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Abstract

Purpose of Review The article reviews the recent findings on the use of optical coherence tomography angiography (OCTA) in
neurology.

Recent Findings OCTA is a new addition to the powerful and complementary technology of the OCT. Due to its noninvasiveness,
and reproducibility, it is possible to obtain high-resolution 3D images of the vessels of the human eye. As the vessels of the retina
with the presence of endothelial cell’s tight junctions resemble the brain vessels, it was hypothesized that the imaging of the
retinal vessels might bring insight into brain vessels. OCTA has been effectively used to predict retinal vessel abnormalities in
dementia, demyelization, optic disc neuropathies, and inherited degenerative diseases. Most common findings were decrease of
vascular density and flow and an increase of avascular zones.

Summary Although OCTA is a relative new technology, recent studies show that it can be successfully applied in neurology.

Keywords OCT angiography - OCTA review - Sclerosis multiplex - Neuroscience - OCT-A - Optical coherence tomography

angiography,

Introduction

The ability of ophthalmologists to detect blood vessels of the
fundus was always seen as a great advantage. For over
100 years, various machines to determine blood flow and to
visualize blood vessels have been developed. They have dif-
fered in their degree of precision, invasiveness, and patient
safety [1]. The introduction of optical coherence tomography
(OCT) is seen as one of the most fundamental milestones in
the history of ophthalmology. It enables 3D imaging of the
structures of the eye, e.g., ganglion cell (GCL), macula, optic
disc, or cornea, and can measure the size of the optic discs and
the thickness of the retinal layers. The submillimeter resolu-
tion is easily obtained in histological sections, and the poste-
rior segment penetration is > 1 mm. OCT uses a light source
and an interferometer and algorithms to produce images based
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on the amplitude and the delay of reflected light [2ee].
Currently, there are two different technologies utilized by the
OCTA devices—spectral domain (SD-OCT) and swept
source (SS-OCT). The latter technology is faster and, as it uses
longer wavelengths, it provides higher penetration. Moreover,
some studies have shown that SS-OCTA has higher sensitivity
than SD-OCT [3, 4].

Since 2006, a new software called OCT angiography
(OCTA) has been added to OCT devices to enable noninva-
sive visualization of blood flow. Although it took almost a
decade to get this technology on the market [5], OCTA is a
useful technology in detection of retinal diseases such as cho-
roidal neovascularization [6], macular malformations in telan-
giectasias [7], capillary dropouts in diabetic retinopathy [8],
perfusion loss in vessels occlusions [7], and changes in flow
around the optic disc in glaucoma [9]. In addition to the high
reproducibility and repeatability of foveal avascular zone
(FAZ) measurements and blood flow in healthy and multiple
sclerosis (MS) patients, respectively [2¢e, 10, 11], the capillary
changes in OCTA are also shown to correlate with that of
perimetry [12]. The presence of tight endothelial cell junctions
in the blood-retinal barrier resembles that of the blood—brain
barrier. Although the retinal circulation resembles that of a
brain, it lacks autonomic control [13, 14]. As CNS and retinal
arterioles share the same embryology and histology [15], mea-
suring the structure and flow within the retinal vessels offers
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the promise of an objective quantitative and noninvasive tech-
nique that in theory corresponds with brain vessel
architecture.

At present, we understand that the retinal blood supply is
organized into four vascular plexuses. The central retinal ar-
tery supplies blood to the superficial capillary plexus (SCP),
which then anastomoses and creates the intermediate (ICP)
and deep capillary plexuses (DCPs). The SCPs are located
within the retinal nerve fiber layer (RNFL), ganglion, and
inner plexiform layers. While the DCPs are located below,
the ICP are located above the inner nuclear layer [14]. Blood
vessels are not present in photoreceptors and outer plexiform
layers. The fourth retinal plexus is called radial peripapillary
capillary plexus (RPC) and runs parallel with the nerve fiber
layer axons. RPC contrary to the DCP does not have lobular
configuration [1]. Right now, OCTA, as it is coregistered with
OCT B-scan, is seen as a method capable to replace fluores-
cein angiography (FA) in most cases of the retinal and choroi-
dal neovascularizations (Fig. 1). FA is a dye-based technology
which visualizes only the SCP due to the blockade of

fluorescein from the deeper retinal layers. However, OCTA
enables detection of retinal vessels in desired layer [14]. To
understand this, let us imagine the difference between a tele-
scope located on earth that offers the astronomer only limited
insight into space due to blockage of UV light coming from
earth’s atmosphere and a telescope in the outer space with
unblocked insight into other galaxies in all light spectrums
[16].

How Does It Work?

OCTA works by collecting multiple cross-sectional scans (B-
scans) of the same location and then detecting the differences
in motion contrast, amplitude, intensity, or phase. The
methods used depend on a particular device. Since motionless
objects do not produce any change in a signal contrary to
moving objects and the retina and choroid are stationary tis-
sues, the differences in values are believed to be coming from
the only moving particle within them which is blood.
Erythrocytes, due to their biconcave structure, reflect light.

Fig. 1 a Optical coherence angiography of a healthy retina. 1. Scan of a
superficial layers. 2. Intermediate retinal plexus. 3. Deep retinal plexus. 4.
Choroid. 5. Color fundus photo with a red frame corresponding to the
area on an OCTA image. b 1. OCT B-scans of the retina. 2. B-scan with
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Such scanning is then performed in different axes to create a
3D image [17, 18].

What Can Be Measured in OCTA?

The primary function of this technology is to visualize the
architecture of blood vessels without the need to inject the
dye. It is important to know that the image that is being cre-
ated, unlike in FA, is just a result of a mathematical calculation
of the computer. This can be useful in calculating various
parameters including blood flow [19], vessel density, size of
a vascularized and FAZ [20], size of perfusion [21], fractal
analysis, or even measurement of complexity of a mathemat-
ical tree [22]. Furthermore, the descriptive morphologies of
the vessel architecture like diameter, length, or number of
branches can also be calculated [22].

Methods

A literature search was conducted including all articles pub-
lished up to September 2018. A PubMed, Web of Science,
Google Scholar, and Mendeley search with reference cross
matching was used to identify all relevant articles pertaining
to OCT angiography, dementia, neurology, brain, mild cogni-
tive decline, neuritis, multiple sclerosis, and neuropathy.

Dementia

Primary risk factors of neurodegenerative disorders are ad-
vanced age and cardiovascular disease. With the increase in
life expectancy, new methods of screening are needed [23]. At
the level of cerebral microvasculature, there is a growing ev-
idence of age-related drop in capillary numbers and density
observed in humans [24] and in rodents [25, 26]. Diagnostic
methods for detecting and defining neurodegenerative syn-
drome routinely used by neurologists such as CSF assessment,
PET, and MRI are either limited by their invasive nature or
high costs [27]. Alzheimer’s disease (AD) is considered the
most common type of dementia. Common ophthalmologic
signs and symptoms of AD are visual field changes and de-
creased visual acuity [28]. Pathologically, it is characterized
by deposition of plaques and tangles that consist of amyloid
and tau protein, respectively. It is estimated that retinal micro-
vascular changes such as microaneurysms, soft or hard exu-
dates, retinal hemorrhages, macular edema, intraretinal micro-
vascular abnormalities, venous beading, new vessels, vitreous
hemorrhage, or disc swelling are associated with cognitive
decline [29]. Moreover, other retinal alterations such as chang-
es in the thicknesses of macular RNFL are associated with
early changes in Alzheimer-type dementia [30]. Although oth-
er studies showed a decrease in ganglion cell layer (GCL)
[31], the changes in RNFL and inner plexiform layer [32]

are associated with the neocortical A3 accumulation, while
GCL is not [33]. A recent study evaluated OCTA findings in
AD. The authors described enlarged FAZ measured by the
OCTA device and decreased retinal vascular density and cho-
roidal thickness which correlated with a decrease on Mini
Mental State Examination. They attribute these changes to
decreased angiogenesis caused by binding of vascular endo-
thelial growth factor (VEGF) to AP plaques [34¢]. In a com-
parative study on twins, it was observed that a twin with AD
had larger FAZ in SCP and thinner choroid compared with the
healthy sibling [35]. Similarly, in a study by Jiang et al., AD
patients had reduced density of both SCP and DCP in com-
parison with controls, whereas patients with mild cognitive
impairment had reduced density only in DCP and in the supe-
rior nasal quadrant [36]. Thus, as the blood from the central
retinal artery supplies firstly SCP and then DCP, reduced SCP
density can lead to decreased blood flow through the outer
layers of retina which may lead to continual loss of ganglion
cell axons [37].

In migraine, mainly peripapillary RNFL thickness is re-
duced, especially in patients with aura [38]. One study dem-
onstrated reduced parafoveal SCP density and superior RPC
density in patients with migraine with aura compared with
migraine without aura and healthy controls. Furthermore, pa-
tients with aura had enlarged FAZ. However, the authors spec-
ulate that this is probably associated with increased risk of
retinovascular occlusion, normal tension glaucoma, and ische-
mic optic neuropathy among patients with migraine. The au-
thors did not observe significant changes between migraine
without aura and healthy controls [39¢].

The article by Nelis et al. describes changes in OCTA
observed in 21 eyes of 11 patients with cerebral autosomal
dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL). The patients showed
decreased vessel density in DCP which the authors associ-
ate with Notch3 mutation in pericytes. However, only 9
patients included had confirmed Notch3 mutations [15].
Notably, this corresponds to a report of OCT findings by
Fang et al. where the inner arterial diameter and arterial to
venous ratio of the inner and outer diameters correspond
negatively to a number of small infarcts in the 7T MRI [40].

Falavarjani et al. evaluated optic nerve microvasculature
in 21 eyes of patients with optic disc edema, pseudoedema,
and atrophy and compared them to 12 heathy eyes. They
observed decrease in the RPC which was more outstanding
in areas with sectorial optic atrophy. The capillaries of the
patients with disc edema were dilated and tortuous. The
mean capillary density was significantly decreased in eyes
with disc atrophy. Moreover, the RPC vessel density corre-
lates with the NFL thickness. The authors hypothesize that
reduced metabolic need is caused by reduced number of
nerve fibers; however, it had not been the subject of the
study [41].
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Optic Disc Ischemic Neuropathies

The role of OCTA in detecting vascular optic nerve abnormal-
ities is even more promising. Ischemic injury to the optic disc
is a clinical syndrome known as anterior ischemic optic neu-
ropathy (AION). This syndrome can be divided into arteritic
(AAION) and non-arteritic (NAION). AAION is a focal man-
ifestation of giant cell arteritis, a systemic inflammatory dis-
order, and the perfusion defect is located at the level of poste-
rior ciliary artery. In the NAION form, the perfusion defect is
at the distal end of the posterior ciliary circulation at the level
of paraoptic branches [42]. Fard et al. using OCTA observed a
2.2% loss of RPC compared with the healthy group [43].
Furthermore, Ling et al. using OCTA showed a 7.23% in-
crease in the size of nonvascular tissue in 21 eyes compared
with the controls’ eyes with NAION [44]. Patients with
NAION have unilaterally decreased RPC density, whereas
glaucomatous patients were bilateral [45]. Moreover, a posi-
tive correlation between decrease of RPC, RNFL [46], and
GCC [46] was observed. Although, at present, OCTA is not
helpful in distinguishing AION from NAION [42], it is rea-
sonable to consider the possibility that the changes located
proximal to the division of posterior ciliary arteries into
paraoptic and choroidal branches affect RPC in both
disorders.

Demyelinating Disease

Multiple sclerosis (MS) is a chronic demyelinating inflamma-
tory disease. Autopsy revealed that 99% of patients have had
signs of demyelination within the optic nerve [47]. Optic neu-
ritis is a primary manifestation in 25% of patients and can
occur in 50% of the patients during the course of the disease
[48e¢]. Although several articles concerning OCTA of patients
with MS appeared in the literature, one of the earlier studies
showed that optic nerve head (ONH) flow measured within
the whole optic nerve head with an experimental device in
patients with optic neuritis was reduced by 12.5% compared
to controls. Furthermore, the flow index was also lower in
patients without optic neuritis compared with controls.
Moreover, 21% of MS patients with correct visual acuity
showed abnormal flow [11].

Spain et al. showed reduced ONH perfusion by OCTA in
patients with MS, particularly those with a history of optic
neuritis. Although combining OCT angiography with other
OCT parameters increased the diagnostic accuracy of detect-
ing MS in eyes with optic neuritis, there was no significant
correlation among flow index and GCC and RNFL [48e°].
They used the same experimental procedure as Wang et al.
[11]. One relatively large OCTA study documented that
lowered vessel densities in both SCP and DCP in the
perifoveal region are correlated with decreased volume of cor-
responding retinal layers compared with the healthy controls.
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Furthermore, there was an increase in choriocapillaries density
which the authors linked to the inflammation within the last
24 months [49e°].

Overall, the literature indicates that MS leads to decreased
retinal ganglion cells and RNFL thickness measured in OCT,
which results in lower metabolic activity and rarefication of
the vascular plexus. Some authors advocate the presence of
autoregulatory mechanism or alterations in endothelium that
were observed in MS brains. The authors attribute the lack of
changes in the parafoveal regions among the groups to the
lack of macular RNFL and the fact that macula is supplied
by the choroid and the range of autoregulation is much bigger
than for the regions supplied by the retinal vessels [11].
However, they did not differentiated retinal vascular plexus
but measured flow index in the whole retina.

Neuromyelitis spectrum disorder (NMOSD) with AQP4-
IgG is characterized by the presence of AQP4-IgG and one of
the clinical characteristic: optic neuritis, acute myelitis, acute
brainstem syndrome, area postrema syndrome, symptomatic
cerebral syndrome with NMOSD brain lesions, symptomatic
narcolepsy, or acute diencephalic clinical syndrome with
NMOSD-typical diencephalic MRI lesions [50]. There are
some reports on the functionality of OCTA in NMOSD. A
recent study assessed peripapillary and parafoveal vascular
network in aquaporin-4 antibody positive NMOSD. The study
team evaluated 108 eyes of 67 patients divided into two
groups based on the history of optic neuritis. Moreover, 66
eyes of 33 healthy participants were added into study as a
control. RPC vessel density was significantly reduced com-
pared with both controls (15.7%) and non-neuritis patients
(13.5%). The parafoveal density was decreased to 3.2% and
5.9% in neuritis patients compared with non-neuritis patients
and controls, respectively. In addition, a positive correlation
between OCT parameters which are RNFL, GCL thickness,
and OCTA capillary density in both measured regions was
observed [S1ee]. In the retina, the Miiller glial cells expressing
aquaporin-4 which regulate blood flow [52] and support neu-
rons may be directly targeted by aquaporin-4 antibody [51ee];
the loss of which may lead to thinning of the retinal layers and
reduced vascular density [53]. The authors concluded that
vascular changes occur prior to the development of optic neu-
ritis and advocate OCTA as a future tool for detecting subclin-
ical vasculopathy in NMOSD patients without optic neuritis
[51e]. Same conclusions were drawn in that the decrease in
capillary density of both SCP and DCP observed in OCTA
correlates and partially contributes to neuroaxonal thinning of
the retina [54].

Optic Pathway Pathologies
Leber hereditary optic neuropathy (LHON) is a hereditary

mitochondriopathy that causes painless vision loss, typically
bilateral, that often affects young males. Its signs include
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transient telangiectasia seen in OCTA [55-57], swelling of the
RNFL (pseudoedema) in OCT, and absence of leakage in FA
[57, 58]. In a OCTA study of 22 patients with LHON divided
into four groups (unaffected carriers of the mitochondrial
DNA mutation, symptomatic patients in the early subacute
phase, late subacute, and chronic), a significant drop in RPC
density (19.06%) was first observed in the temporal regions of
early subacute patients compared with the unaffected carriers.
Whereas the late subacute patients had, in general, a decreased
temporal RPC density of 24.27% and a whole RPC density of
8.99%, and chronic patients had a decreased temporal RPC
density 0f 36.09% and a whole RPC density of 24.65%. While
in the chronic patients, decreased whole RPC density was
observed, the RPC density of unaffected carriers increased in
temporal regions together with RNFL thickness compared
with controls. The authors explain this fact by swelling of
the axons in both unaffected and acute stage patients as a
compensatory aggregation of mitochondria or due to the fail-
ure of axonal transport that leads to microangiopathy. As small
optic discs are risk factors in LHON, another explanation is
that the insufficient vascular supply causes axonal swelling
leading to compartment syndrome and to degeneration of gan-
glion cells [59-61]. Based on the current literature, it is im-
possible to determine whether the microangiopathy is causing
or correlates with the RNFL swelling.

Later, during the course of disease, this swelling turns into
atrophy. Secondly, the vascular decrease occurs faster than a
decrease in RNFL thickness which the authors attribute to the
slower resolution of swelling [60¢]. Another OCTA study
showed a 9.1% and 9.4% decrease in SCP and DCP, respec-
tively, compared to healthy subjects. This study also observed
higher decrease in the inferior and temporal regions of the disc
where the papillomacular bundle is located. However, in con-
trary to decrease in SCP that correlates with decrease in visual
loss, the authors observed no correlation between the visual
loss and OCT structural damages [55].

Another study reported the use of OCTA in patient with a
Wolfram syndrome, a rare neurodegenerative disease includ-
ing diabetes insipidus, diabetes mellitus, deafness, and optic
neuropathy. This entity is associated with a defect in trans-
membrane protein that maintains calcium homeostasis. The
OCTA showed reduced vessels in RPC and SCP that
corresponded with the OCT-measured RNFL thinning.
Morphologically, the vessels were telangiectatic and tortuous.
The authors compared the findings with the OCTA results of
LHON and dominant optic neuropathy patients and speculate
on the possible mitochondrial involvement [62]. Parrozzani
et al. advocate that retinal vascular remodeling is a conse-
quence of axonal degeneration.

In an OCTA study on 26 patients with posterior optic
pathway gliomas involving the chiasma, retrochiasmal, or
both, they observed reduction of macular perfusion in DCP,
whereas SCP was not affected by this entity. Furthermore,

reduction in OCT-measured RNFL is correlated with the
decrease in peripapillary perfusion. Therefore, the authors
demonstrated that the decrease of retinal perfusion is sec-
ondary to reduction of retinal neurons which leads to re-
duced metabolism. They suggest a pivotal role of Miiller
cells in this feedback mechanism [63e¢].

Discussion

OCTA opens unique opportunities and already showed great
potential in visualizing the blood vessels. Even early studies
using fundus photography showed association between retinal
vasculature and a risk of stroke [64, 65], or cognitive ability
[66, 67]. OCTA, however, is not free from shortcomings—the
biggest being the presence of artifacts coming from the motion
of'the eye or from the other vessels. Not all light is transmitted
from the erythrocytes, e.g., melanosomes of the choroid back-
scatter light so that the choroidal vessels are imagined dark
[68]. Despite constant upgrades in software, the motion arti-
facts are still limiting the use of the instrument in older patients
and children with poor cooperation as they have to fixate their
eyes for some time [22]. Moreover, presence of epiretinal
lesions such as myelinated fibers may also obscure the images
[69]. Studies conducted in animal models show that injecting
contrast agents that are more symmetrically shaped than the
erythrocytes allows us to observe images with less artifacts as
some of the artifacts are inherent to the method of detecting
erythrocytes [68].

OCTA is an emerging technology with still many limita-
tions, requiring careful use and interpretation. The literature
on the topic is of mediocre quality with mostly small, single-
center retrospective studies [43—46, 63+, 70-72]. Some au-
thors have calculated parameters based on several instruments
which can lead to inaccurate results [43]. Others had to export
the images to another program which could also reduce the
quality of the results [15]. The changes demonstrated in the
articles like enlargement of FAZ or decrease in capillary plex-
uses density are unspecific and were observed in many other
conditions like diabetic retinopathy [73], vessels occlusions
[74], or post-surgery [75]. Likewise, there is no body of liter-
ature addressing the relation of OCTA-imaged vessels and
treatment in neurological research. Last but not least, the man-
ufacturers use different algorithms for detecting retinal motion
and segmenting retinal layers making it difficult to compare
the results between the studies [17, 76]. In addition, in all
studies, only perimacular and papillary regions were assessed.
To conclude now, it is not possible to make a diagnosis based
on the OCTA images or blood flow.

Calculation of blood flow may lead to better understanding
of pathology and facilitate diagnosis of many neuro-
ophthalmic diseases. However, it is still unknown how reliable
are the results obtained by the machines because, firstly, the
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algorithms are sensitive to a certain speed—below or above
which the flow will not be detected nor the vessels visual-
ized—and, secondly, the accuracy of the flow speed depends
on OCT scan quality—images that are out of focus, full of
artifacts coming from optical opacities, and motion artifacts
will produce false results [77]. Whether flow indexes will enter
the clinical practice is also unknown. Another controversy ex-
ists whether the observed changes in the retinal vasculature
directly reflect the brain microvasculature or are secondary to
the vascular risk factors, e.g., aging [76]. A major methodo-
logical challenge exists as, at the time of writing this review,
the OCTA technology is still under rapid development.

Alternative techniques currently used in vessel visualization:

Currently, a few alternatives exist to OCTA.

Currently, many manufacturers sell OCT devices with
OCTA functionality. Moreover, many prototypes [78—80]
with much higher speed and penetration are used in research.
However, OCTA is not the only technology used in detection
of vessels and measuring flow. Adaptive optics is a tool of
correcting scanning laser ophthalmoscopy that allows to ob-
serve structures as small as single photoreceptors. However,
this method is time consuming and produces only small field
of view [1, 81, 82].

While Doppler OCT yields flow in microliter per minute,
OCTA can provide date in arbitrary units only; however, it can
only be used in larger vessels and perpendicular to the probe
[21].

A current gold standard technology—FA with fundus pho-
to— is limited by its 2D size and its inability to visualize a
particular layer as it creates a merged image of only microscop-
ical vessels. FA is associated with some side effects, the most
severe, however, very rare being anaphylactic shock. OCTA has
also much higher resolution than FA which makes it possible to
detect small areas of retinal non-perfusion that can resemble
cerebral microinfarctions [83]. Furthermore, there is no need to
inject the dye and, hence, the possibility to reproduce the exam-
ination as many times as the examiner wants. OCTA is more
sensitive than dye-based techniques in detecting small perifoveal
capillaries and radial peripapillary capillaries [84]. As it is not
dependent on dye reflectance, it can produce more sharp images
than FA, in which borders cannot be seen with such contrast due
to leakage [85]. However, FA is well established and many
diseases have particular features seen only in FA. Therefore,
performing FA may be crucial for diagnosis.

Conclusion

Advancements in noninvasive techniques for measurement
blood flow are likely to change many medical fields including
neurology. More prospective studies are needed with the use
of medications to observe changes in vascular parameters and
architectures to validate initial reports. Another field of future
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studies should be the use of OCTA in stroke, neurodegenera-
tive psychiatric disorders such as schizophrenia, and determi-
nation of retinal blood flow in other pathologies like Uhthoft’s
phenomenon [86, 87].
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