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Abstract Every year, more cases of sepsis appear in intensive
care units. The most frequent complication of sepsis is septic
encephalopathy (SE), which is also the essential determinant
of mortality. Despite many years of research, it still is not
known at which stage of sepsis the first signs of SE appear;
however, it is considered the most frequent form of encepha-
lopathy. Patients have dysfunction of cognitive abilities and
consciousness, and sometimes even epileptic seizures. Despite
intensive treatment, the effects of SE remain for many years
and constitute an important social problem. Numerous studies
indicate that changes in the brain involve free radicals, nitric
oxide, increased synthesis of inflammatory factors, distur-
bances in cerebral circulation, microthromboses, and ische-
mia, which cause considerable neuronal destruction in differ-
ent areas of the brain. To determine at what point during sepsis
the first signs of SE appear, different experimental models are
needed to detect the aforementioned changes and to select the
proper therapy for this syndrome.
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Introduction

Sepsis is defined as the excessive inflammatory reaction of an
organism to an infection [1, 2]. It is not a disease in itself, but
rather is a systemic inflammatory response due to infection,
burn, trauma, or other factors [3]. Sepsis and its complications
are the most frequent cause of high mortality in the intensive
care unit (ICU), estimated at about 750,000 cases annually in
the USA [4, 5], and detected sepsis cases make up 75 % of all
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illnesses treated in the ICU [4, 6]. Additionally, despite con-
siderable progress in diagnosis and treatment, a high degree of
mortality is still noted, and the morbidity rate has been in-
creasing annually from about 1.5 % to as much as 8 % [7]. The
high mortality rate persists among patients treated for sepsis,
even 1 month to 1 year after they leave the ICU [8]. This
indicates that further examination of the effects of medical
treatment for sepsis is necessary, especially considering that
long-lasting disturbances in organ function may appear, both
physically—as, for example, with dyspnea—and mentally, as
fatigue or depression [9, 10].

Because the nervous system is susceptible to many differ-
ent factors, it is not surprising that the intensive inflammatory
response of sepsis affects brain function. Liver or renal dys-
function accompanying sepsis may result in encephalopathy
[11, 12]; however, sepsis may result in encephalopathy even
in the absence of systemic organ failure. Sepsis is typically
regarded as being caused by infectious factors, such as bacte-
ria, viruses, or fungi; however, encephalopathy may also
occur with metabolic disorders [11], exposure to toxins [12]
or radiation [13], injury [14, 15], disturbances in blood flow
[16], and other factors. Among the many complications of
sepsis, septic encephalopathy (SE) is considered the most
frequent [4, 18], and it is estimated that 9-71 % of patients
with diagnosed sepsis exhibit symptoms of encephalopathy
[4, 19, 20]. Although SE has been described as a reversible
syndrome, studies indicate long-lasting cognitive and depres-
sive disturbances in patients after the sepsis resolves [21, 22].
Recovery from these cognitive and mental symptoms is often
slow. The mortality of SE remains high and correlates with the
intensity of the course of SE, as determined by the Glasgow
Coma Scale [23-25], suggesting that nervous system dysfunc-
tion is the pivotal factor determining sepsis mortality.

Diagnosis of Septic Encephalopathy
A major problem that still exists is the inability to properly
recognize the signs of SE, because septic patients are usually

sedated, which masks neurologic disturbances. The diagnosis
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of SE requires the recognition of brain dysfunction, which
depends on using clinical, electrophysiologic, or biochemical
criteria [26—29]. Helpful diagnostic tools for determining
mental state and predicting the markers of SE course and
mortality are clinical scales such as the Glasgow Coma Scale,
the Confusion Assessment Method for the ICU, and Adaption
to the Intensive Care Environment [30-33]. In nonsedated
patients, the diagnosis is simpler, and the Confusion Assess-
ment Method for the ICU, which uses acute symptoms of
mental changes, inattention, and disorganized thinking to
indicate encephalopathy or delirium, may be applied [34,
35]. The Adaption to the Intensive Care Environment scale
is based on a patient’s visual reaction to different stimulants,
allowing the clinician to estimate the patient’s degree of
consciousness or comprehension [20, 32]. In turn, the Glas-
gow Coma Scale or the Richmond Agitation—Sedation Scale
may be applied in sedated patients [31, 36].

Another method used to obtain significant information
about a patient’s mental status is electroencephalography; it
is among the most sensitive diagnostic tools, and disturbances
detected by electroencephalography correlate well with SE
severity [37, 38, 39+, 40]. Young et al. [41] ascertained that
the electroencephalogram is more sensitive than classic clin-
ical criteria that define the state of consciousness; as disease
severity increases, electroencephalogram recordings change
from normal to excessive theta waves, followed by predomi-
nant delta waves, triphasic waves, and finally, suppression or
burst suppression. In turn, Oddo et al. [42] observed periodic
epileptiform discharges as well as seizure activity on electro-
encephalogram recordings in 22 % of SE patients, but in two
thirds of the patients, the electroencephalographic abnormal-
ities did not correlate with clinical observations. However, the
aforementioned electroencephalographic abnormalities were
more frequent in SE patients and positively correlated with the
mortality or frequency of multiorgan dysfunction [43].

Neuroimaging changes are also helpful in detecting SE.
Because of its ease and convenience, computed tomography
of the brain is used most often [44], although more informa-
tion is obtained by cranial magnetic resonance imaging
(MRI). MRI is particularly helpful in excluding other diseases.
MRI in SE may show cerebral infarction, leukoence-
phalopathy, and vascular edema [45]. Although these obser-
vations are hardly specific to SE [46], postmortem examina-
tions show more frequent changes in magnetic resonance
images of SE patients, most likely reflecting disturbances in
the blood-brain barrier and white matter destruction, along
with microvascular edema [45, 46].

Significant changes appear in the cerebral circulation with
SE, and transcranial Doppler (TCD) sonography has been
used to monitor cerebral vasomotor reactivity in the condition
[39ee, 47-49]. TCD sonography makes it possible to study
cerebral arterial vessel reactivity to different parameters as
increasing extracellular CO, partial pressure or decreasing
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pH, using the brain’s inherent ability to maintain a constant
blood flow despite changes in cerebral perfusion pressure [50,
51]. Often, disturbances in vascular autoregulation, especially
in the early stages of SE [39+°], suggest that hemodynamic
phenomena play a crucial role in the course of SE [52].
However, TCD sonography cannot be entirely relied on as a
diagnostic tool because in some instances of SE no differences
in cerebral perfusion have been detected [48, 49]. Perhaps
these differences are the result of the different rates of the
course of inflammatory processes affecting the function of the
cerebral vessel endothelium [49].

The ability to detect qualitative and quantitative differences
of specific substances in tissue or blood may serve as a
diagnostic tool, assist in prognosis, help in the selection of
the appropriate therapy, and assist in the development of
suitable research models to better recognize disease mecha-
nisms. Unfortunately, examinations conducted over many
years indicate there are no unambiguous or specific markers
of SE. Most of the markers, such as increased serum levels of
S-100f3 protein or nonspecific enolase, indicate only patho-
logic processes in the brain, not their nature [27, 28], and do
not correlate with SE severity. Moreover, in some cases, there
are no changes in the S-100f3 protein level in cerebrospinal
fluid despite an increased level in the serum [46],
disqualifying it as a marker of SE. Certainly, the discovery
and use of other markers in the future remain challenges
worthy of further research.

Clinical Symptoms of Septic Encephalopathy

The main features of encephalopathy are disturbances of
consciousness, impaired cognitive function, personality
changes, lack of concentration, and depressive symptoms
[17, 21, 53]. Clinical symptoms observed during SE affect
870 % of patients with diagnosed sepsis [54] and include
inattention, confusion, and considerable excitation, which
may lead to stupor and coma. The first symptoms usually
appear in the early stage of sepsis, often before other organ
disturbances are diagnosed [55, 56], and represent the severest
symptoms, such as weakness, anorexia, malaise, and concen-
tration deficits. Sometimes convulsions, myoclonus, or
asterixis may be observed, as well as focal or generalized
seizures, although less frequently than in other encephalopa-
thies [19, 57]. As a result, ill patients fall into delirium with
acute impairment of consciousness, which appears in up to
82 % of mechanically ventilated patients [34]. Delirium is
associated with several adverse outcomes, including increased
morbidity and mortality, prolonged hospitalization, and poor
surgical outcome, and the longer it lasts, the greater the
probability of long-lasting behavioral disorders [58¢].
Increasing data indicate the significant risk of long-lasting
neurocognitive changes, which may have a considerable
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influence on patients’ quality of life [22, 59-61]. These
changes are varied, but mainly encompass psychomotor ac-
tivity, visual and functional memory, verbal fluency, and
visual construction [62]. It is estimated that about 45 % of
patients who recover from sepsis still show cognitive dysfunc-
tion 1 year after hospitalization [63], and the dysfunction may
persist even longer [61, 64, 65¢]. Moreover, many patients
who have had sepsis show depressive signs and anxiety dis-
orders [66], with symptoms affecting up to 58 % of former
ICU patients [64]. This creates a huge social problem because,
depending on the degree of impairment, a tremendous burden
may be placed on family members and caregivers [62].

Pathophysiology of Septic Encephalopathy

The cause of SE is still poorly understood, although many
mechanisms for its formation and development have been
proposed [67]. Although bacterial infection is one of the most
frequent causes of sepsis, the vast majority of studies have not
found bacteria present in the nervous system, which indicates
that the cause of SE does not result in the direct infection of the
brain with microorganisms, but has a different basis. Among
the factors involved in SE are oxidative stress [68], increased
cytokine and proinflammatory factor levels [69], disturbances
in cerebral circulation [70], changes in blood-brain barrier
permeability [71], injury to the brain’s vascular endothelium
[72—74], altered levels of neurotransmitters [3], changes in
amino acid levels [75], and bacterial endotoxins leaking
through the blood-brain barrier [76]. However, the brain
dysfunction observed during SE most likely is the result of a
combination of these factors, with the onset of one factor
leading to the activation of others.

Bacterial endotoxins such as lipopolysaccharide (LPS) are
primary factors that can initiate a considerable inflammatory
reaction in an organism. In blood, LPS creates a complex with
circulating LPS-binding protein (LBP), which, after binding
to the membrane-bound CD14 receptor expressed constitu-
tively by neutrophils and monocytes/macrophages, activates
the immune system. In the brain, this type of receptor has been
found in microglial cells [77]; therefore, these receptors may
react to the appearance of bacterial toxins. Endothelial and
smooth muscle cells do not possess the membrane-bound
CD14 receptor but become activated by soluble CD14 recep-
tor circulating in the blood. Through Toll-like receptors 2 and
4 [78, 79], the LPS-LBP-CD14 complexes stimulate the
synthesis of proinflammatory cytokines such as interleukin-
13, interleukin-6, and tumor necrosis factor o« [67], and initi-
ate the synthesis and secretion of other inflammatory factors,
reactive oxygen radicals [68], and nitric oxide [80]. The influx
of monocytes and neutrophils to inflamed tissue increases, and
the inflammatory reaction spreads through adjoining tissues
[67]. The serum concentration of acute-phase proteins, such as

protein C, increases, and the mobilization of the complement
cascade system leads to the appearance of C3a and C5a
components [81], which further increase production of
proinflammatory cytokines [11]. The coagulation cascade
overactivates, leading to disseminated intravascular
coagulopathy, which disturbs the hemodynamic equilibrium
and finally leads to microvessel thrombosis [82, 83]. Conse-
quently, there is impairment of blood—brain barrier integrity,
allowing the influx of other active compounds that stimulate
the inflammatory response and spread it through the brain.

The blood-brain barrier strictly regulates the microenvi-
ronment of the nervous system, controls the blood flow
through brain capillaries, and protects against the influx of
harmful substances circulating in the blood. It is formed by
tightly connected endothelial cells of brain vessels, which
closely cooperate with astrocytes and pericytes [71]. It is
known that during SE, blood-brain barrier integrity is
compromised [18, 74, 84], which disrupts ionic homeostasis
and allows transport of cytokines and inflammatory cells into
the brain, directly or indirectly, resulting in neuronal loss [85,
86]. Blood-brain barrier permeability is also augmented by
overexpression of inducible nitric oxide synthase in brain
vessel endothelium [87], and increased pinocytosis [71] al-
lows active substances to cross the blood—brain barrier despite
preservation of the continuity of tight junctions between en-
dothelial cells. Loss of blood-brain barrier impermeability
leads to a disruption in water transport to the brain, which is
tightly regulated by aquaporin 4 [88], resulting in perivascular
edema, destruction of astrocyte endfeet [74], and secondary
damage to nerve tissue [45]. This results in a decrease in
diffusion through microvessel walls, a decrease in oxygen
and nutrient use, and removal of harmful metabolites [74].
Because the cerebral blood autoregulation mechanism is dis-
turbed during SE, the drop in blood pressure in patients with
sepsis may directly affect the cerebral vascular bed, leading to
hypoperfusion and, consequently, neuronal degeneration as a
result of hypoxia—ischemia [89]. Because the brain consumes
a large quantity of oxygen but has a weak antioxidant defense,
it is susceptible to injury during sepsis. Because hypoxic—
ischemic damage to the brain is a common feature of many
brain diseases, its occurrence in SE patients does not make it a
specific change; however, the disturbances in cerebral micro-
circulation observed during sepsis progression may play a
crucial role in SE pathogenesis [47, 72]. Moreover, microcir-
culatory disorders are often connected to the upregulation of
inflammatory genes such as tumor necrosis factor «,
interleukin-13, and inducible nitric oxide synthase transcripts,
which also suggests a potential relationship between brain
inflammation and blood flow disturbances.

As a generalized inflammatory reaction progresses, nitric
oxide, cytokines, and prostaglandins modulate neurotransmis-
sion in the brain, especially regarding the {3-adrenergic sys-
tem, y-aminobutyric acid (GABA)ergic synapses, central
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muscarinic cholinergic regulation, corticotropin-releasing fac-
tor, adrenocorticotropic hormone, vasopressin synthesis, med-
ullary autonomic center output, and the monoaminergic,
glutamatergic, and neurotrophic systems, leading to behavior-
al changes [69]. Increased levels of tyrosine, tryptophan, and
phenylalanine have been observed in serum and cerebrospinal
fluid, attenuating neurotransmitter synthesis. Moreover,
prolonged exposure to LPS disrupts synaptic transmission
and excitability of the hippocampal pyramidal neurons that
are part of the emotional and behavioral systems [90]. LPS
drives the considerable decrease in the density of cells in the
hippocampal CA1/CA2 regions, the cell loss in the prefrontal
cortex, and the reduction in cholinergic innervation in the
cortex [90], which may contribute to memory deficits. More-
over, in patients with SE, the concentration of aromatic amino
acids in the brain increases, and these substances may play a
role as “false” neurotransmitters and/or disturb neurotransmit-
ter synthesis [75]. This may lead to derangement of the quan-
titative relationship between aromatic amino acids and
branched-chain amino acids, causing a decrease in the con-
centrations of norepinephrine, dopamine, and serotonin in the
brain, whereas GABA levels remain unchanged, which may
be the reason for mental abnormalities in the early stages of
sepsis [17, 75].

During SE, brain damage has been observed most often in
the cortex, but sometimes also in other structures, even the
spinal cord [17]. The most frequent changes in the brain are
ischemic lesions, especially in the autonomic system nuclei.
Perivascular edema, swelling of astrocyte endfeet, and signs
of apoptosis may be observed. Neurons have shrunken nuclei
and damaged cell membranes [74], and astrocytes, microglia,
and perivascular macrophages show a high degree of activity
[91], which undoubtedly is evidence of an inflammatory
process.

Models of Septic Encephalopathy

Through years of research, several animal models of sepsis
and SE have been created; the main ones are endotoxemia
induction, bacterial or viral inoculation, and cecal ligation and
puncture (CLP). The simplest method, and the one used most
often to develop an inflammatory response, is endotoxemia
induction. Bacterial endotoxins in the form of LPS injected
intravenously or intraperitoneally cause symptoms similar to
those of sepsis, mainly in the vascular system, which influ-
ences the nervous system [80]. After endotoxemia induction,
the concentration of proinflammatory cytokines increases, but
with a temporal profile different from that in humans, which is
the weakness of this method. However, this method allows
precise control of the concentration of endotoxin in the serum
and detection of disturbances in the organism’s function
depending on the LPS dose [92]. Another important
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advantage of this method is that it may be used in human
research [37].

Another method of developing a multiorgan inflammatory
state is the administration of cultures of live bacteria, instead
of their endotoxins [93]. This approach allows precise selec-
tion of the particular bacterial strain, as well as determination
of the proper concentration of live bacteria, depending on the
phenomenon studied. However, a disadvantage of this method
is that the bacteria must be administered in large doses, be-
cause a large portion of them are removed by the immune
system; an individual’s likelihood of having a reaction to a
particular pathogen also plays a role. On the other hand, one
advantage is the possibility of inducing an infection with a
concrete pathogen and in a particular organ, such as the lungs
(inhalation) or kidneys (injection) [93].

Presently, the standard research model for sepsis, septic
shock, and SE is CLP, which imitates peritonitis. In this
method, the appendix is ligated and then punctured [84],
allowing peritonitis to develop; the size of the perforation
determines the sharpness and course of sepsis. CLP repro-
duces fairly well the hemodynamic and metabolic changes
observed in sepsis and SE [94] and substantially imitates their
course in humans; therefore, it now is the standard animal
model of in vivo research on the inflammatory reaction.

Conclusion

SE is a highly complicated phenomenon in which various
factors play a role. It is the most frequent type of encephalop-
athy seen in the ICU, and its appearance influences survival
and mortality rates during treatment. Clinical sepsis arises
mainly as a result of the activity of various bacterial products,
which stimulates and establishes the inflammatory process;
therefore, it is very difficult to simulate this syndrome in
laboratory research. Unfortunately, little is known about what
causes the changes that affect the brain and lead to reduced
consciousness and behavioral symptoms as SE progresses. SE
survivors may have long-lasting neurocognitive disturbances
in the form of anxiety or depression, which are thought to
result from inflammatory processes in the brain during sepsis
that are caused by oxidative stress, inflammatory factors,
blood-brain barrier injury, changes in cerebral circulation,
and emboli of microvessels. These phenomena have a nega-
tive impact on the synthesis and secretion of neurotransmitters
and stimulate the degeneration of neurons and their loss in
different areas of the nervous system. Presently, an effective
therapy developed specifically to treat SE does not exist;
therefore, supportive therapy for the underlying disease is
administered. Further studies are needed to determine the
predispositions of sepsis and at what point during its progress
inflammatory processes in the brain begin; it is hoped these
studies will result in the detection of new markers to allow SE
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to be diagnosed very early so that the appropriate therapy can
be initiated.
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