent MDE and suicidal ideation [88].

In further work, Setiawan and colleagues again demonstrat-
ed using 18F-FEPPA PET that TSPO VT is increased in pa-
tients with more advancedMDE who have had longer periods
without anti-depressant treatment compared with those who
have had shorter periods without medication [89••]. They fur-
ther found that TSPO binding was between 29 and 33% great-
er in the prefrontal cortex, anterior cingulate cortex and insula
in patients with longer disease duration [89••]. These results
are strongly suggestive of a different illness phase, which has
implications for staging MDE, and the authors also found that
the yearly increase in microglial activation they observed in
untreated patients (14–18% per decade) disappeared when
anti-depressants were initiated [89••]. This is not surprising
knowing that serotonin reuptake inhibitors are shown to in-
hibit microglial activation [90, 91]. These results, therefore,
support the theory that major depression is due to neuropath-
ological progression secondary to chronic microglial activa-
tion and are consistent with the observed clinical transition
from infrequent solitary episodes, with inter-episode recovery,
towards more persistent disease [89••].

A further recent study demonstrated that when 18F-FEPPA
PET results were compared before and after treatment with
cognitive behavioural therapy in patients with MDE; VT values

were significantly reduced during the treatment period [92].
Interestingly, reduction in VT values was not significant in the
cohort who received supportive psychotherapy. However there
was a correlation observed in both treatment groups between
reduction in TSPO VT, consistent in the hippocampus and ame-
lioration of depressive symptoms [92]. Interestingly, studies
comparing patients with bipolar disorder to healthy controls
using PK also found significantly increased tracer binding in
the hippocampus [93, 94]. Thus, highlighting that hippocampal
TSPO overexpression appears to be a shared characteristic be-
tween distinct psychiatric disorders.

Certainly, there is an accumulating body of evidence asso-
ciating the pathophysiology of neuropsychiatric conditions
with dysregulation of the immune response. However, the
heterogeneity within study populations, as well as relatively
small sample sizes, makes replication of studies in mental
health research more difficult. Considering the PK and 11C-
PBR28 findings in schizophrenia, the patients recruited had an
established diagnosis, and in a similar pattern to MDE, the
results may indicate that the aberrant immune response is rep-
resentative of the pathophysiology in the chronic phase of
illness with progressive change occurring at the glial level.
This warrants clarification with further studies.

Limitations of TSPO PET Imaging

There are a number of limitations concerning the utility of
TSPO as a PETmicroglial biomarker. These include low brain
density, expression by cells other than microglia, similar ex-
pression of activated microglia in with M1 and M2 states and
the incidence of the aforementioned genetic polymorphism.
Certainly, it is not clear whether increased or decreased
TSPO binding reflects a particular microglial phenotype,
meaning that TSPO PET does not differentiate between a
specific functional role, i.e. neurotoxic (M1) versus neuropro-
tective (M2) [1••]. It is, therefore, more accurate to state that
upregulation of TSPO depicts the broader multicellular
neuroinflammatory reaction, rather than simply reflecting mi-
croglia activation [95•]. This statement is supported by studies
showing that TSPO expression in both microglia and astro-
cytes appears to be temporally distinct, depending on the stage
of disease progression as much as on the disease itself. For

Table 1 Limitations of TSPO radiotracers

First generation TSPO [12, 99] Second generation TSPO Third generation TSPO

Short half-life rs6971 polymorphism Challenge of absolute quantification and
kinetic modelling

Poor signal-to-noise ratio No differentiation between M1 and M2 No differentiation between M1 and M2

Non-specific binding Slow accumulation of radio metabolites resulting in
inaccurate estimations of TSPO [100, 101]

Limited data available

Slow kinetic behavior necessitating longer scanning time [101]
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example, in some rat models of active MS, increased TSPO
expression is localised to microglial cells [25], in contrast to
post-mortem animal and human data demonstrating involve-
ment of both astrocytes and microglia [96, 97]. The presump-
tion is that initial microglial activation is followed by delayed
but prolonged astrocytic activation.

Another important consideration is the estimation of specific
TSPO binding. Typically, kinetic modelling is the standard for
PET quantification; however, this can be challenging with
TSPO radioligands [1••]. Studies using both PK and second-
generation ligands have reported significant between-subject
variability in VT when using the standard approach of arterial
sampling for kinetic modelling [95•]. For PK, this is at least in
part due to high binding to plasma proteins altered in pro-
inflammatory states [98], and this may also be the case for
second-generation ligands, albeit unconfirmed. The result is
considerable variability in VT within and across studies, and
high vascular TSPO binding is further implicated to substan-
tially affect outcome estimation [13•]. Limitations regarding the
different generations of radioligands are summarised in Table 1.

The challenge of absolute quantification has lead researchers
to find alternative methods to an arterial input function, including
reference tissue modelling [95•]. However, unlike other ligands
targeting neurotransmitter systems, there is not part of the brain
parenchyma devoid of TSPO expression and so no true reference
region exists [95•]. Nonetheless, different approaches have been
sought. Considering PK, supervised clustering methods have
enabled the identification of reference tissue [102]. While this
is not applicable to second-generation ligands [81], a study using
11C-PBR28 in Alzheimer’s patients was able to estimate binding
using a cerebellar pseudo-reference region, demonstrating less
variability compared with estimation using plasma activity
[103]. Non-invasive techniques pose attractive alternatives to
the less reliable arterial sampling in TSPO studies, but validation
using such techniques is paramount concerning the ligand and
population being studied.

Future Directions

Although the definitive functional role of TSPO continues to
elude us, techniques such as X-ray crystallography have re-
vealed its pentameric 3D structure, including selective bindings
sites [104] [105]. These binding sites could prove novel thera-
peutic targets andmodels of CNS injury appear to show that PK
has a neuroprotective effect with a reduction in reactive microg-
lia and astrocytes [106, 107]. However, without steadfast
knowledge on how the upregulation of TSPO influences the
immune reaction, development of affective treatments will re-
main limited. For example, there is an evidence to suggest that
TSPO may play a role as a negative regulator of inflammatory
signalling in macrophages [108]. This supports the argument
that increased TSPO binding, in certain circumstances, in fact,
reflects a protective response rather than a pro-inflammatory,

tissue-damaging phenotype, and microglial activation could be
a normal response to independent pathological processes. This
has significant therapeutic implications when considering
TSPO-dependent agonistic versus antagonistic strategies, and
exploration for alternative PET-based ligands (Table.2)
targeting sensitive markers of glial activation [1••], as well as
the immune response, will be crucial to progress in this field.

Conclusion

It is increasingly apparent that neuroinflammation is implicated
in a diverse range of neurological and neuropsychiatric condi-
tions. Despite the discussed limitations, it should be apparent
that TSPO has emerged as an important neuroinflammatory
biomarker for disease monitoring in vivo and contributing to
our understanding of the manifestation chronic disease states.

While the development of novel techniques should be en-
couraged, neuroimaging researchers should continue to build
on existing methods to drive innovation forward and over-
come the inherent shortcomings in TSPO PET. Through the
accurate depiction of the pathophysiological processes, we
can not only improve diagnostic techniques, but develop
new and effective immunomodulatory treatments, with the
exciting potential of future neurorestorative therapies.
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