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Abstract The neurobiological basis of psychogenic move-
ment disorders (PMDs) has been elusive, and they remain
difficult to treat. In the last few years, functional neuroimaging
studies have provided insight into their pathophysiology and
neural correlates. Here, we review the various methodological
approaches that have been used in both clinical and research
practice to address neural correlates of functional disorders.
We then review the dominant hypotheses generated from the
literature on psychogenic paralysis. Overall, these studies
emphasize abnormalities in the prefrontal and anterior cingu-
late cortices. Recently, functional neuroimaging has been used
to specifically examine PMDs. These studies have addressed a
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major point of controversy: whether higher frontal brain areas
are directly responsible for inhibiting motor areas or whether
they reflect modulation by attentional and/or emotional pro-
cesses. In addition to elucidating the mechanism and cause,
recent work has also explored the lack of agency that charac-
terizes PMDs. We describe the results and implications of the
results of these imaging studies and discuss possible
interpretations.
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symptom - Functional imaging - Functional magnetic
resonance imaging - Positron emission tomography - Single
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Introduction

Psychogenic movement disorders (PMDs) are movement dis-
orders thought to result from a psychological or psychiatric, as
opposed to a primarily neurological, disturbance. The term
‘functional movement disorders’ has also been used, to reflect
the frequent absence of a psychological trigger and the current
understanding of these disorders (see [1] for a recent review).
However, here we will use the term ‘psychogenic’, in keeping
with the nomenclature used in most imaging studies of these
disorders [2]. Although the diagnosis of PMDs technically
includes the voluntary production of the illness characteristics
(i.e. malingering or factitious disorders, in which symptoms
are attributable to external or internal gains, respectively),
such cases are rare [3—5] and most are thought to be due to
involuntary processes. PMDs have been described as a “crisis
for neurology” [6]: they are very common [7-9], challenging
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to diagnose [10, 11], difficult to treat effectively [12—15] and
associated with a poor prognosis [16—19]. The limited under-
standing of their psychopathophysiology underlies the diffi-
culties in their management [20, 21]. Insights from neuroim-
aging studies are therefore important for tackling the major
problem of PMDs.

In recent years, neuroimaging has begun to elucidate the
mechanisms and neural correlates of PMDs. This includes the
neuroanatomical basis for PMDs, and the identification of
dysfunctional processing and network interactions in brain
areas related to sensorimotor control, attention and emotion.

Neuroimaging Methods: Advantages and Limitations

Several different neuroimaging methods have been used to
study psychogenic neurological disorders, each with their spe-
cific properties. In clinical practice, structural imaging primar-
ily has a role as a ‘negative diagnostic marker’ by detecting the
absence of gross neurological disease [22]. There is a relative
paucity of research using structural techniques to examine the
specific anatomy of psychogenic neurological disorders [23].
Clinical use of functional imaging modalities (positron emis-
sion tomography, PET, and single photon emission computed
tomography, SPECT) includes the differentiation of
Parkinson’s disease from psychogenic parkinsonism [24, 25].
However, although a negative dopamine transporter SPECT
scan in the setting of a parkinsonian syndrome can be very
useful to confirm impairment of the dopaminergic pathways, it
does not completely exclude a diagnosis of organic parkinson-
ism, e.g. for patients with ‘scans without evidence of dopami-
nergic deficit’ [26-28], or for those with drug-induced parkin-
sonism [1]. It is also recognized that psychogenic and organic
parkinsonism can coexist [29], and patients with psychogenic
parkinsonism may therefore require longitudinal follow-up [3].

In contrast to clinical imaging, functional magnetic reso-
nance imaging (fMRI) has been widely used for research
studies, in addition to PET and SPECT. These methods have
been used to characterize the neural correlates and establish
neurobiological models for psychogenic neurological disor-
ders. Functional magnetic resonance imaging (fMRI) has the
advantages of lack of radiation, higher spatial and temporal
resolution than PET or SPECT and greater potential for model-
ling neural systems, owing to the scale and richness of fMRI
datasets. However, PET and SPECT offer analysis of perfusion,
arguably a more direct marker of local neurometabolic rates
than values inferred from the blood oxygen level dependent
contrast of fMRL. It is also easier to study ‘natural’ movements
by allowing participants to perform motor tasks outside the
scanner or immediately prior to scanning, during the period
when the radiotracer is injected. Different analytical approaches
have been adopted, such as statistical parametric mapping and
scaled subprofile mapping, reflecting the need for measures of
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both localization and integration of neural systems. For the
former, brain areas that are significantly different in activation
between conditions are identified via analysis of covariance on
a voxel-by-voxel basis, whereas in the latter, a variant of
principal component analysis is performed that identifies co-
variant neural network activity. In addition, functional connec-
tivity analyses have allowed inferences to be made about the
coupling of task-related states with changes in neural interac-
tions. These methods include psychophysiological interactions
in general linear models (PPI) [30], dynamic causal modelling
and Granger causality modelling [31, 32]. The latter has been
adopted to evaluate the directionality of effects, determining
whether activity in one brain area causes changes in a candidate
target region. Functional imaging by magnetoencephalography
has yet to be used to study PMDs, and the excellent spatial and
temporal resolution of magnetoencephalography mean that it is
a potentially powerful tool to study the complex temporal
dynamics and disordered network integration in PMDs.

Although detecting changes in neural activation and net-
works can be informative about neural mechanisms, it cannot,
in isolation, explain the psychological mechanisms of PMDs. It
might be tempting to conclude that differences in brain activity
cause the psychogenic disorder, but there are at least two other
possible interpretations: that they are the effect of the illness, or
that they reflect compensatory changes in the neural networks.
Nonetheless, neuroimaging can generate testable hypotheses,
encouraging further study using other research tools, such as
behavioural and electrophysiological methods [33—40].

A challenge for studies of psychogenic neurological disor-
ders, and particularly for studies of PMDs, has been the
identification of homogeneous groups of patients to allow
group analysis. There are marked differences in affected body
areas, the type and combination of neurological presentation,
the psychological trigger and the characteristics of the move-
ment disorder. Functional neuroimaging has been used to
examine individuals or groups of patients with various senso-
ry and motor psychogenic neurological disorders (Table 1)
[41-54, 55¢, 562, 57+, 58, 59, 60°]. The focus has been, until
recently, predominantly on negative motor symptoms, such as
psychogenic paralysis. Although one cannot easily extrapolate
the findings to PMDs, this provided the benefit of removing
some of the methodological and analytical challenges of
studying patients with differing hyperkinetic states.
Moreover, there is considerable overlap between psychogenic
paralysis and PMDs in many patients [61¢]. We will therefore
first consider the conclusions from studies of patients with
psychogenic paralysis.

Insights from Psychogenic Paralysis

The comparison of studies on psychogenic paralysis is limited
by small sample sizes and methodological heterogeneity:
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different experimental paradigms, different durations of the
deficit (acute versus chronic) and different participant enrol-
ment criteria with respect to comorbidities, such as depression
and chronic pain. Most have used motor tasks that are close to
the functional deficit [62], such that participants have been
asked to try to move the affected limb, imagine moving the
paralysed limb or feign immobility of the unaffected limb [42,
44,50, 63, 64]. This can lead to potential confounds related to
differing degrees of motor performance and sensory feedback.
Studies have also recruited volunteers who may be psycho-
logically or neurobiologically distinct from patients who do
not agree with their diagnosis of a psychogenic disorder or
who choose not to engage in research [3].

Nevertheless, there is a body of neuroimaging evidence on
the pathophysiology of these disorders. Overall, these ac-
counts emphasize abnormalities outside the core motor net-
work, including the prefrontal cortex and anterior cingulate
cortex. Several key hypotheses have emerged:

1. There is impaired generation of motor intention [44, 48,
65].

There is impairment of motor conceptualization [66].
There is disruption of motor execution [45, 53, 67].
Patients have impaired self-monitoring [50, 53].

There are deficits in limbic processing [42, 45, 63, 64].
There is dysregulation of ‘top-down’ control from higher-
order frontal regions [41, 51, 54].

AN

The major point of controversy is whether higher frontal
brain areas are directly responsible for inhibiting motor areas
or whether they reflect modulation by attentional or emotional
processes [2]. Vuilleumier [68] pointed out that previous
studies could not parse out the role of limbic activity in the
inhibitory process because of confounding factors, such as the
stress that a patient may experience secondary to trying to
move a subjectively paralysed leg. Vuilleumier et al. [45]
addressed this issue by investigating patients with psychogen-
ic hemisensory loss, measuring blood flow via SPECT during
tuning fork stimulation of the affected and unaffected limbs in
both the active phase and the recovered phase of their illness.
They showed that hypoactivation of the thalamus and striatum
contralateral to the affected limb normalized with the patients’
recovery from their illness. They concluded that pathogenic
striatothalamocortical circuits play a primary role in the path-
ogenesis of these disorders. More recently, Cojan et al. [53]
used fMRI to examine a single patient with psychogenic
paralysis compared with 24 controls and six feigners of paral-
ysis during a go—no-go task performed with both affected
(left) and unaffected hands. The patient had normal prepara-
tory activation in the right motor cortex, indicating preserved
motor intentions, but there were concomitant increases in
activation in ventromedial prefrontal cortical regions. During
failure to execute movement in go trials with the affected
hand, there was activation in the precuneus and ventrolateral

@ Springer

frontal gyrus, but no activation of right frontal areas normally
subserving inhibition. There was, however, increased activa-
tion in these areas during no-go trials for the unaffected hand.
In contrast, the healthy controls who were asked to feign
hemiparalysis showed similar activation in both go and no-
go trials for the affected hand, suggesting that distinct inhib-
itory mechanisms are implicated in simulation and conversion
paralysis. Edwards et al. [61¢] point out that the specific region
of the ventromedial prefrontal cortex that was active in this
study dovetails precisely with the region proposed by Burgess
et al. [69] to allow sustained, self-maintained, attentional
mediation. In contrast to Cojan et al., de Lange et al. [54]
performed PPI analysis examining the coupling between the
different nodes of the prefrontal cortex and sensorimotor areas
and did not demonstrate connectivity between the ventrome-
dial prefrontal cortex and the motor network during their
motor imagery task (imaging or visualizing an action without
performing it). Instead, they found increased negative cou-
pling between the dorsolateral prefrontal cortex and sensori-
motor areas, and increased positive coupling between the
dorsolateral prefrontal cortex and dorsolateral premotor cor-
tex. The strength of the coupling was greater when patients
imagined movements of their affected, compared with their
unaffected, hand. The two studies provide evidence for frontal
areas modulating motor activity in a more complex manner
than pure motor inhibition.

Neuroimaging of PMDs

Despite the potential clinical similarities between psychogenic
paralysis and PMDs, the latter are associated with positive
phenomena rather than solely a lack of movement. Thus, their
pathophysiology is unlikely to be purely related to inhibition
of movement. There are fewer studies specifically of PMDs
[54, 55¢, 56¢, 57+, 58, 59, 60°], but they have tended to recruit
larger cohorts, and have increased awareness of the clinical,
psychological and neural heterogeneity amongst patients.

Several key questions concerning the pathophysiology of
PMDs have been posed. How are the symptoms generated
(mechanism); why are the symptoms generated (cause); and
why is the symptom experienced as being involuntary (touch-
ing on the concept of agency) [34, 70—72]? Neuroimaging has
contributed to the emerging understanding of all three func-
tions in PMDs: mechanism, cause, and agency.

Motor control could be impaired at several stages: plan-
ning, execution or inhibition. It could also be modulated by
abnormal top-down processes such as attentional mechanisms
[35] or affective mechanisms, as suggested by the clinical
observation that distraction often normalizes symptoms. To
address this, Voon et al. [56¢] performed an elegant study
using a task with different affective stimuli, presenting them
to patients with PMDs and healthy controls. The principal
innovation was that the task was unrelated to the motor deficit,
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thereby circumventing issues related to impaired motor task
performance and focusing on neurocognitive systems for
emotional processing and arousal, including the amygdala.
The choice of task was particularly pertinent, given the influ-
ences of emotional events on the initiation or maintenance of
psychogenic neurological disorders [73]. Patients showed
similar levels of activation in the right amygdala for fearful
faces as healthy controls, but increased activation for happy
faces. Furthermore, this activation failed to habituate in pa-
tients when happy faces were shown repeatedly. This finding
is consistent with reports that show that such patients have
greater startle reflexes to arousing stimuli [74], and that pa-
tients with psychogenic neurological disorders display a fail-
ure of habituation of galvanic skin responses to acoustic
stimuli [75, 76]. In addition, using two methods of connectiv-
ity (PPI and Granger causality modelling), they showed that
patients viewing emotionally charged stimuli compared with
neutral stimuli had abnormal connectivity between the amyg-
dala and the supplementary motor area, and that the likely
direction of influence was from the amygdala to motor re-
gions. This was the first study to show that patients with
PMDs have greater neural responses to arousal, along with
increased interactions between the brain regions associated
with arousal and motor control. It therefore provides a frame-
work for explaining both the cause and the maintenance of
PMD symptoms.

In a further study, Voon et al. [57¢] examined whether brain
regions associated with motor initiation are affected during
voluntary action selection in patients with PMDs compared
with healthy volunteers. Eleven patients with PMDs and 11
healthy volunteers performed either an internally or an exter-
nally generated two-button action selection task during fMRI.
When performing both internally and externally generated
movements, the patients with PMDs had abnormally low
activity of the supplementary motor area and increased activ-
ity of the right amygdala and the left anterior insula and
bilateral posterior cingulate cortices. Thus, there was lower
activity in regions associated with motor preparation and
higher activity in limbic structures during motor preparation,
suggesting a possible mechanism of aberrant emotional pro-
cessing impacting on normal motor planning. Moreover, dur-
ing internally versus externally generated action selection, the
left supplementary motor area had lower functional connec-
tivity with bilateral dorsolateral prefrontal cortices in patients
compared with controls, providing evidence for impaired top-
down regulation of internally generated action selection.
Together, the two studies suggest that emotionally arousing
events might provoke an aberrant action selection response
from the supplementary motor area, which is both hypoactive
and functionally disconnected from prefrontal top-down
regulation.

The perception of involuntariness is clear despite evidence
that the movements are generated by the same motor network

as for voluntary actions [77]: the abnormal movements do not
have the normal sense of intention or ownership that is asso-
ciated with our usual voluntary movement [33, 34]. For ex-
ample, psychogenic movements, such as functional myoclo-
nus, are preceded by a Bereitschaftspotential (‘readiness po-
tential”), whose origin includes regions such as the premotor
cortex, supplementary motor area and primary motor cortex
[78]. Furthermore, psychogenic tremor can be entrained, i.e.
the frequency of the tremor takes on the same frequency of
voluntary rhythmic movements in another body part,
suggesting that neural oscillators involved in voluntary move-
ment and PMDs interact and converge on common pathways
[77]. A recent fMRI study addressed the involuntary nature of
the symptoms of PMDs. Voon et al. [55¢] found lower activity
in the right temporoparietal junction in patients with psycho-
genic tremor, compared with activations evoked by asking the
patients to simulate their tremor voluntarily. This area is
thought to be a comparator of actual and predicted sensory
feedback. Curiously, this finding goes against studies that
have demonstrated increased activity in this area in conditions
when movements feel involuntary in both normal healthy
people [79, 80] and patients with schizophrenia [81].
However, they also demonstrated lower functional connectiv-
ity between this region and sensorimotor regions and limbic
regions, a finding that potentially explains the anomaly [61¢].
Voon et al. [55¢] proposed that their findings might represent a
failure in PMDs to match the actual and predicted sensory
feedback, giving rise to a feeling in the patients that their
movements are involuntary.

There have been few neuroimaging studies that compare
the abnormal activation in PMDs with their organic counter-
part [58, 60¢]. Such comparisons are essential for inferences
about causality, necessity and sufficiency: there may be sim-
ilarly abnormal brain activation patterns in other psychogenic
and organic movement disorders, including in the motor and
limbic neural systems.

To address this, our group compared the functional neuro-
imaging correlates of psychogenic and organic dystonia [60¢].
Similarities and differences of regional cerebral blood flow
were compared in a carefully selected group of patients with

Fig. 1 The syndrome of fixed dystonia of the lower limb. (Reproduced
with permission of Oxford University Press from: Schrag et al. [12])

@ Springer
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Fig. 2 Statistical parametric maps showing differences in regional cere-
bral blood flow between organic (DYT/ gene mutation positive) and
psychogenic (fixed) dystonia groups, averaged across all three tasks (rest-
ing, maintaining a posture, and moving the right lower limb, which was the
affected body part in the patients). The statistical parametric maps show
regions with relatively increased regional cerebral blood flow (p <0.05,
corrected for multiple independent comparisons) in either organic dystonia

Fig. 3 Statistical parametric
maps showing abnormally
increased regional cerebral blood
flow in dorsolateral/polar
prefrontal cortex in both organic
dystonia (a) and psychogenic
dystonia (b) versus control
subjects during movement of the
right foot compared with rest
(illustrated p <0.001,
uncorrected). The differential
activation in this region was
significant (p <0.05) when
familywise-corrected within an a
priori region of interest defined by
Brodmann areas 10 and 46
bilaterally. (Reproduced with
permission of Oxford University
Press from Schrag et al. [60])

@ Springer

(a) or psychogenic dystonia (b) within the core motor network. Notably,
organic dystonia showed predominantly enhanced cortical regional cere-
bral blood flow, whereas psychogenic dystonia showed predominantly
enhanced subcortical regional cerebral blood flow when these groups
were compared with each other. (Reproduced with permission of Oxford
University Press from Schrag et al. [60¢])
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fixed dystonia (Fig. 1) [12, 82] and genetically determined
(DYTI gene mutation positive) dystonia, maximizing clinical
compatibility within and between groups. It was hypothesized
that there would be differences in abnormal brain activation
patterns between the two patient groups. In addition, the
hypothesis that activation of the prefrontal cortex is a hallmark
of a psychogenic cause was challenged. Patients with psycho-
genic or organic dystonia of the right leg and matched healthy
volunteers underwent H,'>0 PET of regional cerebral flow
during three tasks in which participants rested, held a fixed
posture or undertook paced ankle movements of their right
(affected) leg against a footplate dynamometer. Continuous
monitoring of the surface electromyogram and footplate ma-
nometry were used to monitor task performance. We found
that there are anatomically distinct patterns of abnormal re-
gional cerebral blood flow in psychogenic versus organic
dystonia. To identify task-independent effects, all three tasks
were averaged: patients with organic dystonia were found to
have a predominantly cortical pattern of activation, with
increased regional cerebral blood flow in primary motor,

premotor and parietal cortices, together with reduced flow in
subcortical structures, including the cerebellum. In contrast,
patients with psychogenic dystonia had an opposite pattern of
activation, with abnormal increases in regional cerebral blood
flow in subcortical structures, including the striatum and
cerebellum, and concomitant reduced perfusion in the primary
motor cortex. Not only did the two groups of patients differ
from healthy volunteers, they also differed significantly from
each other in these regions (Fig. 2). These patterns were
present across different motor tasks and at rest, and it is
interesting to reflect that these effects of diagnostic group
(psychogenic, organic, control) would probably have been
missed by fMRI, which relies on task-by-group interactions.
The identification of distinct cortical-subcortical neuroimag-
ing features that differentiate organic from psychogenic dys-
tonia complements transcranial magnetic stimulation studies
on plasticity in dystonia [83]. Examining the task-dependent
effects in the prefrontal cortex, we also identified significant
increases in movement-related activation in the right
dorsolateral/polar prefrontal cortex in both psychogenic and,

Schrag et al. (2013)
Ref. [60]

Actual
sensory
feedback Prefro nltal Cortex Voon et al. (2010)
' Rel. 56
i Voon et al. (2011)
' Ref. [57)
TPJ W Supplementary Motor
/ Predicted Area “
N .’ sensory
feedback
S o Life events )
Primary Motor Cortex ' A Y& Previous
“The movements are not learning
mine” experiences

(Sensory consequences are not

matched by ‘corollary
discharge’

and thus are regarded as bei

externally generated)

Ref. [55]

Fig. 4 Possible neural networks involved in psychogenic movement
disorders based on the latest advances from the neuroimaging literature.
There is an overly sensitive emotional network, possibly conditioned by
previous learning experiences, that feeds into the extended motor network
via the striatum. In the presence of abnormal self-directed attention,
mediated by abnormal prefrontal cortical activation that is functionally
disconnected from the core motor network, these changes drive the
production of aberrant movements that are not yoked to a normal sense
of self-agency. This is because of hypoactivity of the supplementary

After Voon ef al. (2010)

motor area that normally provides the ‘corollary discharge’ signal that
informs the temporoparietal junction (7P.J) ‘comparator’ what to expect
in terms of sensory feedback as a result of internally generated, as
opposed to externally generated, movements. As a consequence of the
abnormal network activity, the movements are interpreted by patients as
being involuntary. An interrupted line denotes a weakened network.
(Reproduced with permission of Oxford University Press from Schrag
et al. [60+] and Voon et al. [56¢])

@ Springer



402, Page 10 of 13

Curr Neurol Neurosci Rep (2013) 13:402

surprisingly, organic dystonia (Fig. 3). This argues against the
longstanding proposal that the abnormalities in the prefrontal
cortex are a defining feature of psychogenic disorders. This
region of prefrontal cortex forms part of an extended motor
network (reviewed in [84]) and may be a common substrate in
both disorders resulting from changes in motor attention. This
supports the aforementioned work suggesting abnormal atten-
tional and emotional control in neural network activity be-
tween the amygdala and the supplementary motor area.
Although there are no direct projections between these two
brain areas, the amygdala projects to the subcortical striatum,
which has projections via the thalamus to the supplementary
motor area [85]. A subcortical signature specific to psycho-
genic dystonia might thereby cause abnormal activation of the
supplementary motor area via the striatum.

Figure 4 illustrates an emerging schematic overview of
possible mechanisms derived from the principal findings from
these studies on PMDs to date. In support of this hypothetical
framework, recent work by Edwards et al. [61¢] provides a
holistic neurobiological account, applying a Bayesian and
Helmbholtzian statistical framework that offers a novel ap-
proach to elucidating PMDs. This accommodates several
fundamental clinical observations of PMDs and links three
different levels of explanation: (1) neuronal synaptic mecha-
nisms; (2) attentional and intentional psychological processes;
and (3) computational mechanisms in the brain. In their for-
mulation, PMDs can be understood in terms of pathologically
precise beliefs (prior beliefs) at an intermediate level of the
motor hierarchy (such as the supplementary motor area) that
are focused and released by higher-level attentional processes.
The latter processes are modulated by symptom expectations,
physical and emotional experiences, and beliefs about illness,
resulting in aberrant motor responses by classic lower-level
reflex arcs. The consequences of the motor response are not
predicted by the dissociated higher-level networks. This mod-
el suggests that there is “a symptomatic [mis]interpretation or
misattribution of agency to external causes; in short, a failure
to realize that the movement was intended”. The result is that
movements are experienced by patients as being involuntary.

Conclusions

Neuroimaging of PMDs is beginning to answer the major
questions concerning the neurobiology of this group of severe
and chronic illnesses. However, there remain many unan-
swered questions. For instance, what determines the nature
of the neurological disorder—tremor, dystonia, myoclonus,
pure gait disturbance, parkinsonism, chorea, and tics? What
are the differences in the mechanisms underlying each of these
clinical entities? Can the imaging findings be developed to
help support diagnosis of individual patients in clinical prac-
tice? This is more pressing for some clinical scenarios than for

@ Springer

others, e.g. patients with possible psychogenic dystonia,
which can be difficult to distinguish clinically from organic
dystonia. Can we develop novel treatment approaches on the
basis of neuroimaging data? For example, if regional changes
in neural activation or network dynamics are causal for PMDs,
can this be favourably modulated by therapeutic transcranial
magnetic stimulation [86] or transcranial direct current stimu-
lation? We propose that an integrated approach to PMDs is
required to accelerate the mechanistic understanding and find
new treatments. Neuroimaging will continue to play a leading
role in such a strategy, for at least two reasons. Pragmatically,
fMRI, PET and related methods provide diagnostic stratifica-
tion of patients and objective outcome markers. Perhaps of
even greater importance is the contribution of neuroimaging to
answer questions regarding the mechanism and cause.
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