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Abstract Antibiotic treatment of critically ill patients
remains a significant challenge. Optimal antibacterial
strategy should achieve therapeutic drug concentration in
the blood as well as the infected site. Achieving therapeutic
drug concentrations is particularly difficult when infections
are caused by some pathogens, such as Pseudomonas
aeruginosa, methicillin-resistant Staphylococcus aureus
(MRSA) and Gram-negative rods, because of their low
susceptibility to antimicrobials. In sepsis, pharmacokinetics
(PKs) of antibiotics are profoundly altered and may result
in inadequate drug concentrations, even when recommen-
ded regimens are used, which potentially contribute to
increased mortality and spread of resistance. The wide
inter-individual PK variability observed in septic patients
strongly limits the a priori prediction of the optimal dose

that should be administered. Higher than standard dosages
are necessary for the drugs, such as β-lactams, amino-
glycosides, and glycopeptides, that are commonly used as
first-line therapy in these patients to maximize their
antibacterial activity. However, the benefit of reaching
adequate drug concentrations on clinical outcome needs to
be further determined.
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Introduction: Principles of Antibiotic Prescription
for the Critically Ill Patient

Sepsis is a major healthcare problem, being one of the most
important reasons for admission to Intensive Care Units
(ICUs) and resulting in high morbidity and mortality, which
rises up to 50% in case of septic shock [1–3]. Along with
effective volume replacement and prompt hemodynamic
optimization [4], compelling evidence suggests that an
early and appropriate antibiotic therapy is mandatory in the
management of septic patients. The impact of timing in
antibiotic prescription has been shown in several studies [5, 6]
and delayed antimicrobial administration increased the risk of
death in hypotensive patients by 7% for every additional hour
without antibiotics [7]. Also, the treatment must effectively
target the responsible pathogen. Initial administration of an
ineffective antimicrobial against the isolated strain is associated
with prolonged hospital stay and poor prognosis, while
subsequent adjustment of therapy based on antimicrobial
susceptibility had no impact on mortality [8•, 9, 10]. Pathogens
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involved in nosocomial infections, such as Pseudomonas
aeruginosa, Acinetobacter baumanii, methicillin-resistant
Staphylococcus aureus (MRSA) and extended spectrum β-
lactamase (ESBL) producing Gram-negative bacteria (GNB),
are associated with a greater probability of inappropriate
antibiotic therapy [8•, 11]. Empirical treatment should therefore
be directed against all the pathogens potentially involved in the
suspected infection, taking into account patients’ history and
the community/hospital epidemiology. In hospital-acquired
infections, the combination of broad-spectrum β-lactams, in
association with aminoglycosides and/or glycopeptides, is
recommended [4].

Antibiotic treatment is appropriate not only because it is
in vitro active against the isolated pathogen, given as early
as diagnosis of infection is made and according to the site
of infection, but also because the selected regimen offers
optimal killing drug activity [12]. The importance of an
adequate dose has been highlighted in several studies. In a
controversial meta-analysis of 57 randomized clinical trials
having used broad-spectrum β-lactams for the treatment of
different infections, a 26% increase in 30-day mortality was
observed for patients treated with cefepime in comparison
with those treated with other molecules [13]. These results
were not determined by differences in patients’ severity,
neutropenia or minimal inhibitory concentrations (MICs)
for the studied drugs. Among all, one of the possible
explanations was that the used regimen of cefepime (ie, 1–
2 g q12h) could have resulted in insufficient drug
concentrations to achieve clinical efficacy. This hypothesis
was supported by Monte Carlo simulation, based on ESBL
MICs, in which a cefepime regimen of 2 g every 8 h was
sufficient to provide adequate concentrations in nearly 70% of
the strains, while lower dosages (1 g every 12 h or 2 g every
12 h) resulted in only 27% and 50% of therapeutic drug levels,
respectively [14]. Insufficient concentrations may also
explain the high mortality rates associated with infections
due to less susceptible GNB when treated with broad-
spectrum β-lactams [15, 16•]. These data emphasize that
therapeutic failure could be related to the low probability of
achieving target serum concentrations, especially if the strain
is susceptible but with high MIC to the drug at the laboratory
testing. These less susceptible pathogens represent the main
therapeutic challenge for clinicians, in terms of appropriate
choice and optimal dosing.

How Can Sepsis Affect Antibiotic Concentrations?

Antimicrobial dosages used in sepsis are derived from
pharmacokinetic (PK) data obtained from healthy volunteers,
or less severely ill patients, without taking into account the PK
changes occurring during sepsis that reduce antibiotics
efficacy [17, 18]. In sepsis, increased cardiac output and

interstitial fluid shifts, associated with increased capillary
leakage, induce a larger volume of distribution (Vd), which
may decrease antibiotic plasma levels [19]. Also, peripheral
effusions, such as in the pleura or the abdomen, the use of
drains or extra-corporeal circuits may further change the
distribution of antibiotics. Decreased protein binding, as
observed with hypoalbuminemia, can result in higher free-
drug concentration and increased total clearance (CL) [20].
In the absence of significant organ dysfunction, this hyper-
dynamic status can also increase renal blood flow and
supranormal creatinine clearance, resulting in elevated
antibiotic elimination, may be observed [21•]. On the other
hand, organ dysfunction (ie, renal or hepatic) may develop
and contribute to alter drug metabolism and CL, leading to
drug accumulation with possible side effects [19]. In these
situations, renal replacement therapy is often needed and the
additional antibiotic removal must be considered to adapt the
dosing and to maintain therapeutic concentrations [22].
Finally, infections, especially when acquired in the ICU, are
often caused by more resistant pathogens, which require
higher drug concentrations to be treated [23]. All these PK
changes mainly affect hydrophilic compounds, such as
aminoglycosides, β-lactams and glycopeptides, as they have
a small Vd (limited to extracellular fluids) and are more
likely to be excreted unchanged by the kidney [19]. Thus,
adequate dosing for these drugs should be reconsidered to
avoid underdosing with potentially worse outcome, but also
overdosing with related toxicity.

Pharmacokinetic and Pharmacodynamic Principles
to Optimize Antibiotic Activity

Pharmacokinetics refers to the study of changes in drug
concentrations over time [24•]. In addition of Vd and CL,
the peak concentration obtained after a single dose (Cmax),
the lowest concentration before the following administra-
tion (Cmin) and the area under the serum concentration time
curve (AUC) are generally calculated to determine the
adequacy of drug levels. Pharmacodynamics (PD) relate
PKs to the ability of antibiotics to kill or inhibit the growth
of micro-organisms [24•]. The parameter that is used to
quantify the response of a pathogen to an antimicrobial is
the MIC, which represents the antibiotic concentration
resulting in inhibition of visible growth under standard
conditions [25]. Thus, PD parameters include the time that
serum concentrations remain above the MIC (T>MIC), the
ratio of the peak concentration to the MIC (Cmax/MIC) or of
the AUC to the MIC (AUC/MIC). Knowledge of the
antibiotic PK/PD properties is essential for selecting the
appropriate regimen [24•] (Fig. 1). Also, in critically ill
patients, therapy should usually target MIC of problematic
pathogens, such as Enterobacteriaceae and Pseudomonas
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aeruginosa, which are associated with the highest morbidity
and mortality [26, 27].

β-lactams

In vivo animal studies have demonstrated that β-lactams
have a slow continuous kill characteristic that is almost
entirely related to the time during which serum concen-
trations exceed the MIC (T>MIC) for the infecting
organism [28, 29]. This effect is independent of peak levels
so that, to optimize this PD end-point, β-lactams regimens
are generally administrated in multiple daily doses [24•]. In
vitro killing curve studies have shown that β-lactams
killing activity was rapidly saturated at concentrations
corresponding to 4 times the MIC, so that greatly increasing
antibiotic concentrations (ie, above 8 or 16 times the MIC)
did not kill bacteria more rapidly or more extensively [30].
Furthermore, β-lactams do not exert post antibiotic effects
(PAE, defined as the continued inhibition of bacterial
growth even for drug concentrations below the MIC) on
Streptococcus spp. and GNB, with the exception of
carbapenems and a better control of the infection is
achieved when drug concentrations are maintained above
the MIC for extended period of time [31]. Unfortunately,
there are no data comparing the efficacy of different
therapeutic end-points in the human setting; target β-
lactams concentrations above the MIC as well as the time
concentrations should be maintained above MIC over the
dosing interval remain controversial. In animal models,
maximal bacterial killing was obtained with drug concen-
trations of 4–5 times the MIC; however, higher concen-
trations of 6 times the MIC were necessary to treat some
bacteria, such as P. aeroginosa [32]. Microbiological
success, but not clinical cure, was significantly correlated

with the proportion of the dosing interval when cefepime
concentrations exceeded 4 times the MIC in human infections
[33]. On the other hand, it has been suggested that, in the
absence of any PAE, maximum killing is achieved when
T>MIC approaches 90% to100% of the dosing interval [34].
This may be especially appropriate in patients with compro-
mised host-defences, including critically ill patients [35]. In
76 patients treated with cephalosporins for serious bacterial
infections, patients with T>MIC of 100% had significantly
greater clinical cure and bacteriological eradication than
patients with T>MIC of <100% [36••]. When the drug has in
vivo PAE, such as for carbapenems, adequate antimicrobial
activity is obtained even when T > 40% to 50% of the dosing
interval [24•, 34]. Clinical studies did not provide further
evidence supporting this strategy, because drug concentra-
tions were not routinely measured, or infections were due to
bacteria with low MICs. Based on these limited data, we
suggest that to deliver optimal β-lactam treatment for GNB
infections, the concentration of the drug should be above 4
times the MIC for at least 70%, 50% and 40% of the dosing
intervals for cephalosporins, penicillins and carbapenems,
respectively (Table 1) [53].

Aminoglycosides

The Cmax/MIC ratio is considered as the parameter that best
characterizes the in vivo exposure of the strain to serum
aminoglycoside concentrations [37, 38]. In a retrospective
study, Cmax/MIC between 8 and 10 was the major
determinant for optimal antibacterial activity and clinical
response (Table 1) [39]. Also, target Cmax/MIC ratio
achieved in the early therapy increased the probability of
a rapid therapeutic response for GNB pneumonia [40].
Because of this PD characteristic and a significant PAE, a
single daily administration is the optimal solution to
increase aminoglycoside antibacterial activity [24•]. Several
studies and meta-analyses have suggested that this regimen
is as effective, if not superior, to multiple daily admin-
istrations and with a lower risk of toxicity [41, 42]. In
addition, this strategy was shown to be associated with a
lower probability to select resistant strains [24•]. The
prescription of aminoglycosides in critically ill patients is
complex because of the narrow therapeutic index of these
drugs. Potential renal, vestibular and neuromuscular
toxicity can occur in the early or late phase of amino-
glycoside therapy, with a wide spectrum of severity [43].
The risk of renal dysfunction is increased with concom-
itant hypovolemia, preexisting renal disease, nephrotoxics
and advanced age [44]. Cumulative dose, especially when
there are persistent elevated trough concentrations, is also
associated with an increased risk of renal toxicity so that
the monitoring of Cmin is advocated to minimize drug side
effects [24•].

Fig. 1 Pharmacokinetic and pharmacodynamic parameters of β-
lactams, aminoglycosides and glycopeptides on a concentrations vs.
time curve. AUC Area under the curve; Cmax peak concentration
obtained after a single dose; Cmin the lowest concentration before the
following administration; MIC minimal inhibitory concentration
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Glycopeptides

Glycopeptides antibiotics include vancomycin and teico-
planin. Although these two drugs have similar character-
istics, vancomycin is considered the drug of choice in the
therapy of serious Gram-positive (GPB) infections in ICU.
Significant controversy has occurred in recent years regarding
the efficiency by which vancomycin kills GPB and the
potential misuse of the drug [45]. Some in vitro studies
suggested that Cmax/MIC ratio correlated with drug efficacy
in non-neutropenic animals [46], while others suggested that
the bactericidal activity of glycopeptides could be driven by
either T>MIC or AUC/MIC [47, 48]. In humans, Moise et al.
[49] reported that an AUC/MIC value ≥350 was an
independent factor associated with clinical success in patients
with Staphylococcus aureus proven lower respiratory tract
infection. As it may be difficult to obtain multiple serum
vancomycin concentrations to determine the AUC, Cmin

monitoring has been recommended as the most accurate and
practical method to adjust vancomycin regimens [50]. Recent
guidelines suggested a Cmin more than 15–20 μg/mL to
ensure efficacy of the drug (Table 1) [51••]. Nevertheless, the
efficacy of vancomycin is limited by the poor penetration
into solid organs, particularly the lung or central nervous
system [45]. Moreover, a significantly higher mortality
rate is associated with MRSA bacteraemia due to strains
with MICs >1 μg/mL, when vancomycin is used [52].
Alternatively to other drugs, such as rifampicin, linezolid
or tigecycline, higher Cmin >20 μg/mL has been advocated
in these situations [51••]. An even higher concentration of
vancomycin, up to 40 μg/mL, has been suggested to
optimize drug efficacy for MRSA with MIC ≥2 μg/mL
[53]. However, when increasing the dose of vancomycin,
toxicity may occur and some studies have shown that drug
levels above 28 μg/mL were associated with a greater risk

of renal dysfunction, especially if other potential neph-
rotoxics, such as aminoglycosides or amphotericin, are
coadministered [54].

How to Optimize Antibiotic Administration in Critically
Ill Patients

β-lactams

This class of antibiotics includes penicillins, monobactams,
cephalosporins, and carbapenems, which are active against
most organisms recovered from ICU patients. Studies on
serum concentrations of broad-spectrum β-lactams have
already reported that drug levels are insufficient in patients
with severe infections to treat less susceptible strains.
Cefepime (2 g taken every 12 h) concentrations were more
than 70% above target concentrations in less than half of
the patients with sepsis [55] and were adequate only for
MICs of 4 μg/mL in post-operative infections [56]. Septic
patients with normal renal function had serum cefepime and
ceftazidime levels below therapeutic levels after a few
hours in most cases [57, 58]. Ceftazidime trough concen-
trations were below the median MIC of Pseudomonas
aeruginosa in more than half of the patients in another
study [59]. In only one study, ceftazidime levels were above
the MIC of the isolated pathogens for more than 90% of the
time interval; however Pseudomonas was isolated in only 4
of 16 patients [60]. Piperacillin concentrations were above
therapeutic levels for most of the time interval in patients
with sepsis [61•] or nosocomial pneumonia [62]. On the
other hand, serum drug concentrations of meropenem were
adequate in most of the studies in critically ill patients. In
severe infections associated with bacteremia, mostly after
cardiac surgery, meropenem had adequate serum concen-

Table 1 Recommended and PK-adjusted regimens for aminoglyco-
sides, broad-spectrum β-lactams and vancomycin. Dosages are
proposed in case of normal renal function and to target less susceptible
strains. Daily regimens of aminoglycosides will depend on the Cmax/

MIC ratio obtained with the previous administrations and on the Cmin.
Continuous infusion is applied when drug is administered over 24 h.
Extended infusion is scheduled as 3 to 4-hour administration for
piperacillin and 3-hour administration for meropenem

Recommended
loading dose

Recommended
daily dose

PK target PK adjusted
loading dose

PK adjusted
daily dose

Amikacin 15 mg/kg – Cmax/MIC > 8–10 25–30 mg/kg –

Tobramycin 5–7 mg/kg – Cmax/MIC > 8–10 8–9 mg/kg –

Gentamycin 5–7 mg/kg – Cmax/MIC > 8–10 8–9 mg/kg –

Cefepime 2 g 2 g/8 h 70% T > 4 x MIC 2 g 6 g CI

Ceftazidime 2 g 2 g/8 h 70% T > 4 x MIC 2 g 6 g CI

Piperacillin 4 g 4 g/6 h 50% T > 4 x MIC 4 g 4 g q6h ED

Meropenem 1 g 1 g/8 h 40% T > 4 x MIC 1 g 1–2 g/8 h ED

Vancomycin 15 mg/kg 15 mg/kg/12 h Cmin > 15–20 μg/mL (II)
Cmin > 20–30 μg/mL (CI)

35 mg/kg in 4 h 30–40 mg/kg CI

CI continuous infusion; Cmax peak concentration; II intermittent infusion; MIC minimal inhibitory concentration; T>MIC time above the MIC.
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trations for at least 50% of the time in patients with normal
and impaired renal function [63]. In patients with ventilator-
associated pneumonia, mean T >4 × MIC for Pseudomonas
was reported as 52% in one study [64] and 46% in another
[65]. Nevertheless, most of these studies excluded severely
ill patients with septic shock and those with multiple organ
failure, limiting the generalization of their results to other
populations of critically ill patients. The number of patients
was also limited and analyses concerned only the steady-
state of the disease. We have recently shown in a
prospective multicenter study that serum levels obtained
after the first dose of either piperacillin-tazobactam,
ceftazidime, or cefepime were insufficient to empirically
treat less susceptible pathogens in the early phase of severe
sepsis and septic shock, as 15/27 patients for piperacillin-
tazobactam, 13/18 for ceftazidime, and 16/19 for cefepime
did not attain the target PD end-point [66••]. Nevertheless,
12/16 (75%) of the patients receiving meronem achieved
adequate serum concentrations. Our study focused on a more
severe population of patients, suffering from severe sepsis and
septic shock, with higher mortality and morbidity rates than
less severely ill ICU populations [3]. In another recent
prospective study, β-lactams levels monitoring was routinely
applied in 236 critically ill patients’ management. Dose
adjustment was required in 175 (74%) of the patients, with
119 of those (50%) requiring dose increases during the early
phase of infection therapy [67••]. The increase of drug
regimens was more frequent for difficult-to-treat pathogens,
such as Pseudomonas aeruginosa, Enterobacter and Klebsi-
ella spp. or MRSA, suggesting again that these represent the
target pathogens for which β-lactams dose adjustment is
necessary to improve blood drug concentrations. Moreover,
low plasma levels can contribute to lower than expected β-
lactam concentrations in the extracellular, bronchial or
peritoneal fluid [68–70] with potentially reduced antimicro-
bial delivery to the target tissues. In view of these results, in
the early phase of sepsis, broad-spectrum β-lactams should
be administered more frequently or in doses larger than
suggested in non-septic patients, with a dramatic increase of
therapy costs. As such, according to population modelling
simulation, continuous or extended β-lactam infusions are
required to optimize pathogen exposure to bactericidal
concentrations of these drugs (T>MIC) [24•] (Table 1).
Continuous infusion (CI) of β-lactams rapidly achieved
target concentrations even for less susceptible GNB [71, 72].
However, clinical data that have shown a better outcome
using this strategy have come just from retrospective studies
in critically ill populations with pneumonia [73, 74]. Further
studies are needed to assess the influence on morbidity and
mortality of CI strategy, especially in patients with sepsis and
in infections caused by multiresistant pathogens.

Importantly, over-dosing and toxicity of β-lactams could
also be a concern when high dosages are used, so that drug

monitoring is mandatory in this setting [24•]. In 10% of
ICU patients with renal dysfunction receiving cefepime,
serum drug accumulation occurred despite dosage adjust-
ments and resulted in non-convulsive seizures, disappearing
after drug discontinuation [75••]. Roberts and al. [67••]
reported that a dose reduction was applied in 24% of ICU
patients when monitoring was routinely performed. Thus, if
high or CI regimens of β-lactams are necessary to rapidly
achieve therapeutic drug levels for difficult-to-treat pathogens,
PK abnormalities may change or resolve during time and, in
these later circumstances, dose adjustments are needed.

Aminoglycosides

Aminoglycosides (amikacin, tobramycin and gentamycin)
are often given as part of empiric therapy for severe sepsis
and septic shock, especially if Pseudomonas aeruginosa
infection is suspected. Their use is further supported by the
emergence of multidrug-resistant bacteria and the lack of
new drugs active against these micro-organisms [76]. Meta-
analyses have shown limited and conflicting benefits from
this combination therapy [77, 78]. However, the paucity of
trials including patients with severe sepsis and septic shock
precludes any recommendations in this setting and the
different amikacin doses and regimens used may have lead
to inadequate drug concentrations. Cmax concentration is
determined by the administered dose and by the Vd [24•].
The Vd of aminoglycosides is largely increased in critically
ill patients when compared to healthy volunteers and
patients with mild infections and an association between
sepsis severity, estimated by the APACHE II score, serum
albumin or adrenergic support with aminoglycoside Vd has
been described [79, 80]. Giving recommended aminoglyco-
side regimens, the peaks obtained were largely below the
desired concentrations to treat Pseudomonas aeruginosa
and resistant GNB, suggesting that higher doses of these
drugs should be administered to achieve optimal Cmax [79,
81]. Most of the studies on aminoglycosides in ICU
patients had potential biases related to limited patient
sample size, retrospective analysis or exclusion criteria,
such as septic shock, APACHE II score >35, liver cirrhosis
or acute renal failure. We have recently shown that a
loading dose of 25 mg/kg of amikacin is necessary to
achieve optimal peak concentrations in a prospective cohort
of septic patients with several co-morbidities, high disease
severity and multiple organ dysfunctions, resulting in an
ICU mortality rate of 40% [82••]. An even higher dose may
be necessary in some patients for whom peak still remains
below the desired level (Table 1). Simulation with a
standard regimen (15 mg/kg) of amikacin resulted in
insufficient peak concentrations in more than 90% of
patients, thus confirming the need to increase amikacin
regimen to optimize Cmax in septic patients. Assuming the
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threefold to fourfold factor for converting the doses of
amikacin in gentamicin and tobramycin, suggestion for the
use of higher doses were reported for these two aminoglyco-
sides (8–9 mg/kg) in patients with septic shock [83••, 84];
however, a dose higher than 7 mg/kg has not been
prospectively validated for these drugs.

High regimens need also MIC and Cmin measurement to
optimize subsequent dosages and avoid drug accumulation.
In case of renal impairment, aminoglycoside CL is reduced
and drug administration should be significantly delayed
[24•]. If using higher than recommended regimens can
enhance aminoglycoside-related renal dysfunction has not
been studied yet; however, targeting optimal amikacin
peaks resulted in the same incidence of nephrotoxicity
compared with conventional treatment [85], as long as
individualized PK drug dosing was performed to allow a
necessary drug-free period. Moreover, if aminoglycosides
are the only available therapy for pan-resistant pathogens
with high MIC for these drugs, the use of continuous renal
replacement therapy (RRT) could enhance extra-renal clear-
ance of the drug, allow daily drug administration and result in
effective clinical cure for these severe infections [86].

Glycopeptides

Vancomycin is effective against GPB, including Staphylo-
coccus aureus and epidermidis or Enterococcus spp. Higher
than recommended doses of vancomycin were necessary to
optimize drug concentrations and rescue patients from septic
shock due to GPB [87•]. Also, an increase in daily
vancomycin regimen was necessary to achieve recommended
Cmin in critically ill trauma patients with MRSA pneumonia
and normal renal function [88•]. Administration of the
conventional dose of vancomycin (15 mg/kg of body weight
every 12 h) would probably fail to achieve therapeutic drug
concentrations in the majority of critically ill patients [89, 90].
Therefore, a CI with a 30 mg/kg daily dosage has been
proposed to optimize PD vancomycin (Table 1) [90].
However, the question of whether intermittent dosing or CI
is better to improve vancomycin efficacy remains unanswered.
In patients receiving vancomycin for osteomyelitis, there was
a trend to better outcome in those treated with CI than those
with conventional regimens. Also, less adverse drug reactions
necessitating discontinuation of treatment were noticed [91].
Wysocki et al. [92] compared CI and intermittent dosing of
vancomycin in 160 patients with severe MRSA infections and
found no significant differences in clinical efficacy. However,
faster time to achieve target drug concentrations, lower daily
dose and reduced therapy costs were reported for the CI
strategy. Rello et al. [93] suggested a clinical superiority of CI
of vancomycin in a subgroup of patients with ventilator-
associated pneumonia due to MRSA. Finally, a slower onset
of nephrotoxicity in patients receiving vancomycin by CI,

despite similar duration of treatment and cumulative dose than
intermittent regimen, was reported [94]. While all these
potential advantages for CI of vancomycin have been
described, the adequate regimen to rapidly achieve target
concentrations (20–30 μg/mL) in critically ill patients is still
unclear. The need for higher doses of CI vancomycin has been
shown in two studies [95••, 96••]; however drug concen-
trations were measured only at steady-state and the adequacy
of this strategy in the first days of treatment remained
unknown. Using Monte Carlo simulation, we found that
higher than recommended loading (35 mg/kg) and daily (30–
40 mg/kg if normal renal function) doses of CI vancomycin
were necessary to achieve therapeutic serum concentrations in
the early phase of sepsis [97••]. However, this strategy needs
to be prospectively validated and its impact on drug-related
toxicity further determined.

Other Conditions

Acute renal failure is a common complication of sepsis. In
this setting, the use of continuous RRT can further alter the
PK of antibiotics. These PK changes depend on several
variables, such as the ultrafiltrate and dialysate rates,
dialysate concentrations and the type of membrane used,
each of these introducing additional variability in expected
drug concentrations [24•]. The most recent recommenda-
tions on antibiotic dosing during continuous RRT [22] were
established using evidence from studies including a limited
number of patients, with varying inclusion/exclusion
criteria and receiving different types of RRT. Serum
measurements were usually performed at steady state,
which also limits the extrapolation of results to the early
phase of sepsis, during which patients are often hemody-
namically unstable. Physiologic alterations associated with
increased body weight also affect antibiotic PKs. This is
due to the variable penetration of these drugs into adipose
tissue. Previous studies have recommended dosing weight
correction factors to normalize antimicrobial regimens in
overweight patients with less serious infections, but not
having sepsis [98]. Finally, significant PK alterations have
been also described in burned patients or liver cirrhosis
[24•]. All these situations require drug levels monitoring
and antibiotic dose adjustment.

Conclusions

Monitoring serum antibiotic concentrations is important in
critically ill patients. Drug underdosing is frequent in the
early phase of therapy and when less susceptible strains are
targeted. On the other hand, possible side effects associated
with antibiotic overdosing, including neurological distur-
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bances or renal failure, may occur and need to be avoided.
The intention of this review was not to provide definitive
dose recommendations for broad spectrum β-lactams,
aminoglycosides and vancomycin.

We underlined that the use of higher than recommended
regimen is necessary to optimize PD properties of these
drugs and potentially improve their clinical efficacy.
Clearly, systematic clinical PK/PD studies are required to
evaluate the beneficial effects of this strategy on the
outcome of septic patients.
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