Skip to main content

Advertisement

Log in

Recent Advancements in the Therapeutic Development for Marburg Virus: Updates on Clinical Trials

  • Tropical, Travel and Emerging Infections (LH Chen and F Norman, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We aim to provide valuable insights into the current state of therapeutic development for the deadly Marburg virus and guide researchers and clinicians to study the emerging therapies and shape future directions against this deadly virus.

Recent Findings

We find considerable progress in understanding the molecular biology and pathogenesis of the Marburg virus, leading to the identification of small-molecule antivirals and host-targeted approaches, including RNA polymerase inhibitors, viral entry inhibitors, and RNA interference therapies. However, there are very few ongoing clinical trials on the therapy/vaccine development against Marburg virus. Some of the potential studied candidates are chimpanzee adenovirus type 3, modified vaccinia Ankara, Marburg DNA plasmid vaccine, antisense phosphorodiamidate morpholino oligomers, and galidesivir. Yet, there are no approved vaccines or drugs against Marburg virus due to the viral genetic variability.

Summary

Extensive efforts and global awareness in the scientific society are requisite to develop preventive and therapeutic measures focusing on combinatorial formulations against Marburg virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wellington J, Nur A, Nicholas A, Uwishema O, Chaito H, Awosiku O, et al. Marburg virus outbreak in Ghana: An impending crisis. Ann Med Surg. 2022;81:104377.

    Article  Google Scholar 

  2. chronology @ www.cdc.gov [Internet]. Available from: https://www.cdc.gov/vhf/marburg/outbreaks/chronology.html.

  3. Feldmann H, Slenczka W, Klenk HD. Emerging and reemerging of filoviruses. Arch Virol Suppl. 1996;11:77–100.

    CAS  PubMed  Google Scholar 

  4. Elsheikh R, Makram AM, Selim H, Nguyen D, Le TTT, Tran V-P, et al. Reemergence of Marburgvirus disease: Update on current control and prevention measures and review of the literature. Rev Med Virol [Internet]. 2023;33:e2461. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/rmv.2461.

  5. Nsomo N. Marburg virus disease - Equatorial Guinea and the United Republic of Tanzania. 2023;1–8.

  6. 2023-DON472 @ www.who.int [Internet]. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON472.

  7. 2023-DON471 @ www.who.int [Internet]. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON471.

  8. •• Araf Y, Maliha ST, Zhai J, Zheng C. Marburg virus outbreak in 2022: A public health concern. Lancet Microbe. 2022. A description about the need of raising concern among people worldwide to prevent future outbreak and possible pandemic of Marburg virus disease.

  9. 2022-DON409 @ www.who.int [Internet]. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON409.

  10. beating-marburg-virus-outbreak-ghanas-journey-victory @ reliefweb.int [Internet]. Available from: https://reliefweb.int/report/ghana/beating-marburg-virus-outbreak-ghanas-journey-victory.

  11. • Sah R, Mohanty A, Reda A, Siddiq A, Mohapatra RK, Dhama K. Marburg virus re-emerged in 2022: Recently detected in Ghana, another zoonotic pathogen coming up amid rising cases of Monkeypox and ongoing COVID-19 pandemic- global health concerns and counteracting measures. Vet Q. 2022;42:167–71. The impact of Marburg virus spread on global health amid the COVID-19 and monkeypox is described.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brainard J, Pond K, Hooper L, Edmunds K, Hunter P. Presence and persistence of Ebola or Marburg virus in patients and survivors: A rapid systematic review. PLoS Negl Trop Dis. 2016;10:e0004475.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glaze ER, Roy MJ, Dalrymple LW, Lanning LL. A comparison of the pathogenesis of Marburg virus disease in humans and nonhuman Primates and evaluation of the suitability of these animal models for predicting clinical efficacy under the “Animal Rule.” Comp Med. 2015;65:241–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion: Insights from Ebola virus and Marburg virus. Nat Rev Microbiol. 2015;13:663–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pigott DM, Golding N, Mylne A, Huang Z, Weiss DJ, Brady OJ, et al. Mapping the zoonotic niche of Marburg virus disease in Africa. Trans R Soc Trop Med Hyg. 2015;109:366–78.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rodhain F. Bats and viruses: Complex relationships. Bull Soc Pathol Exot. 2015;108:272–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, et al. The origin of COVID-19 and why it matters. Am J Trop Med Hyg. 2020;103:955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. •• Meltzer E, Schwartz E. Ebola and Marburg virus infections in resource-rich countries: Implications for future outbreaks. Curr Infect Dis Rep [Internet]. 2023;25:181–8. Available from: https://doi.org/10.1007/s11908-023-00810-y. An important review explaining that rigorous infection-control measures may cause delays in the diagnosis and treatment of other important life-threatening infections.

  19. •• Mane Manohar MP, Lee VJ, Chinedum Odunukwe EU, Singh PK, Mpofu BS, Oxley C. Advancements in Marburg (MARV) virus vaccine research with its recent reemergence in Equatorial Guinea and Tanzania: a scoping review. Cureus. 2023;15:e42014. An important scoping review discusses the status of the Marburg virus-associated vaccine development. This review mentions that although various candidates for Marburg virus therapy/vaccine has been proposed, no vaccine or specific therapy have been approved yet.

  20. Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J Gen Virol. 2005;86:2535–42.

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Qiao L, Hou Z, Luo G. TIM-1 promotes hepatitis C virus cell attachment and infection. J Virol. 2017;91.

  22. Liu N, Tao Y, Brenowitz MD, Girvin ME, Lai JR. Structural and functional studies on the Marburg virus GP2 fusion loop. J Infect Dis. 2015;212(Suppl 2):S146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dolnik O, Becker S. Assembly and transport of filovirus nucleocapsids. PLoS Pathog. 2022;18:e1010616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol. 2015;10:537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Edwards MR, Liu G, Mire CE, Sureshchandra S, Luthra P, Yen B, et al. Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Rep. 2016;14:1632–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shifflett K, Marzi A. Marburg virus pathogenesis – Differences and similarities in humans and animal models. Virol J. 2019;16:165. https://doi.org/10.1186/s12985-019-1272-z.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bixler SL, Goff AJ. The role of cytokines and chemokines in filovirus infection. Viruses. 2015;7:5489–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Julkunen I, He F, Maljanen S, Vapalahti O, Melen K, Kakkola L. ID: 71: Ebola and Marburg virus proteins effectively interfere with the activation of TLR and RIG-I signaling pathways. Cytokine [Internet]. 2015;76:78. Available from: https://www.sciencedirect.com/science/article/pii/S1043466615003671.

  29. Mehedi M, Groseth A, Feldmann H, Ebihara H. Clinical aspects of Marburg hemorrhagic fever. Future Virol. 2011;6:1091–106.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kajihara M, Marzi A, Nakayama E, Noda T, Kuroda M, Manzoor R, et al. Inhibition of Marburg virus budding by nonneutralizing antibodies to the envelope glycoprotein. J Virol. 2012;86:13467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. King LB, Fusco ML, Flyak AI, Ilinykh PA, Huang K, Gunn B, et al. The Marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding. Cell Host Microbe. 2018;23:101-109.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amatya P, Wagner N, Chen G, Luthra P, Shi L, Borek D, et al. Inhibition of Marburg virus RNA synthesis by a synthetic anti-VP35 antibody. ACS Infect Dis. 2019;5:1385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Edwards MR, Basler CF. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr Opin Virol. 2019;35:42–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel DA, Patel AC, Nolan WC, Zhang Y, Holtzman MJ. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery. PLoS ONE. 2012;7:e36594.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shehzadi K, Saba A, Yu M, Liang J. Structure-based drug design of RdRp inhibitors against SARS-CoV-2. Top Curr Chem. 2023;381:22.

    Article  CAS  Google Scholar 

  36. Zhang X, Li A, Li T, Shou Z, Li Y, Qiao X, et al. A potential anti-HIV-1 compound, Q308, inhibits HSV-2 infection and replication in vitro and in vivo. Biomed Pharmacother. 2023;162:114595.

    Article  CAS  PubMed  Google Scholar 

  37. • Peng S, Wang H, Wang Z, Wang Q. Progression of antiviral agents targeting viral polymerases. Molecules. 2022;27:7370. A review on antiviral therapies against viruses via targeting viral polymerases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahmed S, Mahtarin R, Ahmed SS, Akter S, Islam MS, Mamun AA, et al. Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2. J Biomol Struct Dyn. 2021;39:6290–305.

    Article  CAS  PubMed  Google Scholar 

  39. Quesada Muñoz L, Fernández-Fradejas J, Martinez-Barros H, Sánchez Cuervo M, Martín Rufo M, Pintor Recuenco MDR, et al. Real-world effectiveness and factors associated with increased mortality in non-critically ill patients with COVID-19 pneumonia receiving remdesivir. Eur J Hosp Pharm Sci Pract. 2023.

  40. Radoshitzky SR, Iversen P, Lu X, Zou J, Kaptein SJF, Stuthman KS, et al. Expanded profiling of remdesivir as a broad-spectrum antiviral and low potential for interaction with other medications in vitro. Sci Rep. 2023;13:3131.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, et al. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. MBio. 2023;e0106023.

  42. Ye W, Yao M, Dong Y, Ye C, Wang D, Liu H, et al. Remdesivir (GS-5734) impedes enterovirus replication through viral RNA synthesis inhibition. Front Microbiol. 2020;11:1105.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Porter DP, Weidner JM, Gomba L, Bannister R, Blair C, Jordan R, et al. Remdesivir (GS-5734) is efficacious in cynomolgus macaques infected with Marburg virus. J Infect Dis. 2020;222:1894–901.

    Article  CAS  PubMed  Google Scholar 

  44. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7:43395.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J. The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLoS One. 2013;8.

  47. Bixler SL, Bocan TM, Wells J, Wetzel KS, Van Tongeren SA, Dong L, et al. Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus. Antiviral Res. 2018;151:97–104.

    Article  CAS  PubMed  Google Scholar 

  48. Guedj J, Piorkowski G, Jacquot F, Madelain V, Nguyen THT, Rodallec A, et al. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Med. 2018;15:e1002535.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res. 2014;105:17–21.

    Article  CAS  PubMed  Google Scholar 

  50. Smither SJ, Eastaugh LS, Steward JA, Nelson M, Lenk RP, Lever MS. Post-exposure efficacy of oral T-705 (favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res. 2014;104:153–5.

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen THT, Guedj J, Anglaret X, Laouénan C, Madelain V, Taburet A-M, et al. Favipiravir pharmacokinetics in Ebola-infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl Trop Dis. 2017;11:e0005389.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhu W, Zhang Z, He S, Wong G, Banadyga L, Qiu X. Successful treatment of Marburg virus with orally administrated T-705 (favipiravir) in a mouse model. Antiviral Res. 2018;151:39–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Espy N, Nagle E, Pfeffer B, Garcia K, Chitty AJ, Wiley M, et al. T-705 induces lethal mutagenesis in Ebola and Marburg populations in macaques. Antiviral Res. 2019;170:104529.

    Article  CAS  PubMed  Google Scholar 

  54. Mire CE, Geisbert JB, Borisevich V, Fenton KA, Agans KN, Flyak AI, et al. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci Transl Med. 2017;9.

  55. Krähling V, Becker D, Rohde C, Eickmann M, Eroğlu Y, Herwig A, et al. Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Med Microbiol Immunol. 2016;205:173–83.

    Article  PubMed  Google Scholar 

  56. Audet J, Wong G, Wang H, Lu G, Gao GF, Kobinger G, et al. Molecular characterization of the monoclonal antibodies composing ZMAb: A protective cocktail against Ebola virus. Sci Rep. 2014;4:6881.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barrientos LG, Lasala F, Otero JR, Sanchez A, Delgado R. In vitro evaluation of cyanovirin-N antiviral activity, by use of lentiviral vectors pseudotyped with filovirus envelope glycoproteins. J Infect Dis. 2004;189:1440–3.

    Article  CAS  PubMed  Google Scholar 

  58. Cai L, Sun Y, Song Y, Xu L, Bei Z, Zhang D, et al. Viral polymerase inhibitors T-705 and T-1105 are potential inhibitors of Zika virus replication. Arch Virol. 2017;162:2847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pessi A, Bixler SL, Soloveva V, Radoshitzky S, Retterer C, Kenny T, et al. Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo. Antiviral Res. 2019;171:104592.

    Article  CAS  PubMed  Google Scholar 

  60. Fowler T, Bamberg S, Möller P, Klenk H-D, Meyer TF, Becker S, et al. Inhibition of Marburg virus protein expression and viral release by RNA interference. J Gen Virol. 2005;86:1181–8.

    Article  CAS  PubMed  Google Scholar 

  61. Cheng H, Koning K, O’Hearn A, Wang M, Rumschlag-Booms E, Varhegyi E, et al. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus. Virol J. 2015;12:194.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ursic-Bedoya R, Mire CE, Robbins M, Geisbert JB, Judge A, MacLachlan I, et al. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA. J Infect Dis. 2014;209:562–70.

    Article  CAS  PubMed  Google Scholar 

  63. Geisbert TW, Lee ACH, Robbins M, Geisbert JB, Honko AN, Sood V, et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: A proof-of-concept study. Lancet (London, England). 2010;375:1896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thi EP, Mire CE, Lee ACH, Geisbert JB, Zhou JZ, Agans KN, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature. 2015;521:362–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dunning J, Sahr F, Rojek A, Gannon F, Carson G, Idriss B, et al. Experimental treatment of Ebola virus disease with TKM-130803: A single-arm phase 2 clinical trial. PLoS Med. 2016;13:e1001997.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Thi EP, Mire CE, Lee AC, Geisbert JB, Ursic-Bedoya R, Agans KN, et al. siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease. J Clin Invest. 2017;127:4437–48.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Olejnik J, Mühlberger E, Hume AJ. Recent advances in Marburgvirus research. F1000Res. 2019;8.

  68. Gordon TB, Hayward JA, Marsh GA, Baker ML, Tachedjian G. Host and viral proteins modulating Ebola and Marburg virus egress. Viruses. 2019;11.

  69. Chang J. Adenovirus vectors: Excellent tools for vaccine development. Immune Netw. 2021;21:e6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dong JY, Wang D, Pratt WD. 643. CAdVax-vectored multivalent filovirus vaccine protects NHP against challenge at 1000 times the lethal dose of Ebola and Marburg viruses. Mol Ther [Internet]. 2010;18:S250. Available from: https://www.sciencedirect.com/science/article/pii/S1525001616380844.

  71. Swenson DL, Wang D, Luo M, Warfield KL, Woraratanadharm J, Holman DH, et al. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin Vaccine Immunol. 2008;15:460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Reynolds P, Marzi A. Ebola and Marburg virus vaccines. Virus Genes. 2017;53:501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ledgerwood JE, DeZure AD, Stanley DA, Coates EE, Novik L, Enama ME, et al. Chimpanzee adenovirus vector Ebola vaccine. N Engl J Med. 2017;376:928–38.

    Article  CAS  PubMed  Google Scholar 

  74. Kibuuka H, Berkowitz NM, Millard M, Enama ME, Tindikahwa A, Sekiziyivu AB, et al. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: A phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet [Internet]. Elsevier; 2015;385:1545–54. Available from: https://doi.org/10.1016/S0140-6736(14)62385-0.

  75. Watson-Jones D, Kavunga-Membo H, Grais RF, Ahuka S, Roberts N, Edmunds WJ, et al. Protocol for a phase 3 trial to evaluate the effectiveness and safety of a heterologous, two-dose vaccine for Ebola virus disease in the Democratic Republic of the Congo. BMJ Open. 2022;12:e055596.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Volkmann A, Williamson A-L, Weidenthaler H, Meyer TPH, Robertson JS, Excler J-L, et al. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a modified vaccinia Ankara (MVA) vaccine platform. Vaccine. 2021;39:3067–80.

    Article  CAS  PubMed  Google Scholar 

  77. Kortepeter MG, Dierberg K, Shenoy ES, Cieslak TJ. Marburg virus disease: a summary for clinicians. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020;99:233–42.

    CAS  Google Scholar 

  78. Malherbe DC, Domi A, Hauser MJ, Meyer M, Gunn BM, Alter G, et al. Modified vaccinia Ankara vaccine expressing Marburg virus-like particles protects guinea pigs from lethal Marburg virus infection. NPJ Vaccines. 2020;5:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. •• Bockstal V, Shukarev G, McLean C, Goldstein N, Bart S, Gaddah A, et al. First-in-human study to evaluate safety, tolerability, and immunogenicity of heterologous regimens using the multivalent filovirus vaccines Ad26.Filo and MVA-BN-Filo administered in different sequences and schedules: a randomized, controlled study. PLoS One. 2022;17:e0274906. This study demonstrates that heterologous two-dose vaccine regimens with Ad26.Filo and MVA-BN-Filo (a combination of vaccines encoding the glycoprotein (GP) of EBOV, SUDV, and MARV) are well tolerated and immunogenic in healthy adults.

  80. Heald AE, Iversen PL, Saoud JB, Sazani P, Charleston JS, Axtelle T, et al. Safety and pharmacokinetic profiles of phosphorodiamidate morpholino oligomers with activity against Ebola virus and Marburg virus: Results of two single-ascending-dose studies. Antimicrob Agents Chemother [Internet]. American Society for Microbiology; 2014;58:6639–47. Available from: https://doi.org/10.1128/AAC.03442-14.

  81. Heald AE, Charleston JS, Iversen PL, Warren TK, Saoud JB, Al-Ibrahim M, et al. AVI-7288 for Marburg virus in nonhuman primates and humans. N Engl J Med [Internet]. Massachusetts Medical Society; 2015;373:339–48. Available from: https://doi.org/10.1056/NEJMoa1410345.

  82. Julander JG, Demarest JF, Taylor R, Gowen BB, Walling DM, Mathis A, et al. An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Res. 2021;195:105180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. • Srivastava S, Sharma D, Kumar S, Sharma A, Rijal R, Asija A, et al. Emergence of Marburg virus: a global perspective on fatal outbreaks and clinical challenges. Front Microbiol. 2023;14:1239079. A discussion about key challenges to control fatal outbreaks.

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1I1A1A01065269). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03025582). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C2003353).

Author information

Authors and Affiliations

Authors

Contributions

G.S. and A.R.S. wrote the manuscript. J.C.K. supervised the manuscript. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Jin-Chul Kim.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interests

The authors declare no competing interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Sharma, A.R. & Kim, JC. Recent Advancements in the Therapeutic Development for Marburg Virus: Updates on Clinical Trials. Curr Infect Dis Rep 26, 57–67 (2024). https://doi.org/10.1007/s11908-023-00828-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-023-00828-2

Keywords

Navigation