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Abstract HIV is primarily a sexually transmitted infection.
However, given that the gastrointestinal tract (GIT) houses
most of the body’s lymphocytes, including activated memory
CD4+ T cells that are preferential targets for HIV, recent
research has focused on the role of the GIT in transmission
and pathogenesis. In health, the GIT maintains a balance
between immune tolerance and rapid responsiveness. A
complex network of innate and adaptive responses maintains
this balance, which is severely perturbed in HIV infection.
Recent studies have focused on mechanisms of GIT CD4+ T-
cell depletion and epithelial disruption in HIV infection, the
role of inflammation in accelerating viral dissemination, the
kinetics of the adaptive response following transmission, and
the extent of T-cell reconstitution following antiretroviral
therapy. This review summarizes the results of recent
investigations that may have important implications for the
development of vaccines, microbicides, and therapeutic
interventions for HIV and other mucosal pathogens.
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Introduction

The gastrointestinal tract (GIT) is arguably the most
important target organ for HIV. Although the high incidence
of HIV-associated gastrointestinal disorders, diarrhea, and
wasting was recognized early in the epidemic, it was initially
unclear, even among gastroenterologists, why the GIT would
serve as a major target for infection. Subsequent research
revealed that the distinction between the mucosal and
peripheral immune systems, the presence of physiologic
baseline inflammation with immune cell activation, and
increased co-receptor expression on intestinal T cells make
the GIT a prime target for HIV infection regardless of
infection route. Nevertheless, more than 25 years into the
epidemic, the initial mucosal target cell(s) for HIV infection
remain undefined, and the mechanisms driving the spiraling
inflammation that enhances HIV replication and dissemina-
tion are only now being elucidated, as are the mechanisms
promoting immune control in certain rare individuals. Given
the novel and often poorly understood features of the GIT
and the capacity of HIV to escape immune pressures while
inflicting significant damage on the host, further studies are
needed to elucidate the host-pathogen relationship in acute,
chronic, antiretroviral-treated, and end-stage disease. This
review highlights recent research findings on HIV and the
GIT from the published literature.

The GIT and Mucosal Immunology

The GIT, which is about 26 ft long, houses most (40%–
65% or more) of the body’s total immune cells [1]. These
cells are organized into two types of structures consistent
with their role in the mucosal immune system (Fig. 1).
Inductive sites (eg, Peyer’s patches in the small intestine
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and lymphoid follicles in the colon) are organized aggre-
gates analogous to peripheral lymph nodes. In inductive
sites, antigen-presenting cells (APC) provide processed
antigen to naïve lymphocytes within distinct T- and B-cell
zones. Mucosal effector sites consist of intraepithelial and
lamina propria lymphocytes disseminated throughout most
of the GIT. Intraepithelial lymphocytes in humans are
primarily CD8+ T cells with a minority (<10%) of γδ T
cells. Throughout the large and small intestine, the single-
cell columnar epithelium is underlain by a basement
membrane, beneath which lies the lamina propria, heavily
populated in health with CD4+ T cells and some plasma
cells. Macrophages and dendritic cells are present in both
inductive and effector sites.

Less often referred to as “immune cells,” gut epithelial
cells provide a critical barrier function but also express
major histocompatibility complex (MHC) class II and Toll-

like receptors and secrete several cytokines. Microfolded
cells, or M cells, are modified epithelial cells that take up
and transfer antigen and some pathogens to underlying
inductive sites. Epithelial and stromal cells, as well as APC
and lymphocytes, secrete cytokines, chemokines, and other
factors that can be finely tuned to promote tolerance,
inflammation, or specific immunity. Notably, intestinal
biopsies from healthy individuals produce moderate levels
of cytokines, sometimes higher than those seen in HIV-
infected patients on antiretroviral therapy (ART) [2]. This
low-grade inflammatory state likely reflects ongoing con-
tact with intestinal flora, and appears to be tightly regulated
to maintain mucosal integrity and clinical health.

Important in any discussion of HIV and GIT mucosal
immune cells is the concept that mucosal Tcells, in health, are
baseline “activated” by nearly any definition and are mainly
(>98%) of the memory (CD45RO+) phenotype. Furthermore,

Fig. 1 Intestinal inductive and effector sites in HIV infection: an
idealized intestinal mucosa, lined with simple columnar epithelium.
Inductive sites are organized structures such as Peyer’s patches (most
abundant in terminal ileum) and lymphoid aggregates. These structures
contain defined B- and T-cell zones in which antigen presentation
occurs. Peyer’s patches are overlaid by epithelium containing M cells,
which nonspecifically take up particulate antigens and transfer them to
lymphocytes and antigen-presenting cells harbored in basolateral
pockets. Once antigen presentation occurs, newly primed T and B cells
move through efferent lymphatics to the draining lymph nodes, and
eventually enter peripheral circulation via the thoracic duct. They then
selectively home to mucosal effector sites, taking up residence as
intraepithelial lymphocytes (IEL) or lamina propria lymphocytes
(LPL). The lamina propria in an uninfected individual contains mainly

CD4+ T cells, whereas IEL are mainly CD8+ T cells. Macrophages and
plasma cells also reside in the lamina propria. HIV and/or infected
cells may cross the epithelium and initiate infection (1) by transcytosis
across intact epithelial cells or M cells; (2) by adhering to dendrites of
mucosal dendritic cells; or (3) by direct passage through epithelial
breaches. Intestinal CD4+ T cells (in both inductive and effector sites)
are rapidly infected and depleted during acute HIV infection. The
figure also illustrates some consequences of HIV infection on mucosal
integrity (4). Tight junctions in the intestinal epithelium are compro-
mised. The lamina propria loses most of its CD4+ T cells but gathers
an influx of CD8+ T cells. Collagen deposition occurs and may hinder
reconstitution of CD4+ T cells. Inductive sites lose their distinctive
architecture and contain many apoptotic T and B cells, with few CD4+

T cells (not pictured)
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mucosal CD4+ T cells are predominantly CCR5+/CXCR4+,
constitutively expressing the essential co-receptors for HIV
infection; fewer than 20% of these CD4+ T cells exist in
blood [3–5]. The activation status, memory phenotype, and
co-receptor profile of GIT CD4+ T cells render them
extremely susceptible to infection with CCR5- and
CXCR4-tropic strains of HIV, as well as highly productive
in terms of viral protein synthesized per cell [4]. These
characteristics underscore the vulnerability of GIT T cells in
healthy individuals to HIV infection, and also identify
mechanisms supporting the massive lateral dissemination
and ongoing infection in HIV-positive individuals.

As a background to the following discussion, it may be
helpful to view “chronic” HIV infection as a series of
ongoing, acute infections occurring daily, to which the
immune system responds, adapts, and provides defensive
immune cells and reparative efforts. Integral in this response
is that repetitive, local cytokine/chemokine secretion may be
both harmful and helpful. While recruiting HIV-specific
CD8+ T cells to the site of infection, cytokines/chemokines
also lead to increased recruitment of HIV-susceptible CD4+

T cells. Proinflammatory cytokines may also contribute to
weakening the epithelial barrier, leading to translocation of
microbial products into peripheral circulation and ultimately
to generalized immune activation [6, 7].

Clinical Presentations and “HIV Enteropathy”

Clinical presentations of acute HIV infection often include
diarrhea, dehydration, chills, and loss of appetite, but just as
frequently, GIT clinical manifestations are limited although
mucosal immune destruction is underway. During end-stage
AIDS, GIT presentations and diagnoses are multiple,
complicated, and poorly responsive to treatment [8•, 9].
The clinical presentation in the well-controlled and/or
reconstituted HIV-infected patient presents a more difficult
diagnostic and treatment plan, and identifies diverse mech-
anisms altered by HIV infection. This presentation is usually
related to multiple dysfunctions/dysregulations occurring
concurrently, each requiring independent identification and
treatment that presents challenges for the physician and the
patient. The factors contributing to gastrointestinal discom-
fort or frank dysfunction include opportunistic infection
(usually with <100 CD4+ T cells/mL), medication reaction,
fat malabsorption, bacterial overgrowth, functional bowel
disease (usually diarrhea predominant), bile salt excess, and
direct HIV-driven mucosal inflammation, which is a form of
inflammatory bowel disease (IBD) [3, 10].

It is this last diagnosis that many refer to as “HIV
enteropathy.” However, given the presumptive underlying
role that HIV may play in all the clinical components
mentioned, this term is becoming a catch-all akin to “HIV-

related diarrhea.” The term “enteropathy” may be more
appropriate because it does not exclude nondiarrheal cases.
Some cases may be effectively managed by controlling
HIV with improved ART. Others require more complex
approaches. Precisely because of the multifactorial path-
ways, despite a presumed common etiology (HIV), a single
therapeutic intervention, usually effective in most HIV-
seronegative presentations, will not suffice. As our ability
to detect novel gut pathogens and our understanding of
mucosal immune and inflammatory processes advances,
treatment for such cases will likely improve, but effective
diagnosis and treatment will continue to require a multidis-
ciplinary approach [8•, 10].

Acute HIV Infection and the Gut: Which Cells
Are Infected?

As early as the mid-1990s, clinicians studying HIV-related
enteropathy reported abnormalities in intestinal leukocyte
subsets, including a depletion of CD4+ T cells in upper and
lower GIT [11]. Experimental infection of macaques with
simian immunodeficiency virus (SIV), which is closely
related to HIV, revealed depletion of intestinal CD4+ T cells
within days of infection [12]. Remarkably, the kinetics of
gut CD4+ T-cell depletion were similar regardless of
whether the infection route was mucosal (rectal or vaginal)
or intravenous [12]. This finding likely reflects the extreme
permissiveness of lamina propria CD4+ T cells to HIV/SIV
infection. The extent to which intestinal macrophages and
dendritic cells are infected remains controversial. Intestinal
macrophages reportedly lack expression of HIV coreceptors
and are relatively nonpermissive for infection [13]. Produc-
tively infected dendritic cells were detected in intestinal
tissues of SIV-infected macaques in at least one study [14].
In humans, intestinal dendritic cells express DC-SIGN
(dendritic cell-specific ICAM-3 grabbing nonintegrin) and
can transfer HIV to T cells in vitro; however, whether they
are infected in vivo is less clear [15].

How Does Rectal Transmission Occur?

Although it is established that gut CD4+ T cells serve as a
major target of HIV infection, the actual sequence of events
leading to HIV acquisition via rectal exposure remains
unclear (Fig. 1). HIV may directly access the lamina
propria through breaches or tears in the epithelium, thought
to be common during receptive anal intercourse. The simple
columnar epithelium lining the rectal mucosa is significant-
ly more fragile than the stratified squamous epithelium
found in the ectocervix and vagina. Second, the mucosa
contains dendritic cells that may bind HIV and transfer
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intact virions to susceptible CD4+ T cells [15]. A third
potential source of entry is via intestinal epithelial cells [16]
and/or M cells [17]. Although gut epithelial cell lines may
be experimentally infected in vitro, there are no confirmed
reports of productively infected gut epithelial cells in vivo.
However, they may take up virus via transcytosis, or by
binding via an alternative receptor such as galactosyl
ceramide, and then transfer the virus to CD4+ T cells.
Intestinal epithelial cells express CCR5 and can transfer
intact, infectious virus particles to subjacent CD4+ T cells in
vitro; this process was proposed as a potential explanation
for the observation that strains of HIV using CCR5
predominate during acute infection [16].

How Are Gut CD4+ T Cells Depleted?

Once infection is established, lamina propria CD4+ T cells
may be killed by a combination of mechanisms, including
direct infection and bystander apoptosis. Studying the SIV
model, Mattapallil et al. [18] quantified the number of
infected memory CD4+ T cells in blood, lymph nodes and
jejunum during acute infection. Their findings suggested
that 30% to 60% of gut memory CD4+ T cells were infected
by 10 days postintravenous infection, corresponding to the
peak of acute viremia. These results were based on
quantitative polymerase chain reaction to detect viral
DNA. In contrast, a report by Li et al. [19] suggested that
only 7% of gut CD4+ T cells were productively infected at
the peak of acute infection, but a far greater percentage was
induced to undergo bystander apoptosis, perhaps after
contact with viral proteins. Direct killing of infected cells
by natural killer cells or cytotoxic T cells (CTL) are
additional mechanisms that may contribute to CD4+ T-cell
loss. However, adaptive responses apparently develop “too
little and too late” in mucosal tissues to effectively control
the spread of virus to draining lymph nodes, and ultimately
to other tissues throughout the body [20, 21].

Epithelial Dysfunction and Immune Activation

Normal intestinal barrier function is maintained by molec-
ular complexes that form between adjacent epithelial cells:
tight junctions, adherens junctions, and desmosomes [7]. In
addition, mucosal integrity requires that a variety of cells
interact in a complex network mediated by cell surface
interactions, soluble cytokines, growth factors, and hor-
mones. Gene expression analysis shows that acute HIV
infection is accompanied by increased production of
proinflammatory cytokines and altered expression of genes
related to mucosal repair and regeneration [22]. These
changes, coupled with the loss of certain T-cell subsets,

may lead to impaired barrier function. Altered intestinal
permeability is associated with leakage of bacterial prod-
ucts, notably lipopolysaccharide (LPS), into plasma.
Brenchley et al. [6] reported that plasma LPS levels and
bacterial ribosomal DNA were elevated in patients with
chronic HIV infection as compared with healthy controls.
Furthermore, LPS levels correlated with measures of innate
and adaptive immune activation, and were reduced in
patients undergoing ART. Subsequent studies revealed that
experimental administration of LPS to SIV-infected African
green monkeys leads to increased viral load and intestinal
CD4+ T-cell depletion [23]. Taken together, these findings
suggest a direct link between increased epithelial perme-
ability and the generalized immune activation observed in
HIV infection. However, as many studies in the IBD
literature have shown, this observation is not specific to
HIV [24].

Depletion of Intestinal Th17 Cells

An important subset of CD4+ T cells, designated Th17
because of their production of interleukin (IL)-17, appears
to be preferentially infected and depleted during acute
HIV/SIV infection. Th17 cells secrete both IL-17 and IL-
22, which in turn induce the production of other cytokines,
β-defensins, and other antimicrobial peptides important
for host defense. These cells are considered particularly
important for mucosal defense against opportunistic
pathogens, including fungi such as Candida albicans,
and for maintaining epithelial integrity. Relative to con-
trols, SIV-infected macaques coinfected with Salmonella
typhimurium showed increased dissemination of Salmo-
nella, which was associated with depletion of mucosal
Th17 cells [25•]. This finding suggested that IL-17
deficiency contributes to defective intestinal barrier func-
tion and host protection.

Acute Damage to Mucosal Inductive Sites

It has been known for many years that HIV infection leads
to destruction of lymph node architecture, including
disruption of the follicular dendritic cell network and
involution of germinal centers. However, the effects of
acute infection on Peyer’s patches were not studied in detail
until recently. Levesque et al. [26] investigated B cells in
blood and terminal ileum from patients during acute/early
infection. They found a loss of germinal center architecture
in Peyer’s patches, with an abundance of apoptotic T and B
cells. Acute HIV infection also induced polyclonal B-cell
activation in both blood and the GIT, stimulating produc-
tion of antibodies specific for influenza and autoantigens.
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Gut Immune Responses: Too Little and Too Late?

Why are host defenses unable to clear HIV near the site of
transmission before the infection becomes systemic? Strong
evidence exists that CD8+ T cells contribute significantly to
the control of virus replication [27]. The appearance of
CTL in blood following acute infection coincides with the
post-acute decline in plasma viremia. Second, depletion of
blood CD8+ T cells from SIV-infected macaques using anti-
CD8 monoclonal antibodies leads to a resurgence of plasma
viremia. Third, CTL can exert immunologic pressure on
specific viral sequences, leading to the outgrowth of escape
mutants. Fourth, the rare individuals who naturally control
HIV without ART frequently have strong, polyfunctional,
HIV-specific CD8+ T-cell responses [28•]. Why, then, do
CTL not clear foci of acute infection in mucosal tissues?
The answer may be related to at least three issues: timing,
location, and the involvement of an inflammatory cascade.

The amount of time required for an adaptive, cell-
mediated response to be induced in mucosal inductive sites
and travel to effector sites (ie, lamina propria) may depend
on the efficiency of antigen uptake and presentation in a
particular tissue. Following intravenous infection with
SIVmac, CTL specific for SIV antigens appeared at a
similar rate in blood and intestinal mucosa, reaching high
levels in both by 2 weeks after infection [29]. However,
following intravaginal inoculation, CTL specific for SIV
were not detected in the female reproductive tract until
nearly 3 weeks after infection [20]. Detailed studies of
intrarectal infection have not yet been reported, but it
appears likely that gut CD4+ T-cell depletion begins before
the arrival on the scene of antigen-specific CTL.

The Potential Importance of In Vivo Effector-to-Target
Ratio

The importance of CTL location and effector-to-target
(E:T) cell ratios was underscored in a recent report by
Li et al. [30••], who quantified SIV-infected CD4+ T cells
and CTL in mucosal tissues following intravaginal
infection of macaques; detailed studies of this type have
not yet been reported for intrarectal infection. High in vivo
ratios (ie, >100:1), in which numerous CTL were located
in close proximity to infected cells in the female
reproductive tract, were associated with significant reduc-
tions in viral load during early SIV infection. Low E:T
ratios were not. The investigators reported similar findings
in murine lymphocytic choriomeningitis virus (LCMV)
infection [30••]. Although perhaps not surprising, these
are among the first studies to report on virus-specific CTL
in actual tissue, rather than the more conveniently
sampled, often-reported blood samples. Without direct

analysis of tissues, it is impossible to know the in vivo
spatial relationship between effector and target cells.
These findings, and this new analytical approach, provide
a hopeful message that an HIV vaccine approach capable
of inducing CD8+ T cells that traffic to potential sites of
transmission might be effective.

Inflammation Accelerates Viral Dissemination

Recent studies suggest that inflammation facilitates viral
dissemination beyond the site of initial infection. Using an
intravaginal inoculation model in macaques, Li et al. [31••]
demonstrated that early production of macrophage inflam-
matory protein-3α (CCL20) is followed by an influx of
plasmacytoid dendritic cells near the site of infection. These
cells, in turn, secrete chemokines capable of attracting more
CCR5+CD4+ T cells to the cervicovaginal mucosa, where
they will rapidly become infected. Notably, this process
could be blocked by the topical administration of an
antimicrobial, anti-inflammatory compound, glycerol
monolaurate [31••].

These studies were performed in a model for intravaginal
exposure, and they highlight the rationale driving the field
of topical microbicide development. These promising new
agents work by either blocking HIV’s access to target cells,
limiting target-cell vulnerability (specifically by modulating
their activation state and/or coreceptor availability), or by
interfering with HIV’s ability to replicate once inside target
cells. Parallel studies are under way using rectal mucosa
[32]. As an important component of a combination
approach toward reducing HIV transmission, microbicides
may provide short-term protection that will complement
mucosal vaccination strategies.

Mucosal Neutralizing Antibodies

By definition, neutralizing antibodies (NAb) work best
when their concentration near the site of exposure is
sufficiently high to block virus entry into host cells. At
the mucosal surface, NAb might function by blocking the
interaction of HIV with its receptor/coreceptor, or by
blocking nonspecific virus uptake and transcytosis by
epithelial cells or M cells. Antibodies can also mediate
antibody-dependent cell-mediated cytotoxicity through in-
teraction with natural killer cells.

An enormous challenge in the field of HIV vaccine
development is the question of how to induce high
concentrations of NAb at the sites of potential transmission.
Interestingly, in two important studies, systemically admin-
istered combinations of neutralizing IgG antibodies pro-
tected macaques from pathogenic mucosal challenge (one
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oral, one intravaginal) [33]. These findings imply that IgG
from peripheral circulation can be exuded at mucosal
surfaces and protect these surfaces from infection.

Several studies have reported the detection of HIV-
specific IgA in plasma or mucosal secretions from individ-
uals who are highly exposed to HIV yet persistently
seronegative (HEPS) [34]. By definition, such individuals
lack HIV-specific antibodies in plasma; therefore, this
finding suggests that a compartmentalized antibody response
was elicited in mucosal tissues upon repeated exposure to
antigen, and that class switching also occurred locally. Some
studies of HEPS have failed to detect such antibodies, and
the topic remains controversial [35•]. Nevertheless, Tudor et
al. [36•] recently described the construction of a Fab
expression library from cervical B cells isolated from HEPS
women. IgA antibodies specific for the membrane-proximal
region of HIV gp41 were obtained from this library. These
antibodies neutralized infectivity of X4 and R5 HIV strains
in vitro, and blocked transcytosis.

Even if these findings are confirmed, the problem of
how to induce local production of HIV-specific IgA and/or
IgG antibodies through vaccination of HIV-negative sub-
jects remains daunting. Recently, a small phase 1 study
investigated mucosal responses to a live vaccinia recombi-
nant expressing HIV-1IIIB env/gag/pol after deltoid or
inguinal vaccination of HIV-seronegative volunteers. Dis-
appointingly, no HIV- or vaccinia-specific antibodies were
detected in rectal secretions [37].

Cell-Mediated Immunity During Chronic Infection:
Are Gut CD8+ T-cell Responses Inadequate?

Given the extensive depletion of CD4+ T cells that begins
during the acute phase, and the persistence of virus in the
GIT throughout chronic infection, the question arises
whether HIV-specific T-cell responses in the gut are absent,
delayed, and/or dysfunctional [20]. One study of chronic
HIV infection found few HIV-specific CD8+ T cells in
terminal ileum, one site of severe CD4+ T-cell depletion, in
contrast to abundant CTL in bronchoalveolar lavage, a
luminal fluid in which CD4+ T cells are relatively well
preserved [38]. This report suggested a positive correlation
between mucosal CD8+ T-cell responses and the mainte-
nance of CD4+ T cells, but also underscored the difficulty
in drawing general conclusions regarding mucosal immu-
nity from samples taken at a single site. The relatively low
HIV-specific CD8+ T-cell responses measured in terminal
ileum suggested that CTL may be inadequately recruited to
some portions of the GIT (ie, inductive sites), or function-
ally impaired [38].

CD8+ T cells in rectal mucosa express low levels of the
cytotoxic effector protein perforin despite an abundance of

granzymes A and B, suggesting that they, too, may be
functionally impaired [39]. This observation was not
limited to HIV/SIV-specific CD8+ T cells, but also applied
to rectal CD8+ T cells from healthy controls. Although it is
possible that immune activation leads to continuous
degranulation of mucosal CTL, it also seems likely that
perforin expression in the gut is subject to tight regulation
in health, limiting inadvertent damage to the mucosal
epithelium [21]. Again, this balance may be disrupted in
HIV infection.

CD8+ T cells in GIT of infected macaques express high
levels of PD-1, a marker associated with immune exhaus-
tion [40]. Furthermore, one recent study proposed the
hypothesis that damage to the gut epithelium releases the
adherens junction protein E-cadherin into the lamina
propria and into circulation [41]. E-cadherin serves as a
ligand for the inhibitory receptor KLRG-1 on CD8+ T cells.
Accordingly, epithelial damage in HIV/SIV infection might
indirectly trigger inhibition of CD8+ T-cell responses.
Taken together, these findings suggest several potential
mechanisms by which mucosal CD8+ T-cell responses may
be impaired in the setting of HIV infection.

Although mucosal CD8+ T-cell responses are unable to
fully clear infection, in some individuals these responses
are surprisingly strong, broad and polyfunctional. In one
study, rectal CD8+ T-cell responses to HIV peptide pools
were mapped using the enzyme-linked immunosorbent spot
(ELISPOT) technique in samples from untreated, chroni-
cally infected subjects [42]. Rectal CD8+ T cells were
directed toward a broad range of peptide pools, and
mirrored responses in blood. Critchfield et al. [43, 44•]
studied rectal CD8+ T-cell responses to HIV peptides in
chronically infected patients. Generally, strong and poly-
functional HIV Gag-specific CD8+ T-cell responses in
rectal mucosa were associated with low viral load. In a
follow-up study, Ferre et al. [28•] found that rare
individuals with spontaneous control of HIV infection
(HIV controllers) had significant preservation of CD4+ T
cells in rectal mucosa compared with patients with high
viral load. Surprisingly, HIV controllers also had unusually
strong and polyfunctional rectal Gag-specific CD8+ T-cell
responses, often associated with protective MHC class I
alleles (ie, HLA-B57, B27). These strong responses may
represent the high in vivo E:T ratio necessary to effectively
control HIV replication in tissues.

ART and the Gut: Is Partial or Full CD4+ T-Cell
Restoration Feasible?

Several studies of patients on long-term ART have
evaluated potential correlates of gut CD4+ T-cell restora-
tion. Estes et al. [45] found that CD4+ T-cell depletion in
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terminal ileum, including Peyer’s patches, is accompanied
by extensive fibrotic damage and collagen deposition. This
fibrosis may disrupt the ability of gut-associated lymphoid
tissue (GALT) to support normal cell-cell interactions,
trafficking, and survival. When ART was begun during
early infection, damage was limited, but not completely
avoided [45]. HIV proviral DNA reportedly persists in
CD4+ T cells from terminal ileum after up to 9.9 years of
ART [46•]. Furthermore, modeling based on 3 years of
longitudinal data from fully suppressed subjects suggested
that proviral DNA in mucosal T cells does not significantly
decay during ART [47].

Sheth et al. [48] found significant CD4+ T-cell reconsti-
tution in sigmoid colon of patients on long-term ART.
However, samples of terminal ileum were not evaluated, so
it remains unclear whether the differences between this and
the previously cited studies are related to sampling site or
other factors. What is generally agreed upon is that
regardless of the level of immune reconstitution with
therapy, CD4+ mucosal T cells rarely are reestablished to
preinfection levels [7, 9].

Other studies of patients on long-term suppressive
ART reported partial restoration of epithelial barrier
function [49•], central memory T cells, Th17 cells, and
polyfunctional T-cell responses [50]. A common theme
in most studies is that early treatment is associated with
less severe tissue damage and more significant repair
and T-cell reconstitution. Nevertheless, HIV DNA stably
persists in the GIT despite long-term suppressive ART
regimens, supporting the concept of ongoing, low-level
replication, which presents a challenge for eradication
efforts [46•, 47].

Conclusions

Although gastrointestinal disorders and CD4+ T-cell
depletion were first recognized many years ago as
characteristic of acute HIV infection, the implications of
these observations were not fully recognized until recent-
ly, when the field of HIV research “rediscovered” the GIT.
The refocusing of HIV research to emphasize the critical
role of tissue-based investigations in understanding HIV
pathogenesis, from acute infection to advanced disease,
has been an essential and welcome paradigm shift. As we
develop a better understanding of the delicate balance
between tolerance and immune responsiveness in the
gastrointestinal mucosa, we are hopeful that meaningful
progress will become possible on several fronts, including
the development of novel mucosal vaccine/adjuvant
combinations, effective microbicides, improved antiretro-
viral therapies, and strategies to eradicate latently infected
cells.
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