Skip to main content

Advertisement

Log in

Therapeutic Hypothermia for Traumatic Brain Injury

  • Neurotrauma (J Levine, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Experimental evidence demonstrates that therapeutic temperature modulation with the use of mild induced hypothermia (MIH, defined as the maintenance of body temperature at 32–35 °C) exerts significant neuroprotection and attenuates secondary cerebral insults after traumatic brain injury (TBI). In adult TBI patients, MIH has been used during the acute “early” phase as prophylactic neuroprotectant and in the sub-acute “late” phase to control brain edema. When used to control brain edema, MIH is effective in reducing elevated intracranial pressure (ICP), and is a valid therapy of refractory intracranial hypertension in TBI patients. Based on the available evidence, we recommend: applying standardized algorithms for the management of induced cooling; paying attention to limit potential side effects (shivering, infections, electrolyte disorders, arrhythmias, reduced cardiac output); and using controlled, slow (0.1–0.2 °C/h) rewarming, to avoid rebound ICP. The optimal temperature target should be titrated to maintain ICP <20 mmHg and to avoid temperatures <35 °C. The duration of cooling should be individualized until the resolution of brain edema, and may be longer than 48 h. Patients with refractory elevated ICP following focal TBI (e.g. hemorrhagic contusions) may respond better to MIH than those with diffuse injury. Randomized controlled trials are underway to evaluate the impact of MIH on neurological outcome in adult TBI patients with elevated ICP. The use of MIH as prophylactic neuroprotectant in the early phase of adult TBI is not supported by clinical evidence and is not recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Lu J, Marmarou A, Choi S, et al. Mortality from traumatic brain injury. Acta Neurochir Suppl. 2005;95:281–5.

    Article  PubMed  CAS  Google Scholar 

  2. Elf K, Nilsson P, Enblad P. Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit Care Med. 2002;30:2129–34.

    Article  PubMed  Google Scholar 

  3. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24 Suppl 1:S1–106. Erratum in: J Neurotrauma 2008,25:276–278.

    Google Scholar 

  4. Suarez JI. Outcome in neurocritical care: advances in monitoring and treatment and effect of a specialized neurocritical care team. Crit Care Med. 2006;34(9 Suppl):S232–238.

    Article  PubMed  Google Scholar 

  5. Treggiari MM, Schutz N, Yanez ND, Romand JA. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care. 2007;6:104–12.

    Article  PubMed  Google Scholar 

  6. Stein SC, Georgoff P, Meghan S, et al. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg. 2010;112:1105–12.

    Article  PubMed  Google Scholar 

  7. •• Schreckinger M, Marion DW: Contemporary management of traumatic intracranial hypertension: is there a role for therapeutic hypothermia? Neurocrit Care 2009, 11:427–436. This is an important non-systematic review that quantifies, across several clinical studies, the effect of moderate induced hypothermia to treat intracranial hypertension in adult TBI patients, and compared its efficacy to other commonly used therapies for raised intracranial pressure, such as moderate hyperventilation, osmotic therapy, barbiturates.

    Article  PubMed  Google Scholar 

  8. Liu L, Yenari MA. Therapeutic hypothermia: neuroprotective mechanisms. Front Biosci. 2007;12:816–25.

    Article  PubMed  CAS  Google Scholar 

  9. Shiozaki T, Sugimoto H, Taneda M, et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg. 1993;79:363–8.

    Article  PubMed  CAS  Google Scholar 

  10. Clifton GL, Allen S, Barrodale P, et al. A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma. 1993;10:263–71.

    Article  PubMed  CAS  Google Scholar 

  11. Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997;336:540–6.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang K, Wang JX. Comparative study on mild hypothermia in patients with severe head injury and the most severe head injury. Inner Mongol Med J. 2000;32:4–6.

    Google Scholar 

  13. Jiang J, Yu M, Zhu C. Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1-year follow-up review of 87 cases. J Neurosurg. 2000;93:546–9.

    Article  PubMed  CAS  Google Scholar 

  14. Aibiki M, Maekawa S, Yokono S. Moderate hypothermia improves imbalances of thromboxane A2 and prostaglandin I2 production after traumatic brain injury in humans. Crit Care Med. 2000;28:3902–6.

    Article  PubMed  CAS  Google Scholar 

  15. Clifton GL, Miller ER, Choi SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001;344:556–63.

    Article  PubMed  CAS  Google Scholar 

  16. Shiozaki T, Hayakata T, Taneda M, et al. A multicenter prospective randomized controlled trial of the efficacy of mild hypothermia for severely head injured patients with low intracranial pressure. Mild Hypothermia Study Group in Japan. J Neurosurg. 2001;94:50–4.

    Article  PubMed  CAS  Google Scholar 

  17. Yan Y, Tang W. Changes of evoked potentials and evaluation of mild hypothermia for treatment of severe brain injury. Chin J Traumatol. 2001;4:8–13.

    PubMed  CAS  Google Scholar 

  18. Polderman KH, Peerdeman SM, Girbes AR. Hypophosphatemia and hypomagnesemia induced by cooling in patients with severe head injury. J Neurosurg. 2001;94:697–705.

    Article  PubMed  CAS  Google Scholar 

  19. Polderman KH, Tjong Tjin Joe R, Peerdeman SM, et al. Effects of therapeutic hypothermia on intracranial pressure and outcome in patients with severe head injury. Intensive Care Med. 2002;28:1563–73.

    Article  PubMed  Google Scholar 

  20. Gal R, Cundrle I, Zimova I, Smrcka M. Mild hypothermia therapy for patients with severe brain injury. Clin Neurol Neurosurg. 2002;104:318–21.

    Article  PubMed  Google Scholar 

  21. Zhi D, Zhang S, Lin X. Study on therapeutic mechanism and clinical effect of mild hypothermia in patients with severe head injury. Surg Neurol. 2003;59:381–5.

    Article  PubMed  Google Scholar 

  22. Qiu WS, Liu WG, Shen H, et al. Therapeutic effect of mild hypothermia on severe traumatic head injury. Chin J Traumatol. 2005;8:27–32.

    PubMed  Google Scholar 

  23. Liu WG, Qiu WS, Zhang Y, et al. Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study. J Int Med Res. 2006;34:58–64.

    PubMed  CAS  Google Scholar 

  24. Qiu W, Shen H, Zhang Y, et al. Noninvasive selective brain cooling by head and neck cooling is protective in severe traumatic brain injury. J Clin Neurosci. 2006;13:995–1000.

    Article  PubMed  Google Scholar 

  25. Qiu W, Zhang Y, Sheng H, et al. Effects of therapeutic mild hypothermia on patients with severe traumatic brain injury after craniotomy. J Crit Care. 2007;22:229–36.

    Article  PubMed  Google Scholar 

  26. • Clifton GL, Valadka A, Zygun D, et al.: Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol 2011, 10:131–139. This recent multicenter randomized control trial that evaluated the effect of mild induced hypothermia as early neuroprotectant was stopped because of lack of effect. Additional negative data that do not support the use of hypothermia in the early phase of TBI. This study suggests hypothermia may be more beneficial in patients with focal vs. diffuse TBI.

    Article  PubMed  Google Scholar 

  27. Polderman KH. Therapeutic hypothermia in the intensive care unit: problems, pitfalls and opportunities (review). Part 1: indications and evidence. Intensive Care Med. 2004;30:556–75.

    Article  PubMed  Google Scholar 

  28. Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.

    Article  PubMed  CAS  Google Scholar 

  29. Glenn TC, Kelly DF, Boscardin WJ, et al. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab. 2003;23:1239–50.

    Article  PubMed  CAS  Google Scholar 

  30. Nilsson P, Laursen H, Hillered L, Hansen AJ. Calcium movements in traumatic brain injury: the role of glutamate receptor-operated ion channels. J Cereb Blood Flow Metab. 1996;16:262–70.

    Article  PubMed  CAS  Google Scholar 

  31. Moquin D, Chan FK. The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci. 2010;35:434–41.

    Article  PubMed  CAS  Google Scholar 

  32. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–8.

    Article  PubMed  CAS  Google Scholar 

  33. Bacher A, Illievich UM, Fitzgerald R, et al. Changes in oxygenation variables during progressive hypothermia in anesthetized patients. J Neurosurg Anesthesiol. 1997;9:205–10.

    Article  PubMed  CAS  Google Scholar 

  34. Soukup J, Zauner A, Doppenberg EM, Menzel M, et al. Relationship between brain temperature, brain chemistry and oxygen delivery after severe human head injury: the effect of mild hypothermia. Neurol Res. 2002;24:161–8.

    Article  PubMed  CAS  Google Scholar 

  35. Oddo M, Frangos S, Milby A, et al. Induced normothermia attenuates cerebral metabolic distress in patients with aneurysmal subarachnoid hemorrhage and refractory fever. Stroke. 2009;40:1913–6.

    Article  PubMed  Google Scholar 

  36. Colbourne F, Grooms SY, Zukin RS, et al. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc Natl Acad Sci USA. 2003;100:2906–10.

    Article  PubMed  CAS  Google Scholar 

  37. •• Dietrich WD, Bramlett HM: The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics 2010, 7:43–50. An extensive review of all mechanisms by which mild induced hypothermia exerts neuroprotection and of experimental and clinical evidence in favor of hypothermic therapy after traumatic brain injury.

    Article  PubMed  Google Scholar 

  38. Truettner JS, Alonso OF, Bramlett HM, Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab. 2011;31:1897–907.

    Article  PubMed  CAS  Google Scholar 

  39. Marmarou A. A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus. 2007;22:1–10.

    Google Scholar 

  40. Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129:1021–9.

    Article  PubMed  CAS  Google Scholar 

  41. Lang EW, Lagopoulos J, Griffith J, et al. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003;74:1053–9.

    Article  PubMed  CAS  Google Scholar 

  42. Marmarou A, Signoretti S, Fatouros PP, et al. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg. 2006;104:720–30.

    Article  PubMed  Google Scholar 

  43. Nag S, Manias JL, Stewart DJ. Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol. 2009;118:197–217.

    Article  PubMed  Google Scholar 

  44. Sun MC, Honey CR, Berk C, et al. Regulation of aquaporin-4 in a traumatic brain injury model in rats. J Neurosurg. 2003;98:565–9.

    Article  PubMed  CAS  Google Scholar 

  45. Katayama Y, Kawamata T. Edema fluid accumulation within necrotic brain tissue as a cause of the mass effect of cerebral contusion in head trauma patients. Acta Neurochir Suppl. 2003;86:323–7.

    Article  PubMed  CAS  Google Scholar 

  46. Scherbel U, Raghupathi R, Nakamura M, et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci U S A. 1999;96:8721–6.

    Article  PubMed  CAS  Google Scholar 

  47. Toulmond S, Rothwell NJ. Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat. Brain Res. 1995;671:261–6.

    Article  PubMed  CAS  Google Scholar 

  48. Forster C, Clark HB, Ross ME, Iadecola C. Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathol. 1999;97:215–20.

    Article  PubMed  CAS  Google Scholar 

  49. Bayir H, Kochanek PM, Liu SX, et al. Increased S-nitrosothiols and S-nitrosoalbumin in cerebrospinal fluid after severe traumatic brain injury in infants and children: indirect association with intracranial pressure. J Cereb Blood Flow Metab. 2003;23:51–61.

    Article  PubMed  CAS  Google Scholar 

  50. Shore PM, Jackson EK, Wisniewski SR, et al. Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children. Neurosurgery. 2004;54:605–11.

    Article  PubMed  Google Scholar 

  51. Rossetti AO, Oddo M. The neuro-ICU patient and electroencephalography paroxysms: if and when to treat. Curr Opin Crit Care. 2010;16:105–9.

    Article  PubMed  Google Scholar 

  52. Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.

    Article  PubMed  Google Scholar 

  53. Vespa PM, McArthur DL, Xu Y, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010;75:792–8.

    Article  PubMed  CAS  Google Scholar 

  54. Truettner JS, Alonso OF. Dalton Dietrich, W. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab. 2005;25:1505–16.

    Article  PubMed  CAS  Google Scholar 

  55. Oda Y, Gao G, Wei EP, Povlishock JT. Combinational therapy using hypothermia and the immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood–brain barrier dysfunction after traumatic brain injury in rat. J Cereb Blood Flow Metab. 2011;31:1143–54.

    Article  PubMed  CAS  Google Scholar 

  56. Lotocki G, de Rivero Vaccari JP, Perez ER, et al. Alterations in blood–brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma. 2009;26:1123–34.

    Article  PubMed  Google Scholar 

  57. Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 2008;371:1955–69.

    Article  PubMed  Google Scholar 

  58. Martini WZ. Coagulopathy by hypothermia and acidosis: mechanisms of thrombin generation and fibrinogen availability. J Trauma. 2009;67:202–9.

    Article  PubMed  CAS  Google Scholar 

  59. Nagel S, Su Y, Horstmann S, et al. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res. 2008;1188:198–206.

    Article  PubMed  CAS  Google Scholar 

  60. •• Sadaka F, Veremakis C: Therapeutic hypothermia for the management of intracranial hypertension in severe traumatic brain injury: a systematic review. Brain Inj. 2012, Mar 26. Epub ahead of print. A systematic review that examines the efficacy and clinical utility of mild induced hypothermia for the treatment of intracranial hypertension in TBI patients.

  61. Deng H, Han HS, Cheng D, et al. Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke. 2003;34:2495–501.

    Article  PubMed  Google Scholar 

  62. Truettner JS, Suzuki T, Dietrich WD. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res. 2005;138:124–34.

    Article  PubMed  CAS  Google Scholar 

  63. Yenari MA, Han HS. Influence of hypothermia on post-ischemic inflammation: role of nuclear factor kappa B (NFκB). Neurochem Int. 2006;49:164–9.

    Article  PubMed  CAS  Google Scholar 

  64. Sahuquillo J, Vilalta A. Cooling the injured brain: how does moderate hypothermia influence the pathophysiology of traumatic brain injury. Curr Pharm Des. 2007;13:2310–22.

    Article  PubMed  CAS  Google Scholar 

  65. Karkar KM, Garcia PA, Bateman LM, et al. Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold. Epilepsia. 2002;43:932–5.

    Article  PubMed  Google Scholar 

  66. Atkins CM, Truettner JS, Lotocki G, et al. Post-traumatic seizure susceptibility is attenuated by hypothermia therapy. Eur J Neurosci. 2010;32:1912–20.

    Article  PubMed  Google Scholar 

  67. Kernie SG, Parent JM. Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis. 2010;37:267–74.

    Article  PubMed  Google Scholar 

  68. Kuo JR, Lo CJ, Chang CP, et al. Brain cooling-stimulated angiogenesis and neurogenesis attenuated traumatic brain injury in rats. J Trauma. 2010;69:1467–72.

    Article  PubMed  Google Scholar 

  69. Lotocki G, de Rivero Vaccari J, Alonso O, et al.: Oligodendrocyte vulnerability following traumatic brain injury in rats: effect of moderate hypothermia. Therapeutic Hypothermia and Temperature Management 2011, 1:43–51.

    Google Scholar 

  70. Feng JF, Zhang KM, Jiang JY, et al. Effect of therapeutic mild hypothermia on the genomics of the hippocampus after moderate traumatic brain injury in rats. Neurosurgery. 2010;67:730–42.

    Article  PubMed  Google Scholar 

  71. Dietrich WD, Atkins CM, Bramlett HM. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma. 2009;26:301–12.

    Article  PubMed  Google Scholar 

  72. Fay T. Observations on generalizated refrigeration in cases of severe cerebral trauma. Assoc Res Nerv Ment Dis Proc. 1945;24:611–9.

    Google Scholar 

  73. Tokutomi T, Morimoto K, Miyagi T, et al. Optimal temperature for the management of severe traumatic brain injury: effect of hypothermia on intracranial pressure, systemic and intracranial hemodynamics, and metabolism. Neurosurgery. 2007;61(1 Suppl):256–65.

    PubMed  Google Scholar 

  74. Gupta AK, Al-Rawi PG, Hutchinson PJ, Kirkpatrick PJ. Effect of hypothermia on brain tissue oxygenation in patients with severe head injury. Br J Anaesth. 2002;88:188–92.

    Article  PubMed  CAS  Google Scholar 

  75. McIntyre LA, Fergusson DA, Hebert PC, et al. Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA. 2003;289:2992–9.

    Article  PubMed  Google Scholar 

  76. Jiang JY, Xu W, Li WP, et al. Effect of long-term mild hypothermia or short-term mild hypothermia on outcome of patients with severe traumatic brain injury. J Cereb Blood Flow Metab. 2006;26:771–6.

    Article  PubMed  Google Scholar 

  77. Suehiro E, Povlishock JT. Exacerbation of traumatically induced axonal injury by rapid posthypothermic rewarming and attenuation of axonal change by cyclosporine A. J Neurosurg. 2001;94:493–8.

    Article  PubMed  CAS  Google Scholar 

  78. Suehiro E, Ueda Y, Wei EP, et al. Posttraumatic hypothermia followed by slow rewarming protects the cerebral microcirculation. J Neurotrauma. 2003;20:381–90.

    Article  PubMed  Google Scholar 

  79. Iida K, Kurisu K, Arita K, Ohtani M. Hyperemia prior to acute brain swelling during rewarming of patients who have been treated with moderate hypothermia for severe head injuries. J Neurosurg. 2003;98:793–9.

    Article  PubMed  Google Scholar 

  80. Lavinio A, Timofeev I, Nortje J, et al. Cerebrovascular reactivity during hypothermia and rewarming. Br J Anaesth. 2007;99:237–44.

    Article  PubMed  CAS  Google Scholar 

  81. Thompson HJ, Kirkness CJ, Mitchell PH. Hypothermia and rapid rewarming is associated with worse outcome following traumatic brain injury. J Trauma Nurs. 2010;17:173–7.

    PubMed  Google Scholar 

  82. • Andrews PJ, Sinclair HL, Battison CG, et al.: European society of intensive care medicine study of therapeutic hypothermia (32-35°C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial). Trials 2011, 12:8. This article reviews the study protocol of an ongoing multi-centre randomized controlled trial examining the effects of hypothermia – titrated to reduce intracranial pressure – on morbidity and mortality 6 months after traumatic brain injury.

    Article  PubMed  Google Scholar 

  83. Clifton GL, Choi SC, Miller ER, et al. Intercenter variance in clinical trials of head trauma-experience of the National Acute Brain Injury Study: hypothermia. J Neurosurg. 2001;95:751–5.

    Article  PubMed  CAS  Google Scholar 

  84. Harris OA, Colford Jr JM, Good MC, Matz PG. The role of hypothermia in the management of severe brain injury: a meta-analysis. Arch Neurol. 2002;59:1077–83.

    Article  PubMed  Google Scholar 

  85. Henderson WR, Dhingra VK, Chittock DR, et al. Hypothermia in the management of traumatic brain injury. A systematic review and meta-analysis. Intensive Care Med. 2003;29:1637–44.

    Article  PubMed  Google Scholar 

  86. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. III. Prophylactic hypothermia. J Neurotrauma. 2007;24 suppl 1:21–5.

    Google Scholar 

  87. Peterson K, Carson S, Carney N. Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma. 2008;25:62–71.

    Article  PubMed  Google Scholar 

  88. Signorini DF, Alderson P. Therapeutic hypothermia for head injury. Cochrane Database Syst Rev. 2000;2:CD001048.

    PubMed  Google Scholar 

  89. Gadkary CS, Alderson P, Signorini DF. Therapeutic hypothermia for head injury. Cochrane Database Syst Rev. 2002;1:CD001048.

    PubMed  Google Scholar 

  90. Alderson P, Gadkary C, Signorini DF. Therapeutic hypothermia for head injury. Cochrane Database Syst Rev. 2004;4:CD001048.

    PubMed  Google Scholar 

  91. • Sydenham E, Roberts I, Alderson P: Hypothermia for traumatic head injury. Cochrane Database Syst Rev 2009, 2:CD001048. The latest meta-analysis of the Cochrane Collaboration evaluating post-traumatic prophylactic hypothermia, and including 22 randomized controlled trials and 1587 patients.

    PubMed  Google Scholar 

  92. Fox JL, Vu EN, Doyle-Waters M, et al. Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CJEM. 2010;22:355–64.

    Google Scholar 

  93. Maas A, Stocchetti N. Hypothermia and the complexity of trials in patients with traumatic brain injury. Lancet Neurol. 2011;10:111–3.

    Article  PubMed  Google Scholar 

  94. Badjatia N, Strongilis E, Gordon E, et al. Metabolic impact of shivering during therapeutic temperature modulation: the Bedside Shivering Assessment Scale. Stroke. 2008;39:3242–7.

    Article  PubMed  Google Scholar 

  95. Oddo M, Frangos S, Maloney-Wilensky E, et al. Effect of shivering on brain tissue oxygenation during induced normothermia in patients with severe brain injury. Neurocrit Care. 2010;12:10–6.

    Article  PubMed  CAS  Google Scholar 

  96. Choi HA, Ko SB, Presciutti M, et al. Prevention of shivering during therapeutic temperature modulation: the Columbia anti-shivering protocol. Neurocrit Care. 2011;14:389–94.

    Article  PubMed  Google Scholar 

  97. Choi HA, Badjatia N, Mayer SA. Hypothermia for acute brain injury-mechanisms and practical aspects. Nat Rev Neurol. 2012;8:214–22.

    PubMed  CAS  Google Scholar 

  98. Mongardon N, Perbet S, Lemiale V, et al. Infectious complications in out-of-hospital cardiac arrest patients in the therapeutic hypothermia era. Crit Care Med. 2011;39:1359–64.

    Article  PubMed  Google Scholar 

  99. Kamps M, Bisschops LA, van der Hoeven JG, Hoedemaekers CW. Hypothermia does not increase the risk of infection: a case control study. Crit Care. 2011;15:R48.

    Article  PubMed  Google Scholar 

  100. Simosa HF, Petersen DJ, Agarwal SK, et al. Increased risk of deep venous thrombosis with endovascular cooling in patients with traumatic head injury. Am Surg. 2007;73:461–4.

    PubMed  Google Scholar 

Download references

Acknowledgements

Mauro Oddo is supported by a grant form the Swiss National Science Foundation (grant nr. 320030_138191).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Oddo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbano, L.A., Oddo, M. Therapeutic Hypothermia for Traumatic Brain Injury. Curr Neurol Neurosci Rep 12, 580–591 (2012). https://doi.org/10.1007/s11910-012-0304-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-012-0304-5

Keywords

Navigation