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Introduction
The development of severe neuromuscular weakness often
complicates recovery from critical illness. In some studies,
the development of a neuromuscular cause of weakness
occurs in the majority of critically ill patients [1]. The two
syndromes that account for the vast majority of cases of
acquired weakness in the intensive care unit are critical ill-
ness polyneuropathy (CIP), and an acute myopathy known
as critical illness myopathy (CIM). Although it was initially
thought that CIP was the most common cause of weakness
in the ICU, several recent studies have found that CIM is
more common in many centers [1,2,3••].

Critical Illness Myopathy
Critical illness myopathy was first described in patients
with asthma who were treated with high-dose corticoster-

oids and neuromuscular blocking agents (NMBAs). The
syndrome has been given multiple names, such as acute
quadriplegic myopathy, thick filament myopathy, acute
necrotizing myopathy of intensive care, rapidly evolving
myopathy with myosin-deficient fibers, and critical care
myopathy. The term "critical illness myopathy" has been
proposed as a single, uniform term for this disorder [4•].

Critical illness myopathy is often only detected after
the acute illness has resolved. If the myopathy is detected
early during the period of acute illness, the rate of mortal-
ity is high due to the severity of the underlying illness. In
most patients, the myopathy is first noticed as the patient
begins to recover from encephalopathy and/or sedation. At
that time it is noted that the patient is not weaning from
the ventilator, and upon further examination severe diffuse
weakness is often noted. Sensation and reflexes are usually
spared. Subsequent recovery occurs over a period of 1 to 3
months and prolongs the hospital course [1,5]. In a pro-
spective study of liver transplant patients, the mean time in
the intensive care unit (ICU) for those with CIM was 7
weeks, but it was only 2 weeks for those without CIM [6].
This difference was mostly due to the failure to wean from
mechanical ventilatory support. After patients begin to
improve and are extubated, recovery can be rapid. In one
study, all patients with CIM had near functional indepen-
dence within 1 month of extubation [5].

The risk factors first associated with CIM were high-
dose corticosteroids and nondepolarizing NMBAs. More
recently, it has been recognized that sedative drugs such as
propofol, which are widely used in the ICU, may be risk
factors for CIM [7], as well as for sepsis and the resultant
systemic inflammatory response syndrome. In several stud-
ies, CIM has occurred in septic patients who have not
received corticosteroids and/or NMBAs [2,8,9]. It is the
authors' opinion that a number of the agents that predis-
pose to CIM (NMBAs, sedative agents, or even sepsis itself)
share the feature of producing prolonged immobility of
muscle. In animal studies, it has been demonstrated that
loss of muscle activity produces a stereotypic series of
changes that contribute to the development of CIM [10]. If
loss of muscle activity is a risk factor for CIM, use of seda-
tion instead of NMBAs may not prevent CIM.

Electrophysiologic features
Electrophysiologic studies in patients with CIM are differ-
ent from the findings in most acute myopathies in that
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nerve conduction studies consistently show a decrease in
compound muscle action potential (CMAP) amplitudes
[2,5,11–13]. In most patients, there is preservation of sen-
sory nerve action potential (SNAP) amplitudes. Unless
caution is used, the reduced CMAP amplitude, in conjunc-
tion with the presence of spontaneous activity, may result
in misdiagnosis of the patient as having a predominantly
motor neuropathy [14]. In some patients, nerve conduc-
tions may be suggestive of a generalized neuropathy
because there are also low SNAP amplitudes. The cause of
the reduction in SNAP amplitude is unknown, but may be
technical (due to edema), may represent coexistent critical
illness polyneuropathy, or may represent electrical inexcit-
ability of nerve. The motor response amplitudes can be
seen to increase during clinical recovery of strength
[5,13,14]. Sensory and motor response conduction veloci-
ties are normal. Distal motor and F-wave latencies, as well
as repetitive nerve stimulation, are normal.

On electromyographic examination, abnormal sponta-
neous activity, in the form of fibrillation potentials and
positive sharp waves, is often seen, particularly in patients
with a significantly elevated serum creatine kinase (CK)
[2,5,6,12–15]. In some patients, however, there is pro-
nounced spontaneous activity in the setting of only mod-
estly elevated CK. The etiology of spontaneous activity in
these patients is unknown, but may be due to a distur-
bance of membrane excitability and/or muscle fiber necro-
sis. Reduced insertional activity may be seen in severely
weak patients with markedly reduced or absent CMAP
amplitudes. This could reflect muscle membrane inexcit-
ability in these individuals. With voluntary muscle activa-
tion of significantly weak muscles, one generally sees small
amplitude and short-duration motor unit potentials
(MUPs) with early full recruitment. Trojaborg et al. [3••]
performed quantitative electromyogram (EMG) in patients
with CIM and found that the MUP duration was signifi-
cantly less than the normal mean.

Many patients who develop CIM are unable to volun-
tary activate MUPs due to profound encephalopathy, seda-
tion, or weakness. In patients who cannot activate motor
units, distinguishing between neuropathy and myopathy
to determine the etiology of decreased CMAP amplitude in
a muscle with varying degrees of spontaneous activity is
very difficult. In these patients, there may be a role for
examining muscle membrane excitability using the tech-
nique of direct muscle stimulation. Using direct muscle
stimulation, it has been found that muscle in CIM
becomes electrically inexcitable [2,3••,12,14]. In patients
with CIM, muscle cannot be excited with direct stimula-
tion, whereas in patients with CIP and other acute and
chronic neuropathies, a large response can be obtained
even when the nerve evoked response is absent [2,12]. The
recovery of strength in patients with CIM parallels recovery
of muscle membrane excitability, and suggests that
weakness in CIM is, at least in part, the result of muscle
membrane inexcitability [14]. This observation is also

consistent with the common scenario of patients with
myopathy who have markedly reduced CMAP amplitudes
but have relatively normal muscle morphology on biopsy.

These finding are similar to those in hyperkalemic peri-
odic paralysis, where individual patients have myotonia
(hyperexcitability of muscle) at some times and inexcitable
muscle at others. The defect in hyperkalemic periodic paraly-
sis was found to be due to abnormal gating of sodium chan-
nels, which can lead to both periods of hyperexcitability as
well as periods of inexcitability [16]. In this article, we
present data suggesting that abnormal gating of sodium
channels occurs in CIM. Whether abnormal gating of
sodium channels in CIM can explain the pronounced spon-
taneous activity seen in some patients is not yet known.

Pathophysiology
To understand the mechanism underlying loss of muscle
excitability in patients with CIM, we have chosen an ani-
mal model in which muscle is denervated and treated with
corticosteroids [17,18]. This model recreates key patho-
logic features associated with weakness in many CIM
patients who receive high-dose corticosteroids while para-
lyzed with nondepolarizing NMBAs. An important differ-
ence between the animal model of CIM and affected
critically ill patients, however, is that patients often have
other major illnesses, including sepsis and multi-organ
failure, in addition to receiving corticosteroids and
NMBAs. Thus, additional factors other than corticosteroid
treatment and functional denervation may also contribute
to loss of muscle excitability in patients.

Using the animal model, it has been possible to study
loss of electrical excitability of muscle fibers using intracellu-
lar electrodes. Studies in the animal model of CIM have dem-
onstrated that individual muscle fibers that are steroid
treated and denervated (SD) become electrically inexcitable
[19]. SD muscle fibers might become inexcitable as the result
of several different types of abnormalities: 1) depolarization
of the resting membrane potential might cause inexcitability
through inactivation of sodium channels; 2) specific mem-
brane resistance might become so low that the sodium cur-
rent is insufficient to bring the fiber to threshold; 3) sodium
conductance might be reduced through loss of channels
from the membrane; and 4) inactivation of sodium channels
might occur secondary to a change in the voltage depen-
dence of inactivation. Rich et al. [19,20••] have examined
these possibilities and found that depolarization of the rest-
ing potential, decreased specific membrane resistance, num-
ber of sodium channels, and a change in the voltage
dependence of inactivation of sodium channels all contrib-
ute to decreased muscle excitability. However, the changes in
specific membrane resistance and number of sodium chan-
nels in the muscle membrane are small and appear to be less
important. Depolarization of the resting membrane poten-
tial and a shift in the voltage dependence of sodium channel
fast inactivation towards more negative potentials appear to
be the dominant factors (Fig. 1).
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In previously described disorders of muscle excitability
involving sodium channels, such as paramyotonia congenita
and hyperkalemic periodic paralysis, the defect is due to a
mutation in the muscle sodium channel gene [16]. In the ani-
mal model of CIM, the rats used have no mutation in the
muscle sodium channel gene. Likewise, patients who develop
CIM have no history of difficulty with muscle excitability.
Thus, CIM appears to be a new type of ion channel disease in
which the problem is with regulation of sodium channel
excitability rather than a genetic mutation leading to abnor-
mal excitability. What is known about mechanisms that
might lead to an alteration in the voltage dependence of
sodium channel gating in situations where no mutations are
present in the gene normally coding for the skeletal muscle
sodium channel?

Two ways in which the voltage dependence of sodium
channel inactivation might be altered are through
changes in gene expression and post-translational modi-
fication. Altered gene expression could cause a shift in
the voltage dependence of inactivation in SD muscle.
Control muscle contains only the adult isoform (SkM1)
sodium channel that inactivates at relatively depolarized
potentials [21,22]. In SD muscle, mRNA of a second
embryonic sodium channel (NaV1.5; SkM2), which inac-
tivates at more negative potentials, is present at high
levels [21–23]. Alternatively, post-translational modifica-
tions, such as phosphorylation or glycosylation, might
alter sodium channel gating in SD muscle. Both of these
processes have been shown to shift the voltage depen-
dence of sodium channel inactivation [24,25]. Whether
such regulation is important in skeletal muscle in the liv-
ing animal is unknown, but abnormalities in a process
regulating sodium channel gating could potentially
explain not only inexcitability of muscle in CIM, but also
hyperexcitability of muscle in diseases such as myotonic
dystrophy, where there is no mutation of the skeletal
muscle sodium channel gene.

Structural changes in muscle in patients with critical 
illness myopathy
Although loss of muscle electrical excitability may be the
predominant cause of acute weakness in CIM, there are
structural changes in muscle that persist even after electri-
cal excitability is re-established. These changes are likely
the cause of milder, but more prolonged, weakness that
patients have as they recover from their acute illness.
Myosin depletion in muscle fibers from biopsy specimens
of patients with CIM is the pathologic hallmark of this
disorder. Larsson et al. [26•] studied patients with CIM
and found a decrease in myosin mRNA that correlates
with the reduction in myosin protein levels. This finding
suggests that abnormalities of gene transcription may
play a critical role in the development of weakness. Dur-
ing recovery, there was an increase in myosin mRNA lev-
els that led to reaccumulation of myosin protein. Levels
of other structural proteins, such as titin, nebulin, and
actin, are also reduced in CIM. Showalter and Engel [27]
also found evidence of enhanced expression of calpain, a
calcium-activated protease, in atrophic myofibers. Such
findings suggest that altered cellular calcium homeostasis
may play a role in the loss of myosin, and perhaps other
proteins as well.

These studies, as well as the electrical studies discussed
previously, demonstrate the difficulty in determining the
cause of weakness in CIM. In each study, multiple abnor-
malities involving multiple mechanisms are found. Thus,
to understand the cause of CIM one needs to fully under-
stand regulation of muscle gene expression, modulation of
ion channels, and mechanisms governing proteolytic
breakdown of muscle proteins.

Figure 1. The voltage dependence of sodium channel inactivation 
determined using patch clamp is shown for control, excitable, and inex-
citable steroid treated and denervated (SD) fibers in the animal model of 
critical illness myopathy. The percentage of sodium current remaining at 
a given potential is plotted on the y axis, versus the voltage on the x 
axis. The curves for control fibers and excitable SD fibers are nearly 
superimposed. In both of these classes of fibers, sodium channels begin 
to inactivate at a potential of –85 mV; by –71 mV half the sodium chan-
nels are inactivated, and significant sodium current remains at –60 mV. 
The curve for inexcitable fibers is shifted by 13.5 mV towards more neg-
ative potentials. In these fibers, sodium channels begin to inactivate at a 
potential of –100 mV; by –85 mV half the channels are inactivated, and 
by –60 mV almost no sodium current remains. On each inactivation 
curve an arrow points to the mean resting potential (RP) of the muscle 
fiber, with a second horizontal arrow drawn to show what percentage of 
current remains at that potential. At the mean RP, the amount of sodium 
current remaining in each group of fibers can be calculated: 91% in 
control fibers, 36% in excitable SD fibers, and 2% in inexcitable SD 
fibers. Thus, at the RP of inexcitable SD fibers, almost all sodium chan-
nels are inactivated and action potentials cannot be initiated. The hori-
zontal error bars on each curve represent the standard error of the mean 
of the midpoint of inactivation for each curve. (Adapted from Rich and 
Pinter [20••]; with permission.)
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Decreased excitability in tissues other 
than skeletal muscle
As described previously, inactivation of sodium channels
leads to loss of electrical excitability in skeletal muscle and
likely causes acute weakness in CIM. During our studies of
ICU patients, we noticed that in some patients with CIM
who were recovering from sepsis, SNAP amplitudes were
reduced. In several patients, we have observed rapid recov-
ery of SNAP amplitudes that parallel recovery of CMAP
amplitude. This led us to hypothesize that there might be
widespread loss of excitability in electrically active tissues
in critically ill patients. To test this, Rich and McGarvey.
[28] performed a study examining electrocardiogram
changes occurring in critically ill patients with septic shock
to determine whether there was any loss of cardiac excit-
ability similar to that seen in skeletal muscle. In over 80%
of the patients studied, there was a significant decrease in
QRS amplitude during sepsis [28]. No such reduction in
QRS amplitude occurred in a control group of ICU
patients. The changes were reversible following recovery
from sepsis. It thus appears that both cardiac and skeletal
muscle excitability are altered in critically ill patients with
sepsis. Studies are planned to determine whether there is
also loss of excitability in peripheral nerves and the central
nervous system in these patients.

Critical Illness Polyneuropathy
A sensory-motor axonal polyneuropathy commonly
develops in the setting of critical illness. This was first
described by Bolton et al. [29], who called it critical ill-
ness polyneuropathy (CIP). During a period of critical ill-
ness, with sepsis and multi-organ failure, their patients
developed a severe sensory-motor polyneuropathy. CIP
was convincingly shown to be a distal sensory and motor
axonal neuropathy, differing from the Guillain-Barré syn-
drome on electrophysiologic and morphologic studies
[30]. The clinical, electrophysiologic, and pathologic fea-
tures have been detailed [29–32], and in the setting of
critical illness, these characteristics define a distinctive
form of acute polyneuropathy.

Clinical features
The clinical features of CIP are distally predominant limb
weakness and reduced reflexes. Failure to wean from artifi-
cial respiration is common and may be the first recognized
manifestation. Muscle atrophy is present, but is a late find-
ing not seen until the second or third month of illness.
Sensory loss can be present, but is usually difficult to dem-
onstrate in patients unable to cooperate with the examina-
tion due to coexistent encephalopathy, an even more
common complication of critical illness. If there is reduced
limb movement after painful stimulation of the distal limb
and facial grimacing, limb weakness should be suspected.
Cranial nerve involvement is rare and should suggest the
possibility of another neuromuscular disorder.

Witt et al. [33] prospectively evaluated 43 patients with
sepsis and multiple organ failure who had been in the ICU
for a mean of 28 days (range of 5 to 89 days). All patients
had evidence of encephalopathy. Thirty-five percent had
clinical findings consistent with neuropathy, defined as
distal weakness and hyporeflexia or inability to wean from
the respirator. Twice as many (70%) had electrophysiologic
evidence of an axonal polyneuropathy. The severity of the
neuropathy correlated with the total time in the ICU, and
in those who survived the period of critical illness (50%),
recovery was as expected from an acute axonal neuropathy.
Those patients who had mild-to-moderate axonal loss
recovered fully over months, as a result of collateral sprout-
ing from remaining motor neurons. Those with severe neu-
ropathy requiring axonal regeneration for recovery either
had no recovery or had a significant persistent deficit.

The major risk factor for the development of CIP is the
presence of the systemic inflammatory response syndrome
(SIRS). SIRS is a systemic response that occurs as a result of
infection or other injuries, such as burns or trauma. The
term sepsis is used when SIRS occurs in the setting of infec-
tion. Witt et al.'s [33] prospective study of patients with
sepsis and multiorgan failure demonstrated clinical CIP in
35%. Lacomis et al. [1] evaluated 92 patients in the ICU
over a 4.5-year period. In those who developed acute weak-
ness, the most common cause was myopathy (42%), with
an acute neuropathy (critical illness polyneuropathy)
occurring in 13%. Other prospective studies have yielded a
range of values for the incidence of CIP, from 33% to 44%
[34,35,36••], and much higher if electrophysiologic tech-
niques are used. This wide range has largely been due to
the varying definitions used for CIP and the difficulty in
separating it from the acute myopathy that can occur in the
same setting [4,14].

DeLetter et al. [36••] prospectively evaluated 98 criti-
cally ill patients for risk factors for the development of
polyneuropathy or myopathy. They combined CIP and
CIM cases and termed the disorder CIPNM. The presence
of SIRS combined with the Acute Physiology and Chronic
Health Evaluation (APACHE)-III score, a quantitative scale
of disease severity based on clinical and physiologic data,
was a good predictor for the development of neuropathy or
myopathy. A high-risk group could be identified by the
presence of SIRS and an APACHE-III score greater than 85,
in which 72% of patients developed CIPNM. A low-risk
group (8% developed CIPNM) was defined by the absence
of SIRS and an APACHE-III score less than 70.

Electrophysiologic and pathologic features
Electrophysiologic studies of CIP are those of an axonal
neuropathy [30–33,37], with nerve conduction studies
characterized by reduced motor and sensory response
amplitudes. Some patients with acute weakness have
reduced motor response amplitudes with preserved sen-
sory responses [38]. These individuals may have a motor
variant of CIP, or more likely have critical illness myopathy
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[4,14,39]. Repetitive nerve stimulation studies of neuro-
muscular transmission are unremarkable, unless there is
persistent pharmacologic neuromuscular blockade. Needle
EMG examination of limb muscle often is notable for
spontaneous activity (fibrillation potentials and positive
sharp waves) with the muscle at rest. With voluntary mus-
cle activation, there may be an excess of polyphasic MUPs.
In significantly weak muscles, these MUPs are recruited
with an increased recruitment ratio. These features on nee-
dle EMG examination are consistent with acute denerva-
tion. Phrenic nerve conduction studies are often absent in
those with severe neuropathy, and needle EMG examina-
tion of the diaphragm can demonstrate denervation [40].

Nerve biopsy and postmortem autopsy studies have
been consistent with an acute axonal sensory-motor neur-
opathy. The pathology is that of axonal degeneration of
both sensory and motor fibers without evidence of signifi-
cant inflammation or of primary demyelination [29,31,41].
DeLetter et al. [36••] prospectively performed muscle
biopsy on 30 patients whom they characterized as having
CIPNM. In these biopsy specimens, neuropathic changes
were seen in 37% of patients, myopathic changes in 40%,
and both in 23%, emphasizing the frequent coexistence of
both CIP and CIM.

Pathophysiology
The pathogenesis of CIP is largely speculative. As noted
previously, pathologic specimens reveal acute primary
axonal degeneration of sensory and motor nerve fibers
without inflammation. Prospective studies have not sup-
ported a causative role of drugs, particularly cort-
icosteroids, NMBAs, or aminoglycoside antibiotics
[31,34,36••,42•]. No specific toxin, infectious agent, or
nutritional deficiencies have been identified in this disor-
der. The current view is that cytokines and free radicals
associated with SIRS adversely affect the microcirculation,
producing endoneurial hypoxia and ultimately distal
axonal degeneration [43]. This view seems to be supported
by the finding that critically ill patients with a high
APACHE-III score and SIRS are most prone to the develop-
ment of CIP [36••].

Systemic inflammatory response syndrome, and par-
ticularly sepsis, activate humoral and cellular responses
[43]. Humoral responses occur locally in tissues, as anti-
gen-presenting cells produce proinflammatory cytokines
such as tumor necrosis factor, interleukin 1, and free rad-
icals. These humoral factors, together with local cellular
responses, interact with adhesion molecules on platelets
and endothelial cells, producing platelet-fibrin aggre-
gates that may reduce capillary flow. Cytokines released
in sepsis have histamine-like effects that may increase
microvascular permeability, produce endoneurial edema,

and then endoneurial hypoxia. An increase in local tissue
nitric oxide or endovascular relaxing factor may cause
arteriolar dilatation, further reducing capillary flow. The
microvascular structures of peripheral nerve lack autoreg-
ulation, which may make nerves particularly vulnerable
to these effects [43].

Druschky et al. [42•] have found a low-molecular
weight neurotoxic agent that may play a role in the patho-
genesis of CIP as well. They prospectively studied critically
ill patients using an in vitro cell culture assay of neurotox-
icity. This assay demonstrated serum neurotoxicity in 12 of
16 patients (75%) with CIP. However, 50% of patients
without CIP also showed the same neurotoxic effect in
their serum. Further work is needed to define the possible
role of this, or other putative neurotoxins, in sepsis.

Conclusions
When CIM or CIP develop in a critically ill patient with
the prototypical clinical and electrophysiologic features
described here, there is little difficulty in identifying
them and making a distinction between the two. How-
ever, many patients have features of both disorders and
are not as easy to classify [14,44]. Both CIP and CIM
present with limb weakness or a failure to wean from
ventilatory support. Detailed electrophysiologic studies,
including those done during recovery, are usually neces-
sary to determine which is present. Yet the findings most
easily identified in the ICU setting, fibrillation potentials
and reduced CMAP amplitudes, are common to both dis-
orders. Sensory responses are often limited by edema or
may be low amplitude due to pre-existing neuropathy.
The assessment of motor unit potential morphology and
recruitment may be hampered by poor patient effort due
to the presence of encephalopathy. The technique of
direct muscle stimulation may be helpful, but only in
those with severe CIM. In virtually all patients, however,
the identification of a neuromuscular disorder (CIP,
CIM, or both) as a cause of delayed recovery can help
with management.

The mechanisms involved in the development of criti-
cal illness neuropathy and myopathy are likely multifac-
torial. The use of nondepolarizing neuromuscular
blocking agents and corticosteroids are the most clearly
established risk factors in CIM; however, sepsis and
immobility from any cause may also contribute. How
these various factors combine to cause the unique struc-
tural and electrophysiologic changes found in muscle
from patients with CIM remains unknown. Understand-
ing this complex disorder will shed light on the multiple
factors that function in ongoing regulation of both
muscle structure and physiology in vivo.
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