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Introduction
The slippery coating of microbial growth that forms on wet
environments is not the simple entity once envisioned by
clinicians and microbiologists. Once considered to be
equivalent to free-living (ie, planktonic) organisms with
the addition of a simple polysaccharide “slime-layer,” we
now know that microorganisms, when growing as bio-
films, display remarkably different synthetic and metabolic
characteristics compared with their planktonic counter-
parts [1]. As our understanding of microbial biofilms
increases, we are discovering levels of microscopic com-
plexity and interdependence that belie the simple macro-
scopic appearance of these structures. Conventional
approaches to microbiologic diagnosis and treatment used
for planktonic organisms are not reliable when applied to
organisms in the biofilm mode of growth [2•]. The range
and prevalence of biofilm-related infections in clinical
medicine make awareness of this mode of growth and how
it affects our approach to patient management necessary
for the delivery of optimal care.

A biofilm is a community of microorganisms adherent
to a surface in an aqueous environment. It may be com-
prised of one or more species of organisms, including bac-
teria, yeast, and protozoa, that generate an extracellular

polymer matrix composed of polysaccharides and proteins
[2•] (Fig. 1). Formation of a biofilm begins when a surface
in an aqueous environment is colonized with discrete
organisms that first adhere, then divide, forming microcol-
onies [3]. Model systems using Pseudomonas aeruginosa
have demonstrated that these adherent organisms produce
intercellular signaling molecules that, when present in ade-
quate concentration, trigger the formation of complex,
mushroom-like structures [4••]. This cell-to-cell signaling
is referred to as “quorum-sensing” and includes signals to
release planktonic organisms back into the surrounding
fluid environment, as well as to build and control the
structure of the biofilm. Ultimately, a mature biofilm is a
thick sheet of channels and pillars made of organisms and
extracellular matrix [3] (Fig. 2).

Research on biofilms was originally directed toward
sessile organisms in the environment, where attachment
to surfaces enhanced the organisms’ exposure to nutrients
[1]. Thereafter, the presence of biofilms was demon-
strated in the airways of patients with cystic fibrosis, help-
ing to explain the chronicity of lung infections in this
population. There has since been a growing realization
that similar biofilms are a factor in almost every aspect of
health care [5].

Medical Biofilms
Biofilm formation requires two things: an aqueous envi-
ronment with a constant flow of nutrients, and a surface to
which organisms can adhere [2•]. These criteria are not as
limiting as might be imagined. Considered on a micro-
scopic scale, the requirement for a “constant flow” is satis-
fied in the human body by the movement of saliva across a
gingival crevice caused by normal mouth movement, or
the movement of extracellular fluid against a sternal wire
suture caused by respiratory movements of the chest wall.
Microenvironments such as these are ubiquitous.

As technology allows us to extend lives and solve diag-
nostic and therapeutic challenges, it has also created myr-
iad new opportunities for microorganisms to form
biofilms. Vascular access devices, synthetic tissue replace-
ments, water handling systems in health care, and steril-
ization devices are all examples of technologies that have
created new niches for biofilms that, in turn, can pose a
threat to human health [3,6–10].  The potential impact is
amplified by demographic trends that include growing
populations of older individuals and patients with
chronic diseases, such as diabetes. Both are examples of
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populations more likely to require medical care and inva-
sive (eg, intravascular) devices, and to be more suscepti-
ble to infections [11].

The familiar clinical vignette of the patient who
receives a protracted course of antimicrobial therapy, eg,
for osteomyelitis, defervesces and demonstrates clinical
improvement, only to relapse a few days after completing
treatment, is a classic example of an infection that
involves biofilms that confound otherwise appropriate
therapy. Devitalized bone provides surfaces to which
organisms can adhere in an aqueous microenvironment.
An example of device-associated infection related to bio-
films is ventilator-associated pneumonia, where organ-
isms from the oropharynx attach to and colonize an
endotracheal tube. The biofilm on the endotracheal tube
then can serve as a source of organisms that cause lower
respiratory tract disease.

Native tissue infections
Biofilm-associated infections of native tissues (Table 1)
share the characteristics of having aqueous microenviron-
ments with surfaces including devitalized bone (eg, mas-
toiditis and osteomyelitis), accumulated inflammatory
tissue (eg, sinusitis, cystic fibrosis-related bronchitis), or
mineral deposits, such as with cholelithiasis and renal
stones [2•,5,6,8,9,12–14]. These surfaces provide pro-
tected sites across which nutrients flow. Eradication of the
infection almost always is dependent on removal of the
colonized surface [2•].

Non-native tissue infections
Biofilm-associated infections in the setting of non-native
tissues and prostheses (Table 2) behave similarly to the
native tissue infections described above, with the inserted
or implanted material serving as the surface for attach-
ment. While some of these surfaces are amenable to easy

removal (eg, contact lenses or sutures), and thus eradica-
tion of the source of infection, many are implanted and
require nontrivial surgical removal if infected [2•,3,6–
8,10,15–18].  Among the most challenging sites are those
that are endovascular, eg, prosthetic heart valves and syn-
thetic vascular grafts. The risk of removal may be so great
that true eradication of the infection may not be possible
without risking the patient’s life. In such cases, clinicians
may choose to suppress the infection with chronic antimi-
crobial therapy [19,20].  Though useful for relatively short-
term management, relapse is highly probable should anti-
microbial suppression be discontinued for any reason.

Environmental Biofilms
Human health can also be affected by biofilms unrelated
to the body. Environmental biofilms are sources of patho-
gens that can cause infections in humans, including large
outbreaks of illness. Aerosols from contaminated water sys-
tems have caused large outbreaks of pneumonia due to
Legionella species. Coexisting with bacterial and protozoal
saprophytes, Legionella inhabit polymicrobial biofilms
found in water heaters and other segments of water han-
dling systems, including hospital water systems [21]. A very
different example of an environmental biofilm related to
human disease is that of Vibrio cholera, which forms bio-
films in estuaries, providing a source for outbreaks of food-
borne disease [22]. Ventilator-associated pneumonia can
be caused by organisms forming biofilms, not only on the
surfaces of endotracheal tubes, but throughout the wet
environment of the ventilator circuit [23]. Examples of
medically significant biofilms can be found in our homes,
eg, contact lens storage cases, which have been shown to
harbor biofilms with organisms linked to corneal infec-
tions [24]. Finally, machinery and equipment used for ster-
ilization or manufacturing can support biofilms that lead
to introduction of organisms that cause infection. For
example, if an automated sterilization device becomes col-
onized with a biofilm, this may serve as a source of organ-
isms that can contaminate endoscopes, leading to either
pseudo-outbreaks or true procedure-related infections
[25]. If similar colonization of manufacturing devices
occurs, there can be systematic contamination of solutions
intended to be sterile, leading to outbreaks of infection
among product recipients.

Figure 1. Scanning electron micrograph of staphylococcal biofilm on 
catheter lumen. (Courtesy of Janice Carr, Division of Healthcare Qual-
ity Promotion, National Center for Infectious Diseases, Centers for 
Disease Control and Prevention.)

Figure 2. Illustration of a mature biofilm.
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Antimicrobial Susceptibility
Organisms growing as a biofilm are problematic because
they are not reliably killed by standard antimicrobial ther-
apy [3]. Current antimicrobial agents alone almost never
succeed in eradicating infections involving biofilms unless
the biofilm itself is removed or excised [26•]. Our under-
standing of this problem is hampered by the fact that eval-
uation of new antimicrobial agents, measurements of
antimicrobial susceptibility, and assessment of growth
characteristics and metabolic or structural target sites have
all been done using pure cultures of planktonic organisms
[27]. Thus, the data on which we base much of our antimi-
crobial strategies may not apply to many of the infections
we attempt to treat.

The ability of these organisms to withstand treatment
appears to be multifactorial.

Charge effects: The polymer matrix of biofilms does not
appear to function as a simple physical barrier to diffusion.
Antimicrobials have been shown to penetrate efficiently.
There may, however, be electrostatic effects of the net-nega-
tively charged matrix. Negatively charged molecules of
antimicrobials, eg, aminoglycosides, can be repelled, and
positively charged molecules can be attracted, causing
them to be caught in the matrix rather than arriving at their
cellular target site [3,26•,28]. 

pH and oxidative gradients: Micropipette and microelec-
trode studies have demonstrated that biofilms contain
steep gradients of pH and oxygen concentration, creating
many microenvironments where intact antimicrobials,
despite arriving at their target, are unable to bind at the
active site [26•]. This can be due to alterations of charge or
conformation at the binding site for the molecule caused
by the local pH or oxidative state.

Metabolic alterations: Antimicrobials requiring meta-
bolic activity of target organisms to be effective, eg, β-lac-
tam drugs, may not function in biofilms due to the
decreased metabolic rates of organisms growing within
microcolonies and stalks of a biofilm [3,26•]. 

Structural alterations: Biofilms may contain a mixed
population of organisms, with most cells in a growth state

in which they remain somewhat susceptible to antimicro-
bial agents, and other cells in a metabolically inert, spore-
like state that is much more resistant to killing. The latter
cells may act as a source from which a renewed population
of organisms can arise, even after most of the biofilm has
been sterilized [26•].

In cases of polymicrobial colonization, resistance fea-
tures may be shared, eg, one species may express a β-lacta-
mase that diffuses through the biofilm, conferring
resistance to other species.

These factors strongly suggest that standard antimicro-
bial susceptibility testing performed on planktonic cells is
unlikely to yield meaningful information about how bio-
film organisms might respond in vivo to a prescribed anti-
microbial agent. Research in progress is exploring the
potential utility of antimicrobial susceptibility testing on
model biofilms [27]. Testing may even be extended to
polymicrobial biofilms.

Therapeutic implications
Current antimicrobial therapies do not allow us to reliably
eradicate infections involving biofilms [26•]. In the presence
of a biofilm, there will always be microenvironments where
antimicrobials have diminished effectiveness. Viable organ-
isms that persist form a nidus for renewed infection after
treatment has ended. As clinicians, we must be quick to con-
sider the presence of biofilms when faced with treatment fail-
ures and relapsing symptoms despite seemingly appropriate
antimicrobial treatment. In such cases, whenever possible,
identifying and removing biofilms (or the device on which
they form) is the key to successful care. When removal is not
possible, chronic antimicrobial suppression may be the only
safe option. In the rare instances when it must be used, sup-
pressive antimicrobial treatment should utilize an agent with
as narrow a spectrum of activity as possible to which the
pathogen is confirmed to be susceptible in routine (ie, plank-
tonic) testing. Although the primary site of infection will not

Table 1. Native tissue infections involving biofilms

Superficial Deep

Dental plaque Otitis media
Dental caries Mastoiditis
Hidradenitis Sinusitis
Otitis externa Osteomyelitis

Peptic ulcer disease
Cholecystitis
Pyelonephritis, associated 
with nephrolithiasis
Prostatitis
Endocarditis
Chronic bronchitis/pneumonia, 
associated with cystic fibrosis

Table 2. Non-native tissue sites prone to 
biofilm-associated infections

Easily removed 
for treatment

Difficult to remove/may 
need antibiotic suppression

Contact lenses Prosthetic joints
Sutures Spinal stabilization rods
Dental implants/pins
Urinary catheters, 
indwelling

Internal orthopedic fixation 
devices
Penile prostheses

Vascular catheters Vascular grafts
Gastrostomy tubes Prosthetic heart valves
Percutaneous drainage 
tubes
Vocal cord prostheses
Ventriculoperitoneal 
shunts
Pacemakers
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be eradicated, appropriate blood levels of a targeted antimi-
crobial are used to kill any viable organisms released from
the biofilm, and to prevent systemic infection and seeding of
secondary sites. Methods for measuring antimicrobial sus-
ceptibility of organisms in the biofilm mode of growth are
being developed, but these techniques are not yet widely
available. Other areas of investigation include identification
of synthetic molecular signals to trigger conversion from bio-
film to planktonic growth (eg, for existing infections not
amenable to removal); or, to prevent biofilm formation,
inhibiting quorum-sensing by blocking the appropriate
receptors (eg, on implantable devices) [4••]. Antimicrobial
flushes or locks that are used for vascular access devices may
have an impact on biofilms within the device. Research in
this area is ongoing as well.

Conclusions
A fundamental shift is needed in our approach to patient
care and infectious diseases if we are to prevent device-
associated infections, treatment failures, and undesired
consequences (eg, selection for antimicrobial-resistant bac-
terial strains) due to biofilm-related infections. Until
research leads us to better ways to eradicate clinically sig-
nificant biofilms, prevention of biofilm-related complica-
tions is the most meaningful goal. Awareness of the role of
biofilms and how they limit our current ability to treat
infections is the first step. We must reduce opportunities
for biofilm formation by avoiding unnecessary use of inva-
sive devices, and using the best available methods for inser-
tion or implantation to prevent the introduction of
organisms whenever possible. Treatment plans should
ensure appropriate debridement when indicated, and ade-
quate durations of treatment for infections likely to be
associated with biofilms. Suppressive therapy, when
unavoidable, should be as focused as possible.
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